Research article

L-fuzzy upper approximation operators associated with L-generalized fuzzy remote neighborhood systems of L-fuzzy points

  • Received: 10 May 2020 Accepted: 22 June 2020 Published: 01 July 2020
  • MSC : 03E72, 03E75

  • It is well known that the approximation operators are always primitive concepts in kinds of general rough set theories. In this paper, considering L to be a completely distributive lattice, we introduce a notion of L-fuzzy upper approximation operator based on L-generalized fuzzy remote neighborhood systems of L-fuzzy points. It is shown that the new approximation operator is a fuzzification of the upper approximation operator in the rough set theory based on general remote neighborhood systems of classical points. Then the basic properties, axiomatic characterizations and the reduction theory on the L-fuzzy upper approximation operator are presented. Furthermore, the L-fuzzy upper approximation operators corresponding to the serial, reflexive, unary and transitive Lgeneralized fuzzy remote neighborhood systems, are discussed and characterized respectively.

    Citation: Shoubin Sun, Lingqiang Li, Kai Hu, A. A. Ramadan. L-fuzzy upper approximation operators associated with L-generalized fuzzy remote neighborhood systems of L-fuzzy points[J]. AIMS Mathematics, 2020, 5(6): 5639-5653. doi: 10.3934/math.2020360

    Related Papers:

  • It is well known that the approximation operators are always primitive concepts in kinds of general rough set theories. In this paper, considering L to be a completely distributive lattice, we introduce a notion of L-fuzzy upper approximation operator based on L-generalized fuzzy remote neighborhood systems of L-fuzzy points. It is shown that the new approximation operator is a fuzzification of the upper approximation operator in the rough set theory based on general remote neighborhood systems of classical points. Then the basic properties, axiomatic characterizations and the reduction theory on the L-fuzzy upper approximation operator are presented. Furthermore, the L-fuzzy upper approximation operators corresponding to the serial, reflexive, unary and transitive Lgeneralized fuzzy remote neighborhood systems, are discussed and characterized respectively.


    加载中


    [1] C. X. Bo, X. H. Zhang, S. T. Shao, Non-dual multi-granulation neutrosophic rough set with applications, Symmetry, 11 (2019), 910-918. doi: 10.3390/sym11070910
    [2] L. D'eer, C. Cornelis, Notes on covering-based rough sets from topological point of view: Relationships with general framework of dual approximation operators, Int. J. Approx. Reason., 88 (2017), 295-305. doi: 10.1016/j.ijar.2017.06.006
    [3] L. D'eer, C. Cornelis, L. Godo, Fuzzy neighborhood operators based on fuzzy coverings, Fuzzy Set. Syst., 312 (2017), 17-35. doi: 10.1016/j.fss.2016.04.003
    [4] G. Gierz, K. H. Hofmann, K. Keimeland, et al. Continuous Lattices and Domains, Cambridge University Press, 2003.
    [5] Z. Gu, X. Y. Xie, J. Tang. On C-ideals and the basis of an ordered semigroup, AIMS Mathematics, 5 (2020), 3783-3790.
    [6] M. Hosny, On generalization of rough sets by using two different methods, J. Intell. Fuzzy Syst., 35 (2018), 979-993.
    [7] J. Li, H. L. Yang, S. G. Li, Three-way decision based on decision-theoretic rough sets with singlevalued neutrosophic information, Int. J. Mach. Learn. Cyb., 11 (2020), 657-665. doi: 10.1007/s13042-019-01023-3
    [8] Q. Jin, L. Q. Li, Stratified lattice-valued neighborhood tower group, Quaest. Math., 41 (2019), 847-861.
    [9] Q. Jin, L. Q. Li, G. M. Lang, p-regularity and p-regular modification in-convergence spaces, Mathematics, 7 (2019), 1-14.
    [10] Q. Jin, L. Q. Li, Y. R. Lv, et al. Connectedness for lattice-valued subsets in lattice-valued convergence spaces, Quaest. Math., 42 (2019), 135-150. doi: 10.2989/16073606.2018.1441920
    [11] L. Q. Li, p-topologicalness-a relative topologicalness in-convergence spaces, Mathematics, 7 (2019), 1-18.
    [12] L. Q. Li, Q. Jin, K. Hu, Lattice-valued convergence associated with CNS spaces, Fuzzy Set. Syst., 370 (2019), 91-98. doi: 10.1016/j.fss.2018.05.023
    [13] L. Q. Li, Q. Jin, K. Hu, et al. The axiomatic characterizations on L-fuzzy covering-based approximation operators, Int. J. Gen. Syst., 46 (2017), 332-353. doi: 10.1080/03081079.2017.1308360
    [14] L. Q. Li, Q. Jin, B. X. Yao, Regularity of fuzzy convergence spaces, Open Math., 16 (2018), 1455-1465. doi: 10.1515/math-2018-0118
    [15] L. Q. Li, Q. Jin, B. X. Yao, et al. A rough set model based on fuzzifying neighborhood systems, Soft Comput., 24 (2020), 6085-6099. doi: 10.1007/s00500-020-04744-8
    [16] T. J. Li, Y. Leung, W. X. Zhang, Generalized fuzzy rough approximation operators based on fuzzy coverings, Int. J. Approx. Reason., 48 (2008), 836-856. doi: 10.1016/j.ijar.2008.01.006
    [17] W. T. Li, X. P. Xue, W. H. Xu, et al. Double-quantitative variable consistency dominance-based rough set approach, Int. J. Approx. Reason., 124 (2020), 1-26. doi: 10.1016/j.ijar.2020.05.002
    [18] W. T. Li, W. Pedrycz, X. P. Xue, et al. Fuzziness and incremental information of disjoint regions in double-quantitative decision-theoretic rough set model, Int. J. Mach. Learn. Cyb., 10 (2019), 2669-2690. doi: 10.1007/s13042-018-0893-7
    [19] W. T. Li, W. Pedrycz, X. P. Xue, et al. Distance-based double-quantitative rough fuzzy sets with logic operations, Int. J. Approx. Reason., 101 (2018), 206-233. doi: 10.1016/j.ijar.2018.07.007
    [20] T. Y. Lin, Neighborhood systems: A qualitative theory for fuzzy and rough sets, Advances in Machine Intelligence and Soft Computing, IV (1997), 132-155.
    [21] B. Y. Ling, H. L. Yang, S. G. Li, On characterization of (I,N)-single valued neutrosophic rough approximation operators, Soft Comput., 23 (2019), 6065-6084. doi: 10.1007/s00500-018-3613-z
    [22] G. L. Liu, Z. Hua, J. Y. Zou, Relations arising from coverings and their topological structures, Int. J. Approx. Reason., 80 (2017), 348-358. doi: 10.1016/j.ijar.2016.10.007
    [23] M. H. Ma, M. K. Chakraborty, Covering-based rough sets and modal logics. Part I, Int. J. Approx. Reason., 77 (2016), 55-65. doi: 10.1016/j.ijar.2016.06.002
    [24] X. L. Ma, J. M. Zhan, B. Z. Sun, et al. Novel classes of coverings based multigranulation fuzzy rough sets and corresponding applications to multiple attribute group decision-making, Artif. Intell. Rev., 2020.
    [25] Z. M. Ma, J. J. Li, J. S. Mi, Some minimal axiom sets of rough sets, Inform. Sciences, 312 (2015), 40-54. doi: 10.1016/j.ins.2015.03.052
    [26] B. Pang, J. S. Mi, Z. Y. Xiu, L-fuzzifying approximation operators in fuzzy rough sets, Inform. Sciences, 48 (2019), 14-33.
    [27] B. Pang, J. S. Mi, W. Yao, L-fuzzy rough approximation operators via three new types of L-fuzzy relations, Soft Comput., 23 (2019), 11433-11446. doi: 10.1007/s00500-019-04110-3
    [28] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341-356. doi: 10.1007/BF01001956
    [29] A. M. Radzikowska, E. E. Kerre, Fuzzy rough sets based on residuated lattices, In: Transactions on Rough Sets II, Springer, Berlin, Heidelberg, 2004.
    [30] A. A. Ramadan, E. Elkordy, U. Abdel-Hameed, On Alexandrov L-fuzzy nearness, J. Intell. Fuzzy Syst., 37 (2019), 5113-5128. doi: 10.3233/JIFS-182938
    [31] A. A. Ramadan, L. Q. Li, Categories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies, Iran. J. Fuzzy Syst., 16 (2019), 73-84.
    [32] Y. H. She, G. J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Comput. Math. Appl., 58 (2009), 189-201. doi: 10.1016/j.camwa.2009.03.100
    [33] S. B. Sun, L. Q. Li, K. Hu, A new approach to rough set based on remote neighborhood systems, Math. Probl. Eng., 2019 (2019), 1-8.
    [34] W. H. Sun, J. C. Wu, X. Zhang, Monotone normality in generalized topological spaces, Acta Math. Hung., 153 (2017), 408-416. doi: 10.1007/s10474-017-0762-y
    [35] Y. R. Syau, E. B. Lin, Neighborhood systems and covering approximation spaces, Knowl-Based. Syst., 66 (2014), 61-67. doi: 10.1016/j.knosys.2014.04.017
    [36] G. J. Wang, Theory of topological molecular lattices, Fuzzy Set. Syst., 47 (1992), 351-376. doi: 10.1016/0165-0114(92)90301-J
    [37] J. C. Wu, Groups of negations on the unit square, The Scientific World J., 2014 (2014), 1-6.
    [38] J. C. Wu, L. Q. Li, W. H. Sun, Gödel semantics of fuzzy argumentation frameworks with consistency degrees, AIMS Mathematics, 5 (2020), 4045-4064. doi: 10.3934/math.2020260
    [39] J. C. Wu, Y. Y. Yuan, Some examples of weak uninorms, Abstr. Appl. Anal., 2013 (2013), 1-5.
    [40] W. Z. Wu, Y. H. Xu, M. W. Shao, et al. Axiomatic characterizations of (S, T)-fuzzy rough approximation operators, Inform. Sciences, 334 (2016), 17-43.
    [41] B. Yang, B. Q. Hu, On some types of fuzzy covering-based rough sets, Fuzzy Set. Syst., 312 (2017), 36-65. doi: 10.1016/j.fss.2016.10.009
    [42] T. Yang, Q. G. Li, Reduction about approximation spaces of covering generalized rough sets, Int. J. Approx. Reason., 51 (2010), 335-345. doi: 10.1016/j.ijar.2009.11.001
    [43] W. Yao, Y. H. She, L. X. Lu, Metric-based L-fuzzy rough sets: Approximation operators and definable sets, Knowl-Based. Syst., 163 (2019), 91-102. doi: 10.1016/j.knosys.2018.08.023
    [44] Y. Y. Yao, Constructive and algebraic methods of the theory of rough sets, Inform. Sciences, 109 (1998), 21-47. doi: 10.1016/S0020-0255(98)00012-7
    [45] Y. Y. Yao, B. X. Yao, Covering based rough set approximations, Inform. Sciences, 200 (2012), 91-107. doi: 10.1016/j.ins.2012.02.065
    [46] Z. Y. Xiu, Q. H. Li, Degrees of L-continuity for mappings between L-topological spaces, Mathematics, 7 (2019), 1-16.
    [47] J. M. Zhan, H. B. Jiang, Y. Y. Yao, Covering-based variable precision fuzzy rough sets with PROMETHEE-EDAS methods, Inform. Sciences, 2020.
    [48] K. Zhang, J. M. Zhan, W. Z. Wu, On multi-criteria decision-making method based on a fuzzy rough set model with fuzzy α-neighborhoods, IEEE T. Fuzzy Syst., (2020), 1-15.
    [49] S. Y. Zhang, S. G. Li, H. L. Yang, Three-way convex systems and three-way fuzzy convex systems, Informa. Sciences, 510 (2020), 89-98. doi: 10.1016/j.ins.2019.09.026
    [50] Y. L. Zhang, C. Q. Li, M. L. Lin, et al. Relationships between generalized rough sets based on covering and reflexive neighborhood system, Inform. Sciences, 319 (2015), 56-67. doi: 10.1016/j.ins.2015.05.023
    [51] F. F. Zhao, Q. Jin, L. Q. Li, The axiomatic characterizations on L-generalized fuzzy neighborhood system-based approximation operators, Int. J. Gen. Syst., 47 (2018), 155-173. doi: 10.1080/03081079.2017.1407928
    [52] F. F. Zhao, L. Q. Li, Axiomatization on generalized neighborhood system-based rough sets, Soft Comput., 22 (2018), 6099-6110. doi: 10.1007/s00500-017-2957-0
    [53] F. F. Zhao, L. Q. Li, S. B. Sun, et al. Rough approximation operators based on quantale-valued fuzzy generalized neighborhood systems, Iran. J. Fuzzy Syst., 16 (2019), 53-63.
    [54] Z. G. Zhao, On some types of covering rough sets from topological points of view, Int. J. Approx. Reason., 68 (2016), 1-14. doi: 10.1016/j.ijar.2015.09.003
    [55] W. Zhu, Relationship between generalized rough sets based on binary relation and covering, Inform. Sciences, 179 (2019), 210-225.
    [56] W. Zhu, F. Y. Wang, Reduction and axiomization of covering generalized rough sets, Inform. Sciences, 152 (2003), 217-230. doi: 10.1016/S0020-0255(03)00056-2
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3351) PDF downloads(267) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog