Citation: Shoubin Sun, Lingqiang Li, Kai Hu, A. A. Ramadan. L-fuzzy upper approximation operators associated with L-generalized fuzzy remote neighborhood systems of L-fuzzy points[J]. AIMS Mathematics, 2020, 5(6): 5639-5653. doi: 10.3934/math.2020360
[1] | C. X. Bo, X. H. Zhang, S. T. Shao, Non-dual multi-granulation neutrosophic rough set with applications, Symmetry, 11 (2019), 910-918. doi: 10.3390/sym11070910 |
[2] | L. D'eer, C. Cornelis, Notes on covering-based rough sets from topological point of view: Relationships with general framework of dual approximation operators, Int. J. Approx. Reason., 88 (2017), 295-305. doi: 10.1016/j.ijar.2017.06.006 |
[3] | L. D'eer, C. Cornelis, L. Godo, Fuzzy neighborhood operators based on fuzzy coverings, Fuzzy Set. Syst., 312 (2017), 17-35. doi: 10.1016/j.fss.2016.04.003 |
[4] | G. Gierz, K. H. Hofmann, K. Keimeland, et al. Continuous Lattices and Domains, Cambridge University Press, 2003. |
[5] | Z. Gu, X. Y. Xie, J. Tang. On C-ideals and the basis of an ordered semigroup, AIMS Mathematics, 5 (2020), 3783-3790. |
[6] | M. Hosny, On generalization of rough sets by using two different methods, J. Intell. Fuzzy Syst., 35 (2018), 979-993. |
[7] | J. Li, H. L. Yang, S. G. Li, Three-way decision based on decision-theoretic rough sets with singlevalued neutrosophic information, Int. J. Mach. Learn. Cyb., 11 (2020), 657-665. doi: 10.1007/s13042-019-01023-3 |
[8] | Q. Jin, L. Q. Li, Stratified lattice-valued neighborhood tower group, Quaest. Math., 41 (2019), 847-861. |
[9] | Q. Jin, L. Q. Li, G. M. Lang, p-regularity and p-regular modification in ┬-convergence spaces, Mathematics, 7 (2019), 1-14. |
[10] | Q. Jin, L. Q. Li, Y. R. Lv, et al. Connectedness for lattice-valued subsets in lattice-valued convergence spaces, Quaest. Math., 42 (2019), 135-150. doi: 10.2989/16073606.2018.1441920 |
[11] | L. Q. Li, p-topologicalness-a relative topologicalness in ┬-convergence spaces, Mathematics, 7 (2019), 1-18. |
[12] | L. Q. Li, Q. Jin, K. Hu, Lattice-valued convergence associated with CNS spaces, Fuzzy Set. Syst., 370 (2019), 91-98. doi: 10.1016/j.fss.2018.05.023 |
[13] | L. Q. Li, Q. Jin, K. Hu, et al. The axiomatic characterizations on L-fuzzy covering-based approximation operators, Int. J. Gen. Syst., 46 (2017), 332-353. doi: 10.1080/03081079.2017.1308360 |
[14] | L. Q. Li, Q. Jin, B. X. Yao, Regularity of fuzzy convergence spaces, Open Math., 16 (2018), 1455-1465. doi: 10.1515/math-2018-0118 |
[15] | L. Q. Li, Q. Jin, B. X. Yao, et al. A rough set model based on fuzzifying neighborhood systems, Soft Comput., 24 (2020), 6085-6099. doi: 10.1007/s00500-020-04744-8 |
[16] | T. J. Li, Y. Leung, W. X. Zhang, Generalized fuzzy rough approximation operators based on fuzzy coverings, Int. J. Approx. Reason., 48 (2008), 836-856. doi: 10.1016/j.ijar.2008.01.006 |
[17] | W. T. Li, X. P. Xue, W. H. Xu, et al. Double-quantitative variable consistency dominance-based rough set approach, Int. J. Approx. Reason., 124 (2020), 1-26. doi: 10.1016/j.ijar.2020.05.002 |
[18] | W. T. Li, W. Pedrycz, X. P. Xue, et al. Fuzziness and incremental information of disjoint regions in double-quantitative decision-theoretic rough set model, Int. J. Mach. Learn. Cyb., 10 (2019), 2669-2690. doi: 10.1007/s13042-018-0893-7 |
[19] | W. T. Li, W. Pedrycz, X. P. Xue, et al. Distance-based double-quantitative rough fuzzy sets with logic operations, Int. J. Approx. Reason., 101 (2018), 206-233. doi: 10.1016/j.ijar.2018.07.007 |
[20] | T. Y. Lin, Neighborhood systems: A qualitative theory for fuzzy and rough sets, Advances in Machine Intelligence and Soft Computing, IV (1997), 132-155. |
[21] | B. Y. Ling, H. L. Yang, S. G. Li, On characterization of (I,N)-single valued neutrosophic rough approximation operators, Soft Comput., 23 (2019), 6065-6084. doi: 10.1007/s00500-018-3613-z |
[22] | G. L. Liu, Z. Hua, J. Y. Zou, Relations arising from coverings and their topological structures, Int. J. Approx. Reason., 80 (2017), 348-358. doi: 10.1016/j.ijar.2016.10.007 |
[23] | M. H. Ma, M. K. Chakraborty, Covering-based rough sets and modal logics. Part I, Int. J. Approx. Reason., 77 (2016), 55-65. doi: 10.1016/j.ijar.2016.06.002 |
[24] | X. L. Ma, J. M. Zhan, B. Z. Sun, et al. Novel classes of coverings based multigranulation fuzzy rough sets and corresponding applications to multiple attribute group decision-making, Artif. Intell. Rev., 2020. |
[25] | Z. M. Ma, J. J. Li, J. S. Mi, Some minimal axiom sets of rough sets, Inform. Sciences, 312 (2015), 40-54. doi: 10.1016/j.ins.2015.03.052 |
[26] | B. Pang, J. S. Mi, Z. Y. Xiu, L-fuzzifying approximation operators in fuzzy rough sets, Inform. Sciences, 48 (2019), 14-33. |
[27] | B. Pang, J. S. Mi, W. Yao, L-fuzzy rough approximation operators via three new types of L-fuzzy relations, Soft Comput., 23 (2019), 11433-11446. doi: 10.1007/s00500-019-04110-3 |
[28] | Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341-356. doi: 10.1007/BF01001956 |
[29] | A. M. Radzikowska, E. E. Kerre, Fuzzy rough sets based on residuated lattices, In: Transactions on Rough Sets II, Springer, Berlin, Heidelberg, 2004. |
[30] | A. A. Ramadan, E. Elkordy, U. Abdel-Hameed, On Alexandrov L-fuzzy nearness, J. Intell. Fuzzy Syst., 37 (2019), 5113-5128. doi: 10.3233/JIFS-182938 |
[31] | A. A. Ramadan, L. Q. Li, Categories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies, Iran. J. Fuzzy Syst., 16 (2019), 73-84. |
[32] | Y. H. She, G. J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Comput. Math. Appl., 58 (2009), 189-201. doi: 10.1016/j.camwa.2009.03.100 |
[33] | S. B. Sun, L. Q. Li, K. Hu, A new approach to rough set based on remote neighborhood systems, Math. Probl. Eng., 2019 (2019), 1-8. |
[34] | W. H. Sun, J. C. Wu, X. Zhang, Monotone normality in generalized topological spaces, Acta Math. Hung., 153 (2017), 408-416. doi: 10.1007/s10474-017-0762-y |
[35] | Y. R. Syau, E. B. Lin, Neighborhood systems and covering approximation spaces, Knowl-Based. Syst., 66 (2014), 61-67. doi: 10.1016/j.knosys.2014.04.017 |
[36] | G. J. Wang, Theory of topological molecular lattices, Fuzzy Set. Syst., 47 (1992), 351-376. doi: 10.1016/0165-0114(92)90301-J |
[37] | J. C. Wu, Groups of negations on the unit square, The Scientific World J., 2014 (2014), 1-6. |
[38] | J. C. Wu, L. Q. Li, W. H. Sun, Gödel semantics of fuzzy argumentation frameworks with consistency degrees, AIMS Mathematics, 5 (2020), 4045-4064. doi: 10.3934/math.2020260 |
[39] | J. C. Wu, Y. Y. Yuan, Some examples of weak uninorms, Abstr. Appl. Anal., 2013 (2013), 1-5. |
[40] | W. Z. Wu, Y. H. Xu, M. W. Shao, et al. Axiomatic characterizations of (S, T)-fuzzy rough approximation operators, Inform. Sciences, 334 (2016), 17-43. |
[41] | B. Yang, B. Q. Hu, On some types of fuzzy covering-based rough sets, Fuzzy Set. Syst., 312 (2017), 36-65. doi: 10.1016/j.fss.2016.10.009 |
[42] | T. Yang, Q. G. Li, Reduction about approximation spaces of covering generalized rough sets, Int. J. Approx. Reason., 51 (2010), 335-345. doi: 10.1016/j.ijar.2009.11.001 |
[43] | W. Yao, Y. H. She, L. X. Lu, Metric-based L-fuzzy rough sets: Approximation operators and definable sets, Knowl-Based. Syst., 163 (2019), 91-102. doi: 10.1016/j.knosys.2018.08.023 |
[44] | Y. Y. Yao, Constructive and algebraic methods of the theory of rough sets, Inform. Sciences, 109 (1998), 21-47. doi: 10.1016/S0020-0255(98)00012-7 |
[45] | Y. Y. Yao, B. X. Yao, Covering based rough set approximations, Inform. Sciences, 200 (2012), 91-107. doi: 10.1016/j.ins.2012.02.065 |
[46] | Z. Y. Xiu, Q. H. Li, Degrees of L-continuity for mappings between L-topological spaces, Mathematics, 7 (2019), 1-16. |
[47] | J. M. Zhan, H. B. Jiang, Y. Y. Yao, Covering-based variable precision fuzzy rough sets with PROMETHEE-EDAS methods, Inform. Sciences, 2020. |
[48] | K. Zhang, J. M. Zhan, W. Z. Wu, On multi-criteria decision-making method based on a fuzzy rough set model with fuzzy α-neighborhoods, IEEE T. Fuzzy Syst., (2020), 1-15. |
[49] | S. Y. Zhang, S. G. Li, H. L. Yang, Three-way convex systems and three-way fuzzy convex systems, Informa. Sciences, 510 (2020), 89-98. doi: 10.1016/j.ins.2019.09.026 |
[50] | Y. L. Zhang, C. Q. Li, M. L. Lin, et al. Relationships between generalized rough sets based on covering and reflexive neighborhood system, Inform. Sciences, 319 (2015), 56-67. doi: 10.1016/j.ins.2015.05.023 |
[51] | F. F. Zhao, Q. Jin, L. Q. Li, The axiomatic characterizations on L-generalized fuzzy neighborhood system-based approximation operators, Int. J. Gen. Syst., 47 (2018), 155-173. doi: 10.1080/03081079.2017.1407928 |
[52] | F. F. Zhao, L. Q. Li, Axiomatization on generalized neighborhood system-based rough sets, Soft Comput., 22 (2018), 6099-6110. doi: 10.1007/s00500-017-2957-0 |
[53] | F. F. Zhao, L. Q. Li, S. B. Sun, et al. Rough approximation operators based on quantale-valued fuzzy generalized neighborhood systems, Iran. J. Fuzzy Syst., 16 (2019), 53-63. |
[54] | Z. G. Zhao, On some types of covering rough sets from topological points of view, Int. J. Approx. Reason., 68 (2016), 1-14. doi: 10.1016/j.ijar.2015.09.003 |
[55] | W. Zhu, Relationship between generalized rough sets based on binary relation and covering, Inform. Sciences, 179 (2019), 210-225. |
[56] | W. Zhu, F. Y. Wang, Reduction and axiomization of covering generalized rough sets, Inform. Sciences, 152 (2003), 217-230. doi: 10.1016/S0020-0255(03)00056-2 |