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Abstract: In this paper, we use the sub-ODE method to analyze soliton solutions for the renowned
nonlinear Klein-Gordon model (NLKGM). This method provides a variety of soliton solutions,
including three positive solitons, three Jacobian elliptic function solutions, bright solitons, dark
solitons, periodic solitons, rational solitons and hyperbolic function solutions. Applications for
these solitons can be found in optical communication, fiber optic sensors, plasma physics, Bose-
Einstein condensation and other areas. We also study some numerical solutions by using forward,
backward, and central difference techniques. Moreover, we discuss variational integrators (VIs) using
the projection technique for NLKGM. We develop a numerical solution for NLKGM using the discrete
Euler lagrange equation, the Lagrangian and the Euler lagrange equation. At the end, in various
dimensions, covering 3D, 2D, and contour, we will also plot several graphs for the obtained NLKGM
solutions. A contour plot is a type of graphic representation that displays a three-dimensional surface
on a two-dimensional plane by using contour lines. Each contour line in the plotted function represents
one of the function’s constant values, mapping the function’s value across the plane. This model
has been studied across multiple soliton solutions using various methods in the open literature, but
this model for VIs and finite deference scheme (FDS) is the first time it has been studied. Within
the various numerical techniques accessible for solving Hamiltonian systems, variational integrators
distinguish themselves because of their symplectic quality. Here are some of the symplectic properties:
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symplectic orthogonality, energy conservation, area preservation, and structure preservation.

Keywords: integrability; variational integrators; nonlinear Klein-Gordon model (NLKGM)
Mathematics Subject Classification: 35A09, 35A24, 35C08

1. Introduction

One special kind of nonlinear wave is the soliton, which maintains its form and amplitude while
passing through a material without dissipating or spreading. We investigated this model for VIs
and FDS for the first time; however, it has been studied across numerous soliton solutions using
different techniques. A class of numerical methods known as FDS is used in numerical analysis to
solve differential equations and approximate derivatives by using finite differences. FDS can convert
ordinary differential equations (ODEs) and partial differential equations (PDEs), which may or may not
be nonlinear, into a system of linear equations that can be solved using matrix algebra techniques. VIs
are geometric numerical techniques where the action integral is derived using the system’s Lagrangian.
With the aid of the Hamiltonian principle, VIs discretized the Lagrangian to generate a discrete Euler–
Lagrange equation. VIs are well known for their ability to display desired long-term energy properties
while maintaining a distinct multi-symplectic structure. Zabusky and Kruskal have observed unusual
nonlinear interactions between dispersing solitary-wave pulses in nonlinear media [1]. Solitons play
an important role in many fields of science and engineering, including nonlinear physics, optics,
and fluid dynamics. Solitons are helpful in optical fiber communication systems since they don’t
produce distortion or interference in optics while transferring data over long distances. Soliton
solutions and stable, confined wave solutions to nonlinear evolution equations are fundamental tools
for understanding complex processes in physics and mathematics. The Korteweg–de Vries (KdV)
equation, which explains the evolution of one-dimensional dispersive waves, is a prime example. KdV
solitons, or soliton solutions, are solitary waves that, while propagating, keep their shape and speed.
The nonlinear Schrödinger equation (NLSE), which occurs in several disciplines, including optics, is
another significant example. Optical solitons are the result of soliton solutions to the NLSE in optics.
The behavior of solitons in a system with nonlinear interactions is also described by the Sine–Gordon
equation. Soliton structures are stable topological formations that arise in a range of physical situations,
including condensed matter physics and are described in the Sine–Gordon equation. Darvishi et al.
studied some nonlinear logarithmic equations and obtained Gaussons for them [2]. Akinyemi et al.
studied localized wave and oceanic soliton solutions for the variable coefficient equation NLEE [3].
Akinyemi et al. studied coupled NLSKdVE to obtained optical soliton solutions [4]. Senol et al.
studied dimensional conformable KP and KPBBM equations to obtained Novel soliton solutions [5].
These examples show the close relationship between solitons and NLEEs, and shed light on the
dynamics of waves and fields across a wide range of scientific subjects. These examples also explain
how solitons emerge as exceptional solutions in nonlinear system (NLS). Among these equations
additional examples of integrable (NLS) with soliton solutions include the Davey-Stewartson, Fokas-
Lenells and modified Korteweg-de Vries (mKdV) equations. The combined representation of these
equations captures the wide and various landscapes of nonlinear evolution occurrences in several
scientific fields. These equations have applications in plasma physics (Zakharov–Kuznetsov equation)
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and the study of shallow water waves (Boussinesq equation). Among these equations, one of the
renowned model is NLKGM, which was on the name of two famous physicists Oskar Klein and Walter
Gordon, and this model discusses relativistic electrons. The well-known NLKGM, is as follows:

℘tt − α
2℘xx + β℘ − γ℘2 = 0, (1.1)

This equation explains the behavior of a function ℘(x, t) in relation to time t and space x, whereby
℘(x, t) can be said to the unknown function that is dependent on the temporal t and spatial x coordinates.
℘tt is ℘′s second partial derivative, explains the function’s acceleration with regard to time, ℘xx is ℘′s
second partial derivative, in terms of spatial position, it characterizes the curvature or variations of the
function, α is the second-order spatial dispersion and γ is the coefficient of quadratic nonlinearity [6].

Soon after Klein’s studies were completed, in 1926, Vladimir Fock also independently found the
equation. Younas et al. studied the modified nonlinear Schrödinger equation, utilizing a conformable
fractional derivative, to obtained diverse exact solutions [7]. Santo et al. examined Klein-Gordon
type Cauchy problems with a time-dependent singular potential [8]. According to NLKGM, the
Higgs boson a spin-zero component was the first ostensibly elementary particle to be detected. The
Higgs boson was discovered as the European organization for nuclear research, or CERN. A number
of techniques for discrete KGMs with zero static Peierls-Nabarro potential have been reviewed by
Bebikhov et al. Additionally, they mentioned the conserved principles to discrete potential [9].
NLKGM with time-dependent coefficients have been studied for Lp − Lq decay estimates by Hirosawa
and Reissing [10]. They clarified how Lp|Lq decay estimations are affected by the relationship between
the mass term and the wave propagation speed. In the mass of a linear KGM, Böhme and Reissig
have explained the interaction between a diminishing and an oscillating part of a time-dependent
coefficient [11].

In this paper, we will study NLKGM with the help of sub-ODE approach. The main concepts
of the sub-ODE method are that the traveling wave solutions of a complex nonlinear wave equation
can be built using the sub-ODEs or simple and solvable ODEs as solutions. Numerous solutions are
provided by this, we obtain periodic, rational, bright, and dark soliton solutions, as well as Weierstrass
elliptic function solutions, three positive soliton solutions, three Jacobian elliptic function solutions and
hyperbolic function solutions. The sub-ODE method was used by many authors to study a variety of
models. In order to create optical solitons and other solutions for fiber Bragg gratings, Zayed et al. used
dispersive reflectivity with a quadratic-cubic index of nonlinear refraction, the recently developed sub-
ODE technique has been applied. Projective Riccati equations, Jacobi elliptic equations and Riccati
equations are some of the sub-ODEs that were frequently utilized [12].

We will also study the NLKGM for VIs. Firstly, the lagrangian density for NLKGM will be
examined. This model has been developed in Hamiltonian form, which identifies the Hamiltonian
function that controls the dynamics. Next, a chosen time-stepping methodology is used to discretize
the continuous time domain and techniques such as finite elements or finite differences are used to
discretize the spatial domain. Next, the action integral can be discretized and thus, dynamics can
be captured by deriving discrete equations of motion by the application of the variational principle.
VIs are numerical methods for solving Hamilton’s equations of motion, which show the positions and
velocities of physical systems as they change, in classical mechanics. This edition of a well-known
classic volume, published by one of the leading experts in this field, John Butcher, contributed to
the development and regeneration of the study of numerical methods for solving ordinary differential
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equations [13]. With a focus on variational integrators, Leimkuhler and Reich offered a more thorough
framework for understanding Hamiltonian dynamics [14]. The Hamiltonian notion of stationary action
was utilized by VIs to discretize the Lagrangian and derive a discrete Euler Lagrange equation. Several
projection methods for degenerate Lagrangian systems with variational integrators were introduced
and compared by Kraus [15]. They derive from a Lagrangian function that characterizes the kinetic
and potential energy of the system and are founded on the principle of least action. Compared to
conventional numerical approaches, VIs offer many kinds of advantages, including long-term stability,
energy conservation, and symplectic preservation. In their study of geometric numerical methods,
Hairer et al. explained how to maintain the structures of ODEs [16]. Reich and Cotter investigated the
application of variational integrators in wave energy propagation to illustrate their applicability [17].
They play an important role in numerous fields, including computer graphics, engineering, and physics.
Lew improved our knowledge of the theoretical foundations of variational integrators and established
the idea of discrete variational Hamiltonian mechanics [18]. A mathematical model that depicts how
a system changes over time is called a dynamical system (DS). The numerical techniques maintain
the physical laws of the original dynamical system [19]. A Lagrangian system is a visualization
of a dynamic system, the Lagrangian function describes the system’s total energy. The Lagrangian
function is applied to determine the system’s equations of motion, which demonstrate how the system
has evolved over time. The Euler-Lagrange equation is generated with the help of the Lagrangian
density. The approach is widely utilized in the fields of quantum mechanics, field theory and classical
mechanics, among various other areas of physics. A Hamiltonian function or mathematical assertion
that measures the total energy of the system in terms of its position and velocity variables, specifies
a particular kind of DS known as a Hamiltonian system. The system’s equations of motion are
determined by applying the concept of the Hamiltonian function. Farukh et al. exploited the discrete
gradient technique when working on the SIRI epidemic model [20]. Butcher et al. explored the
properties of G-symplectic methods theoretically and computationally [21]. A geometric-variational
approach to field theories and continuous and discrete mechanics was introduced by Marsden and
Patrick [22]. Kraus conducted research on the development of variational integrators for numerous
key models in plasma physics, including ideal magnetohydrodynamics (plasma fluid theory), the
Vlasov-Poisson system (kinetic theory), and guiding center dynamics (particle dynamics). Physical
conservation laws such as momentum and energy conservation are given special consideration [23].
A Hamiltonian theory that is canonically chosen to match with the theory of discrete Lagrangian
mechanics has been presented by Lall and West [24].

The remaining paper is organized as follows. We will go over the sub-ODE technique in Section 2.
The sub-ODE approach will then be used in Section 2.1 to determine the various solutions. The finite
difference approach for obtaining numerical solutions for NLKGM will be covered in Section 3. After
that, we will discuss the Lagrangian approach to NLKGM in Section 4. We will explain the results and
discussions for this model before providing a conclusion.

2. Analysis of sub-ODE approach

Using this method, we will assume that the formal solution to Eq (1.1) is:

ϕ(ς) = ρ<n(ς), ρ > 0, (2.1)
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where ς = x − vt, and v has to be calculated as a non-zero constant to indicate the soliton’s velocity,
while ϕ(ς) is a real function that depicts the soliton’s pulse structure. Here, the equation is satisfied by
<(ς), where n is a parameter:

<′2(ς) = L<2−2P(ς) + M<2−P(ς) + N<2(ς) + O<2+p(ς) + T<2+2p(ς), p > 0, (2.2)

here L,M,N,O and T are constants. We determine n in Eq (2.1) by using the homogeneous balance
method as follows:

K(ϕ) = n, K(ϕ2) = 2n, ... and K(ϕ′) = n + p, K(ϕ′′) = n + 2p, .... (2.3)

It is widely acknowledged that Eq (2.2) provides solutions for the following cases [12]:

2.0.1. Case 1

If L = M = O = 0, substitute in Eq (2.2), we get bright soliton solution for Eq (1.1):

<(ς) =

(√
−

N
T

sech(
√

N pς)
) 1

p

, N > 0, T < 0, (2.4)

a periodic solution

<(ς) =

(√
−

N
T

sec(
√
−N pς)

) 1
p

, N < 0, T > 0, (2.5)

and a rational solution

<(ς) =

(
ε
√

T pς

) 1
p

, N = 0, T > 0, ε = ±1. (2.6)

2.0.2. Case 2

If M = O = 0, L = N2

4T , substitute in Eq (2.2), we get dark soliton solution for Eq (1.1):

<(ς) =

(
ε

√
−

N
T

tanh(
√

N pς)
) 1

p

, N > 0, T < 0, ε = ±1, (2.7)

and a periodic solution

<(ς) =

(
ε

√
−

N
T

tan(
√
−N pς)

) 1
p

, N < 0, T > 0, ε = ±1. (2.8)
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2.0.3. Case 3

If M = O = 0, substitute in Eq (2.2), we get three Jacobian elliptic function solutions for Eq (1.1):

<(ς) =


√
−

Nm2

T (2m2 − 1)
cn

√ N
2m2 − 1

pς




1
p

, N > 0, L =
N2m2(m2 − 1)
T (2m2 − 1)2 , (2.9)

<(ς) =

√− N
T (2 − m2)

dn

√ N
2 − m2 pς


1
p

, N > 0, L =
N2(1 − m2)
T (2 − m2)2 , (2.10)

and

<(ς) =

(√
−

Nm2

T (m2 + 1)
sn

(√
−

N
m2 + 1

pς
)) 1

p

, N < 0, L =
N2m2

T (m2 + 1)2 . (2.11)

2.0.4. Case 4

If L = M = T = 0, substitute in Eq (2.2), we get bright soliton solution for Eq (1.1):

<(ς) =

(
−

N
O

sech2
( √N

2
pς

)) 1
p

, N > 0, O < 0, (2.12)

a periodic solution:

<(ς) =

(
−

N
O

sec2
( √
−N
2

pς
)) 1

p

, N < 0, O > 0, (2.13)

and a rational solution:

<(ς) =

( 4
O(pς)2

) 1
p

, N = 0, O < 0. (2.14)

2.0.5. Case 5

If M = T = 0, O > 0, substitute in Eq (2.2), we get Weierstrass elliptic function solution for
Eq (1.1):

<(ς) =

(
χ
( √O

2
pς, q2, q3

)) 1
p

, (2.15)

where q2 = −4M
D , q3 = −4L

O .
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2.0.6. Case 6

If M = O = 0, substitute in Eq (2.2), we get Weierstrass elliptic function solution for Eq (1.1):
a.

<(ς) =

( 1
T
χ(pς, q2, q3) −

N
3

) 1
2p

, (2.16)

where q2 = 4N2−12LT
3 , q3 =

4N(−2N2+9LT )
27 ,

b.

<(ς) =

( 3L
3χ(pς, q2, q3) − N

) 1
2p

, (2.17)

where q2 = 4N2−12LT
3 , q3 =

4N(−2N2+9LT )
27 ,

c.

<(ς) =

( √
12Lχ(pς, q2, q3) + 2L(2N + π)

12χ(pς, q2, q3) + π

) 1
p

, (2.18)

where q2 = − 1
12 (5Nπ + 4N2 + 33LNT ), q3 = − 4N

216 (−21N2π + 63LTπ − 20N3 + 27LNT )
andπ = 1

2 (−5N ±
√

9N2 − 36LT ),
d.

<(ς) =

(6
√

L(χ(pς, q2, q3) + N
√

L)
3χ′(pς, q2, q3)

) 1
p

, (2.19)

where χ′(pς, q2, q3) =
dχ(pς,q2,q3)

dς , q2 = N2

12 + LT, q3 = LT N3

6 ,

e.

<(ς) =

(3
√

T−1χ′(pς, q2, q3)
6χ(pς, q2, q3) + N

) 1
p

. (2.20)

where q2 = N2

12 + LT, q3 = LT N3

6 .

2.0.7. Case 7

If M = O = 0, L = 5N2

36T , substitute in Eq (2.2), we get Weierstrass elliptic function solution for
Eq (1.1):

<(ς) =

(N
√
−15N

2T χ(pς, q2, q3)

3χ(pς, q2, q3) + N

) 1
p

, (2.21)
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where q2 = 2N2

9 + LT, q3 = N3

54 .

Here q2 and q3 are called invariants of the Weierstrass elliptic function.

2.0.8. Case 8

If L = M = 0, substitute in Eq (2.2), we get three positive soliton solutions for Eq (1.1):

<(ς) =

( 1

cosh(
√

N pς) − O
2N

) 1
p

, N > 0, O < 2N, T =
O2

4N
− N, (2.22)

<(ς) =

(1
2

√
N
T

(
1 + ε tanh

(1
2

√
N pς

))) 1
p

, N > 0, T > 0, O = −2
√

NT , ε = ±1, (2.23)

and

<(ς) =

( 1
(1

2 pς)2 − T

) 1
p

, N = 0, O = 1, T < 0. (2.24)

2.0.9. Case 9

If L = M = 0, N > 0, substitute in Eq (2.2), we get hyperbolic function solutions for Eq (1.1):

<(ς) =

( 2N sech2
( √

N
2 pς

)
(
√

O2 − 4NT − O) sech2
( √

N
2 pς

)
− 2
√

O2 − 4NT

) 1
p

, O2 − 4NT > 0, (2.25)

<(ς) =

( 2N csch2
( √

N
2 pς

)
(
√

O2 − 4NT − O) csch2
( √

N
2 pς

)
+ 2
√

O2 − 4NT

) 1
p

, O2 − 4NT > 0. (2.26)

2.0.10. Case 10

If L = M = 0, N < 0, substitute in Eq (2.2), we get periodic function solutions for Eq (1.1):

<(ς) =

( 2N sec2
( √
−N
2 pς

)
(
√

O2 − 4NT − O) sec2
( √
−N
2 pς

)
− 2
√

O2 − 4NT

) 1
p

, O2 − 4NT > 0, (2.27)

<(ς) =

( 2N csc2
( √
−N
2 pς

)
(
√

O2 − 4NT − O) csc2
( √
−N
2 pς

)
− 2
√

O2 − 4NT

) 1
p

, O2 − 4NT > 0. (2.28)
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2.1. Mathematical analysis

Balancing ϕ′′ and ϕ2 in Eq (1.1) by using Eq (2.3), we get:

n + 2p = 2n =⇒ n = 2p, (2.29)

Now, Eq (1.1) has the formal solution:

ϕ(ς) = ρ<2p(ς), ρ > 0, (2.30)

Substituting Eq (2.30) along with Eq (2.2) into Eq (1.1), collecting all the coefficients of
< jp(ς), ( j = 0, 1 2, 3, 4), we get the following set of algebraic equations:

<4p(ς) : 6p2Tv2ρ − 6p2Tη2ρ − ϑρ2 = 0, (2.31)
<3p(ς) : 25Op2v2ρ − 5Op2η2ρ = 0,

<2p(ς) : 4N p2v2ρ − 4N p2η2ρ + θρ = 0,
<p(ς) : 3Mp2v2ρ − 3Mp2η2ρ = 0,
<0p(ς) : −2Lp2v2ρ − 2Lp2η2ρ = 0.

With the aid of the solutions from Eqs (2.4)–Eq (2.28), here are the different types of solutions we
have:

Type 1a.
In Case 1, L = M = O = 0, then we obtain the following results by resolving the algebraic Eq (2.31),

above:

N = −
θ

4P2(v2 − η2)
(2.32)

ρ =
6T (P2v2 − P2η2)

ϑ
,

provided N > 0, T < 0.
Substituting Eq (2.32) along with Eq (2.4) into Eq (2.30), we have the bright soliton solutions for

NLKGM in the form:

<(x, t) =

3θ sec
(

(−tv+x)
√
θ

2
√

(v−η)(v+η)

)
√

θ
p2T (v2−η2)ϑ

. (2.33)
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(a) (b) (c)

Figure 1. Bright soliton solution for the NLKGM equation within the interval −0.5 6 x 6 0.5
and −50 6 t 6 50.

Type 1b.
In Case 1, L = M = O = 0, then we obtain the following results by resolving the algebraic Eq (2.31),

above:

N = −
θ

4P2(v2 − η2)
(2.34)

ρ =
6T (P2v2 − P2η2)

ϑ
,

provided N < 0, T > 0.
Substituting Eq (2.34) along with Eq (2.5) into Eq (2.30), we have the periodic soliton solutions for

NLKGM in the form:

<(x, t) =

3θ sec
(

1
2 (−tv + x)

√
θ

v2−η2

)
√

θ
p2T (v2−η2)ϑ

. (2.35)

(a) (b) (c)

Figure 2. Periodic soliton solution for the NLKGM equation within the interval −0.5 6 x 6
0.5 and −50 6 t 6 50.
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Type 1c.
In Case 1, L = M = O = 0, then we obtain the following results by resolving the algebraic Eq (2.31),

above:

N = −
θ

4P2(v2 − η2)
(2.36)

ρ =
6T (P2v2 − P2η2)

ϑ
,

provided N = 0, T > 0, ε = ±.
Substituting Eq (2.36) along with Eq (2.6) into Eq (2.30), we have a rational soliton solutions for

NLKGM in the form:

<(x, t) =
6p
√

T (v2 − η2)ε
(tv − x)ϑ

. (2.37)

(a) (b) (c)

Figure 3. Rational soliton solution for the NLKGM equation within the interval −0.5 6 x 6
0.5 and −50 6 t 6 50.

Type 2a.
In Case 2, M = O = 0, L = N2

4T , then we obtain the following results by resolving the algebraic Eq
(2.31), above:

N =
θ

8P2η2 (2.38)

ρ = −
12P2Tη2

ϑ
,

provided N > 0, T < 0, ε = ±1.
Substituting Eq (2.38) along with Eq (2.7) into Eq (2.30), we have dark soliton solutions for

NLKGM in the form:

<(x, t) =

3
√

2θε tanh
( p(−tv+x)

√
θ

p2η2

2
√

2

)
√
− θ

p2Tη2ϑ
. (2.39)
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(a) (b) (c)

Figure 4. Dark soliton solution for the NLKGM equation within the interval −0.5 6 x 6 0.5
and −50 6 t 6 50.

Type 2b.
In Case 2, M = O = 0, L = N2

4T , then we obtain the following results by resolving the algebraic Eq
(2.31), above:

N =
θ

8P2η2 (2.40)

ρ = −
12P2Tη2

ϑ
,

provided N < 0, T > 0, ε = ±1.
Substituting Eq (2.40) along with Eq (2.8) into Eq (2.30), we have periodic soliton solutions for

NLKGM in the form:

<(x, t) =

3
√

2θε tan
( p(−tv+x)

√
− θ

p2η2

2
√

2

)
√
− θ

p2Tη2ϑ
. (2.41)

(a) (b) (c)

Figure 5. Periodic soliton solution for the NLKGM equation within the interval −0.5 6 x 6
0.5 and −50 6 t 6 50.
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Type 3.
In Case 7, M = O = 0, L = 5N2

36T , then we obtain the following results by resolving the algebraic Eq
(2.31), above:

N = −
θ

8P2v2 (2.42)

ρ = −
12P2Tη2

ϑ
,

provided q2 = 2N2

9 + LT , q3 = N3

54 .
Substituting Eq (2.42) along with Eq (2.21) into Eq (2.30), we have Weierstrass elliptic function

solution for NLKGM as:

<(x, t) =

(N
√
−15N

2T (WeierstrassP(Pς, q2, q3))

3WeierstrassP(Pς, q2, q3) + N

)
. (2.43)

(a) (b) (c)

Figure 6. Weierstrass elliptic soliton solution for the NLKGM equation within the interval
−0.5 6 x 6 0.5 and −50 6 t 6 50.

Type 4.
In Case 8, L = M = 0, T = O2

4N − N, then we obtain the following results by resolving the algebraic
Eq (2.31), above:

N = −
θ

4P2(v2 − η2)
(2.44)

ρ = −
3θ
2ϑ
,

provided N > 0, O < 2N.
Substituting Eq (2.44) along with Eq (2.22) into Eq (2.30), we have positive solutions for NLKGM

in the form:

<(x, t) =

3θ sec
(

(−tv+x)
√
θ

2
√

(v−η)(v+η)

)
2ϑ

. (2.45)
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(a) (b) (c)

Figure 7. Positive soliton solution for the NLKGM equation within the interval −0.5 6 x 6
0.5 and −50 6 t 6 50.

Type 5a.
In Case 9, L = M = 0, N > 0, then we obtain the following results by resolving the algebraic Eq

(2.31), above:

N = −
θ

4P2(v2 − η2)
(2.46)

ρ =
6T (P2v2 − P2η2)

ϑ
,

provided O2 − 4NT > 0.
Substituting Eq (2.46) along with Eq (2.25) into Eq (2.30), we have the hyperbolic function

solutions for NLKGM in the form:

<(x, t) =

3Tθ sec
(

(−tv+x)
√
θ

2
√

(v−η)(v+η)

)
2
√
−nTϑ

. (2.47)

(a) (b) (c)

Figure 8. Hyperbolic soliton solution for the NLKGM equation within the interval −0.5 6
x 6 0.5 and −50 6 t 6 50.
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Type 5b.
In Case 9, L = M = 0, N > 0, then we obtain the following results by resolving the algebraic

Eq (2.31), above:

N = −
θ

4P2(v2 − η2)
(2.48)

ρ =
6T (P2v2 − P2η2)

ϑ
,

provided O2 − 4NT > 0.
Substituting Eq (2.48) along with Eq (2.26) into Eq (2.30), we have the hyperbolic function

solutions for NLKGM in the form:

<(x, t) =

3Tθ sec
(

(−tv+x)
√
θ

2
√

(v−η)(v+η)

)
2
√
−nTϑ

. (2.49)

(a) (b) (c)

Figure 9. Hyperbolic soliton solution for the NLKGM equation within the interval −0.5 6
x 6 0.5 and −50 6 t 6 50.

Type 6a.
In Case 10, L = M = 0, N < 0, then we obtain the following results by resolving the algebraic

Eq (2.31), above:

N = −
θ

4P2(v2 − η2)
(2.50)

ρ =
6T (P2v2 − P2η2)

ϑ
,

provided O2 − 4NT > 0.
Substituting Eq (2.50) along with Eq (2.27) into Eq (2.30), we have the periodic function solutions

for NLKGM in the form:

<(x, t) =
3Tθ

Oϑ +
√
−4NT + O2ϑ cos

(
1
2 (−tv + x)

√
θ

v2−η2

) . (2.51)
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(a) (b) (c)

Figure 10. Periodic soliton solution for the NLKGM equation within the interval −0.5 6 x 6
0.5 and −50 6 t 6 50.

Type 6b.
In Case 10, L = M = 0, N < 0, then we obtain the following results by resolving the algebraic

Eq (2.31), above:

N = −
θ

4P2(v2 − η2)
(2.52)

ρ =
6T (P2v2 − P2η2)

ϑ
,

provided O2 − 4NT > 0.
Substituting Eq (2.52) along with Eq (2.28) into Eq (2.30), we have the periodic function solutions

for NLKGM in the form:

<(x, t) =
3Tθ

Oϑ −
√
−4NT + O2ϑ cos

(
1
2 (−tv + x)

√
θ

v2−η2

) . (2.53)

(a) (b) (c)

Figure 11. Periodic soliton solution for the NLKGM equation within the interval −0.5 6 x 6
0.5 and −50 6 t 6 50.
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Now in this section, using the finite difference scheme, we will examine the governing model for
numerical solutions utilizing a combination of forward, backward, and centered difference schemes:

3. Finite difference scheme (FDS)

The Forward-forward difference scheme (F-FDS), Forward-backward difference scheme (F-
BDS), Forward-centered difference scheme (F-CDS), Backward-backward difference scheme (B-
BDS), Forward-forward difference scheme (B-FDS), Backward-centered difference scheme (B-
CDS), Centered-centered difference scheme (C-CDS), Centered-forward difference scheme (C-FDS),
Centered-backward difference scheme (C-BDS) and Backward-forward difference scheme (B-FDS)
will be used to study FDS in this section.

We know the Tayler’s series expansion,

ω(x + `) = ω(x) + `ω′(x) +
`2ω′′(x)

2!
+ ..., (3.1)

First Derivative Approximation,

ω′(x) ≈
ω(x + `) − ω(x)

`
, (3.2)

Similarly, Second Derivative Approximation,

ω′′(x) ≈
ω(x + `) − 2ω(x) + ω(x − `)

`2 . (3.3)

3.1. F-FDS

A numerical technique used to estimate a function’s derivative at a specific point is called the F-FDS.
It uses a finite difference method in which two closely spaced locations are chosen, one slightly ahead
of the other and the difference in function values between them is computed. This method produces an
approximation of the derivative of the function at the chosen place, which makes it particularly useful
for such numerical approximations.

From Tayler’s series expansion, we get,

℘x ≈
℘(x + `, t) − ℘(x, t)

`x
, (3.4)

℘xx ≈
℘(x + `, t) − 2℘(x, t) − ℘(x − `, t)

`2
x

, (3.5)

℘t ≈
℘(x, t + ~) − ℘(x, t)

`t
, (3.6)

℘tt ≈
℘(x, t + ~) − 2℘(x, t) + ℘(x, t − ~)

`2
t

. (3.7)

Substitute Eqs (3.4)–Eq (3.7) into Eq (1.1), we get,
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℘i, j+1 =
α2`2

t (℘i+1, j −2℘i, j −℘i−1, j )
`2

x
− `2

t β(℘i, j ) + `2
t γ(℘i, j )2 + 2℘i, j −℘i, j−1 , (3.8)

let

γ1 =
α2`2

t

`2
x
, γ2 = `2

t β, γ3 = `2
t γ, (3.9)

℘i, j+1 = γ1(℘i+1, j ) + (2γ1 + 2 − γ2)℘i, j −γ1(℘i+1, j ) − (℘i, j−1 ) + γ3(℘i, j )2. (3.10)

(a)

Figure 12. F-FDS.

3.2. F-BDS

The backward difference method approximates derivatives using a data point that is slightly behind
the reference point. Differential equation solutions can, however, be estimated numerically using the
F-BDS method. By integrating components of the forward and backward difference schemes, this
method produces the three basic types of finite difference schemes.

From Tayler’s series expansion, we get,

℘tt ≈
℘(x, t + ~) − 2℘(x, t) + ℘(x, t − ~)

`2
t

, (3.11)

℘xx ≈
℘(x − 2`, t) − 2℘(x − `, t) + ℘(x, t)

`2
x

. (3.12)

Substitute Eqs (3.11) and (3.12) into Eq (1.1), we get,

℘i, j+1 =
α2`2

t (℘i−2, j −2℘i−1, j +℘i, j )
`2

x
− `2

t β(℘i, j ) + `2
t γ(℘i, j )2 + 2℘i, j −℘i, j−1 , (3.13)

let

γ1 =
α2`2

t

`2
x
, γ2 = `2

t β, γ3 = `2
t γ, (3.14)

℘i, j+1 = γ1(℘i−2, j ) − 2γ1(℘i−1, j ) − (℘i, j−1 ) + (γ1 + 2 − γ2)℘i, j +γ3(℘i, j )2. (3.15)
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(a)

Figure 13. F-BDS.

3.3. F-CDS

By estimating the derivative more precisely, the centered difference approach improves accuracy
by using data points in front of and behind the reference point. In order to provide a more precise
approximation of the derivative, the F-CDS also contains two data points that are ahead of and two
data points that are behind the reference point.

From Tayler’s series expansion, we get,

℘tt ≈
℘(x, t + ~) − 2℘(x, t) + ℘(x, t − ~)

`2
t

, (3.16)

℘xx ≈
℘(x + `, t) − 2℘(x, t) + ℘(x − `, t)

`2
x

. (3.17)

Substitute Eqs (3.16) and (3.17) into Eq (1.1), we get,

℘i, j+1 =
α2`2

t (℘i+1, j −2℘i, j +℘i−1, j )
`2

x
− `2

t β(℘i, j ) + `2
t γ(℘i, j )2 + 2℘i, j −℘i, j−1 , (3.18)

let

γ1 =
α2`2

t

`2
x
, γ2 = `2

t β, γ3 = `2
t γ, (3.19)

℘i, j+1 = γ1(℘i+1, j ) + γ1(℘i−1, j ) + (2 − 2γ1 − γ2)℘i, j −℘i, j−1 +γ3(℘i, j )2. (3.20)
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(a)

Figure 14. F-CDS.

.

3.4. B-BDS

With an observation close to the point of interest, the “backward difference scheme” generates
derivatives. The primary objective is to approximate the function’s slope using solely historical data,
paying close attention to historical data while it is being estimated.

From Tayler’s series expansion, we get,

℘xx ≈
℘(x − 2`, t) − 2℘(x − `, t) + ℘(x, t)

`2
x

, (3.21)

℘tt ≈
℘(x, t) − 2℘(x, t − ~) + ℘(x, t − 2~)

`2
t

. (3.22)

Substitute Eqs (3.21) and (3.22) into Eq (1.1), we get,

℘i, j−2 =
α2`2

t (℘i−2, j −2℘i−1, j +℘i, j )
`2

x
− `2

t β(℘i, j ) + `2
t γ(℘i, j )2 + 2℘i, j−1 −℘i, j−2 , (3.23)

let

γ1 =
α2`2

t

`2
x
, γ2 = `2

t β, γ3 = `2
t γ, (3.24)

℘i, j−2 = γ1(℘i−2, j ) − 2γ1(℘i−1, j ) + (γ1 − γ2 − 1)℘i, j +2℘i, j−1 +γ3(℘i, j )2. (3.25)
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(a)

Figure 15. B-BDS.

3.5. B-FDS

A method for numerically calculating a function’s second derivative at a specific position is called
the B-FDS. To achieve this and produce a more precise and well-rounded estimate of the second
derivative, it skillfully integrates elements from both forward and backward difference schemes,
utilizing information from both past and future areas.

From Tayler’s series expansion, we get,

℘tt ≈
℘(x, t) − 2℘(x, t − ~) + ℘(x, t − 2~)

`2
t

, (3.26)

℘xx ≈
℘(x + `, t) − 2℘(x, t) − ℘(x − `, t)

`2
x

. (3.27)

Substitute Eqs (3.26) and (3.27) into Eq (1.1), we get,

℘i, j−2 =
α2`2

t (℘i+1, j −2℘i, j −℘i−1, j )
`2

x
− `2

t β(℘i, j ) + `2
t γ(℘i, j )2 + 2℘i, j−1 +℘i, j−2 , (3.28)

let

γ1 =
α2`2

t

`2
x
, γ2 = `2

t β, γ3 = `2
t γ, (3.29)

℘i, j−2 = γ1(℘i+1, j ) − γ1(℘i−1, j ) + (−2γ1 − 1 − γ2)℘i, j +2℘i, j−1 +γ3(℘i, j )2. (3.30)
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(a)

Figure 16. B-FDS.

3.6. B-CDS

When data and historical data are present on both sides of the point of interest, the B-CDS is most
useful for calculating the second derivative. This method works best when symmetric and historical
data are available.

From Tayler’s series expansion, we get,

℘tt ≈
℘(x, t) − 2℘(x, t − ~) + ℘(x, t − 2~)

`2
t

, (3.31)

℘xx ≈
℘(x + `, t) − 2℘(x, t) + ℘(x − `, t)

`2
x

. (3.32)

Substitute Eqs (3.31) and (3.32) into Eq (1.1), we get,

℘i, j−2 =
α2`2

t (℘i+1, j −2℘i, j −℘i−1, j )
`2

x
− `2

t β(℘i, j ) + `2
t γ(℘i, j )2 + 2℘i, j−1 +℘i, j−2 , (3.33)

let

γ1 =
α2`2

t

`2
x
, γ2 = `2

t β, γ3 = `2
t γ, (3.34)

℘i, j−2 = γ1(℘i+1, j ) + γ1(℘i−1, j ) + 2℘i, j−1 +(−2γ1 − 1 − γ2)℘i, j +γ3(℘i, j )2. (3.35)
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(a)

Figure 17. B-CDS.

3.7. C-CDS

The “centered difference scheme” is a widely used numerical method for calculating derivatives at
a given place, which makes use of data points from both the forward and backward directions relative
to the point of interest.

From Tayler’s series expansion, we get,

℘xx ≈
℘(x + `, t) − 2℘(x, t) + ℘(x − `, t)

`2
x

, (3.36)

℘tt ≈
℘(x, t + ~) − 2℘(x, t) + ℘(x, t − ~)

`2
t

. (3.37)

Substitute Eqs (3.36) and (3.37) into Eq (1.1), we get,

℘i, j+1 =
α2`2

t (℘i+1, j −2℘i, j −℘i−1, j )
`2

x
− `2

t β(℘i, j ) + `2
t γ(℘i, j )2 + 2℘i, j +℘i, j−1 . (3.38)

let

γ1 =
α2`2

t

`2
x
, γ2 = `2

t β, γ3 = `2
t γ, (3.39)

℘i, j+1 = γ1(℘i+1, j ) + (2 − 2γ1 − γ2)℘i, j +γ1(℘i−1, j ) − ℘i, j−1 +γ3(℘i, j )2. (3.40)
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(a)

Figure 18. C-CDS.

3.8. C-FDS

The C-FDS or combination of the forward and centered difference schemes, yields a more accurate
derivative estimate. When working with data that is available with respect to a given time in the past
as well as the future, this method performs well.

From Tayler’s series expansion, we get,

℘tt ≈
℘(x, t + ~) − 2℘(x, t) + ℘(x, t − ~)

`2
t

, (3.41)

℘xx ≈
℘(x + `, t) − 2℘(x, t) − ℘(x − `, t)

`2
x

. (3.42)

Substitute Eqs (3.41) and (3.42) into Eq (1.1), we get,

℘i, j+1 =
α2`2

t (℘i+1, j −2℘i, j −℘i−1, j )
`2

x
− `2

t β(℘i, j ) + `2
t γ(℘i, j )2 + 2℘i, j −℘i, j−1 , (3.43)

let

γ1 =
α2`2

t

`2
x
, γ2 = `2

t β, γ3 = `2
t γ, (3.44)

℘i, j+1 = γ1(℘i+1, j ) − γ1(℘i−1, j ) − ℘i, j−1 +(2 − 2γ1 − γ2)℘i, j +γ3(℘i, j )2. (3.45)
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(a)

Figure 19. C-FDS.

3.9. C-BDS

With the use of data points from the past and from both sides of the given position, the C-BDS seeks
to estimate the derivative with accuracy and efficiency. This method improves accuracy by taking into
account data from several angles close to the point of interest.

From Tayler’s series expansion, we get,

℘tt ≈
℘(x, t + ~) − 2℘(x, t) + ℘(x, t − ~)

`2
t

, (3.46)

℘xx ≈
℘(x − 2`, t) − 2℘(x − `, t) + ℘(x, t)

`2
x

. (3.47)

Substitute Eqs (3.46) and (3.47) into Eq (1.1), we get,

℘i, j+1 =
α2`2

t (℘i−2, j −2℘i−1, j +℘i, j )
`2

x
− `2

t β(℘i, j ) + `2
t γ(℘i, j )2 + 2℘i, j +℘i, j−1 , (3.48)

let

γ1 =
α2`2

t

`2
x
, γ2 = `2

t β, γ3 = `2
t γ, (3.49)

℘i, j+1 = γ1(℘i−2, j ) − 2γ1(℘i−1, j ) − ℘i, j−1 +(γ1 + 2 − γ2)℘i, j +γ3(℘i, j )2. (3.50)
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(a)

Figure 20. C-BDS.

Table 1. Comparison all of the approximate solutions ℘1(x, t), ℘2(x, t), ℘3(x, t).

℘1(x, t) ℘2(x, t) ℘3(x, t)
0.0157 0.0156 0.0150
0.0314 0.0313 0.0304
0.0471 0.0470 0.0458
0.0627 0.0626 0.0611
0.0784 0.0783 0.0765
0.0941 0.0939 0.0918
0.1097 0.1095 0.1071
0.1253 0.1251 0.1224
0.1409 0.1406 0.1376
0.1564 0.1561 0.1529

This section will use the Lagrangian approach to approximate the NLKGM solution in order to find
the Euler-lagrange equation, discrete lagrangian, and discrete Euler-lagrange equation:

4. Lagrangian approach

The Lagrangian for NLKGM is

L =
1
2
℘2

t −
1
2
α2℘2

x +
1
2
β℘2 −

1
3
γ℘3, (4.1)

where
K.E =

1
2
℘2

t , (4.2)

where K.E is the kinetic energy of NLKGM.

P.E =
1
2
α2℘2

x +
1
2
β℘2 −

1
3
γ℘3. (4.3)

where P.E is the potential energy of NLKGM.
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The Euler-Lagrange equation in continuous form is provided by:

∂L
∂℘

+
d
dt

(
∂L
∂℘t

)
−

d
dt

(
∂L
∂℘X

)
= 0. (4.4)

The Lagrangian density will now be discretized. With 4x and 4t, respectively, representing the grid
spacing of a uniform grid in both space and time, we can apply finite differences:

∂L
∂℘t

= ℘t, (4.5)

∂L
∂℘x

=

(
℘i+1 − 2℘i + ℘i−1

42
x

)
, (4.6)

∂L
∂℘

= −β + γ℘2. (4.7)

Now, substitute Eqs (4.5)–Eq (4.7) into Eq (4.4):

∂℘t

∂t
+

d
dt

(
℘i+1 − 2℘i + ℘i−1

4x

)
+

(
− β + γ℘2

i

)
= 0, (4.8)

Apply finite differences to the time derivative:

℘n+1
t − ℘n

t

4t
−
℘n

i+1 − 2℘n
i + ℘n

i−1

42
x

+

(
− β + γ(℘n

i )2
)

= 0. (4.9)

Solving this equation for ℘n+1
t , we get,

℘n+1
t = ℘n

t + 4t

(℘n
i+1 − 2℘n

i + ℘n
i−1

42
x

+ (−β + γ(℘n
i )2)

)
. (4.10)

For the NLKGM, this is the discrete Euler-Lagrange equation. In terms of values at the current
time step and spatial coordinates, it represents the update strategy for the temporal derivative ℘t at the
subsequent time step.

We are going to now analyze how analytical and numerical graphs compare. This shows that the
error is minimum.

(a)

Figure 21. Analytical Graph.
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(a) (b)

Figure 22. Numerical Graph.

After compare both the graphs for the solutions of our governing model. we get “Relative Energy
error graph” with the aid of this relative error formula:
Error = abs( (He−Hn)

He
) :

(a)

Figure 23. Relative energy error graph.

5. Results and discussion

In order to examine neutral scalar mesons linked with conserved scalar nucleons connected by
the Yukawa interaction, Raza et al. investigated ways to extract new, accurate and explicit single
soliton solutions related to the nonlinear Klein-Gordon-Schrödinger model [25]. The soliton results
of the nonlinear third-order Klein-Fock-Gordon (KFG) problem were invented by Iqbal et al. using
the auxiliary equation technique [26]. The equation of relativistic waves associated with NLEEs, the
Klein-Fock-Gordon equation (KFGE), was solved by Rehman et al. using the Sardar subequation
method (SSM) [27]. The outcomes demonstrate how easy it is to functionalize the SSM to other
nonlinear equations. The one-dimensional quadratic Klein-Gordon equation under even perturbations
was found to have conditional asymptotic stability in a local energy norm of the unstable soliton by
Li and Lührmann [28]. The adiabatic change of the soliton velocity in the presence of perturbation
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terms was found by Sassaman and Biswas from the NLKGMs and the phi-four model, three different
models with power law nonlinearity of the nonlinear Klein-Gordon equation were examined [29].
Khater et al. used a new generalized analytical scheme to study the computational solutions of the
nonlinear Klein-Gordon-Zakharov (KGZ) model [30]. In plasma physics, the evolution of strong
Langmuir turbulence is described by this mathematical model. Houwe et al. employed two algorithm
integrations the hyperbolic function approach and the exp(−φ(ξ))-expansion method to construct a
dark, brilliant, and trigonometric function solution with an M-fractional derivative of order α for the
NLKGM [31]. Using the extended tanh approach, Roshid et al. conducted an analytical investigation
on soliton, lump wave solution, and rogue waves in the Klein-Gordon with quadratic nonlinearity [32].
This approach possesses complex wave propagation arising in the field of nonlinear optics, theory
of quantum field, and solid state physics. The NLKGMs, in the presence of perturbation terms,
result in both topological and non-topological solitons, which were explored by Sassaman et al. [33].
Saadatmand and Javidan used various methods to add the inhomogeneities as external potentials to
the soliton equation of motion in order to construct the collective-coordinate equations for solitary
solutions of the NLKGM [34].

In this study, for the famous well-known NLKGM, Firstly, we have used a renowned method
known as sub-ODE method for exact soliton solutions, where we got some soliton solutions as a result
of applying sub-ODE to our NLKGM. A bright soliton solution was obtained Eq (2.33), stable and
localized wave solutions, bright solitons are essential for a wide range of scientific and technological
applications. They function as reliable carriers in fiber optics and telecommunications, enabling
distortion-free long-distance signal transmission. Bright solitons are controlled in ultracold atomic
gases, especially in Bose-Einstein condensates, to explore quantum phenomena. We have obtained
periodic soliton solutions, Eqs (2.35), (2.41), (2.51), and (2.53). Solitons with periodic behavior are
called periodic soliton solutions. Periodic soliton solutions occur in systems supporting soliton-like
structures with periodic properties in mathematical physics, specifically in the context of (NLPDEs).
Studying stress wave propagation in periodic structures is important for material scientists because
it helps create materials with desired mechanical and optical characteristics. They are essential for
characterizing powerful light pulses in nonlinear optics, which affects the use of mode-locked lasers
among other projects. We have obtained a rational soliton solution, Eq (2.37), in mathematics, a
rational soliton solution is a kind of solution to NLPDEs, particularly those connected to soliton
theory. Rational solitons are associated with rational functions that fulfill the specified nonlinear
equation, in contrast to traditional solitons, which are usually defined by solitary wave solutions. A
wide range of scientific fields, including physics, optics, and fluid dynamics, have used rational soliton
solutions in their respective applications. For the purpose of understanding and predicting complex
nonlinear processes in several disciplines of study, rational soliton solutions are useful instruments due
to their adaptability. We have derived a dark soliton solution Eq (2.39), solitary wave solutions to
(NLPDEs) that describe one-dimensional systems, like the nonlinear Schrödinger equation, are known
as dark soliton solutions. Dark solitons are distinct from typical solitons in that they signify isolated
areas of lower amplitude or intensity within a higher intensity background. In the area of nonlinear
optics, dark solitons have been thoroughly investigated. In this sector, they are used in the control
and modification of light pulses in optical fibers. We have obtained Weierstrass elliptic function
solution Eq (2.43), two important applications in mathematics and physics involve the doubly periodic
complex-valued function known as the Weierstrass elliptic function. Its importance arises from the
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fact that it solves the differential equation that characterizes elliptic curves. We have obtained positive
soliton solution Eq (2.45). A particular kind of solitary wave in nonlinear systems with a positive
amplitude and a localized, self-reinforcing profile is called a positive soliton solution. These solutions
are representative of stable, coherent structures that can spread without dispersing and are usually
seen in NLPDEs. Positive solitons find significant uses in fluid dynamics and optics, among other
domains. We have obtained the hyperbolic function solutions Eqs (2.47) and (2.49). The definition of
hyperbolic functions, a class of mathematical functions related to trigonometric functions but not in
terms of circles, is in terms of hyperbolas. Among the hyperbolic functions are the hyperbolic tangent
(tanh), hyperbolic cosine (cosh), and hyperbolic sine (sinh). Numerous mathematical and scientific
applications involve these functions. Hyperbolic functions are commonly found in the solution of
differential equations in physics and engineering, which describe a variety of processes like heat
conduction, string vibration, and electric circuits.

Secondly, for numerical solutions, we have also studied FDS, by which we determined the solution
of the periodic kind of numerical solution, Eq (3.10), by analyzing F-FDS to Eq (1.1). We have also
utilized the remaining combinations given in Eq (1.1) as F-BDS to obtain Eq (3.15), F-CDS to obtain
Eq (3.20), B-BDS to obtain Eq (3.25), B-FDS to obtain Eq (3.30), B-CDS to obtain Eq (3.35), C-CDS
to obtain Eq (3.40), C-FDS to obtain Eq (3.45) and C-BDS to obtain Eq (3.50). Using all the previously
stated schemes, numerical 3-D surfaces of the bright type numerical solutions were generated.

At the end, the Lagrangian approach has been used to apply NLKGM. Equation (4.1) represents the
Lagrangian for NLKGM. Equation (4.4), in continuous form, gave the Euler Lagrange equation. We
created a discrete version of our NLKGM by discretizing Lagrangian density using F-CDS in both time
and space, and then we obtained Eq (4.8). Equation (4.9) shows how the time derivative was created
using the finite difference. The discrete Euler Lagrange equation, or Eq (4.10), was finally constructed
by solving the previous equation for ℘n+1

t .

6. Conclusions

The sub-ODE approach is used by the NLKGM to obtain soliton solutions. When applying the
Lagrangian and finite difference methods, we have obtained the numerical solutions. In this paper, the
projection approach was used in all of its conceivable combinations, including F-FDS, F-BDS, F-CDS,
B-BDS, B-FDS, B-CDS, C-CDS, C-FDS, C-BDS and so on. Finally, we compared the numerical
solutions with the soliton solutions. We also provide contour, 2D, and 3D graphs as a graphical
representation of our solutions. A contour plot is a graphic tool that uses contour lines to display a
three-dimensional surface on a two-dimensional plane. The function being plotted’s constant values
are represented by each contour line, thereby mapping the function’s value across the plane. A contour
plot’s geometry displays the surface topography, with lines representing equal-height levels. Closely
spaced lines represent steep gradients, whereas widely spaced lines suggest progressive slopes. These
lines’ spacing and shape reveal information about the gradient and nature of the surface. Plots of
contours can show a variety of phenomena, including saddle points—areas where the surface curves
in opposite directions and peaks (local maxima) and valleys (local minima). In different fields like
geography, engineering, and meteorology, they are frequently used to display complex data in an
understandable way. They are especially beneficial for visualizing functions with multiple variables.
To the best of our knowledge, these are the first results we have seen for this model. This model for
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VIs and FDS is the first time it has been studied. We have also compared the numerical and exact
solutions for our governing model. At the end, we have also plotted the “Relative energy error”
which also shows the comparison between analytical and numerical solutions. This shows the error is
minimum.
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