Citation: Yuzhen Bai, Donal O’Regan, Yong-Hui Xia, Xiaoqing Yuan. Does nonuniform behavior destroy the structural stability?[J]. AIMS Mathematics, 2020, 5(6): 5628-5638. doi: 10.3934/math.2020359
[1] | L. Barreira, Ya. Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and Its Applications, 115, Cambridge University Press, 2007. |
[2] | L. Barreira, C. Valls, Stability of Nonautonomous Differential Equations,Lecture Notes in Mathematics, vol. 1926, Springer, 2008. |
[3] | J. Chu, Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 137 (2013), 1031-1047. doi: 10.1016/j.bulsci.2013.03.003 |
[4] | J. Chu, F. Liao, S. Siegmund, et al. Nonuniform dichotomy spectrum and reducibility for nonautonomous equations, Bull. Sci. Math., 139 (2015), 538-557. doi: 10.1016/j.bulsci.2014.11.002 |
[5] | J. Zhang, M. Fan, H. Zhu, Nonuniform (h,k,u,v)-dichotomy with applications to nonautonomous dynamical systems, J. Math. Anal. Appl., 452 (2017), 505-551. doi: 10.1016/j.jmaa.2017.02.064 |
[6] | J. Zhang, M. Fan, H. Zhu, Existence and roughness of exponential dichotomies of linear dynamic equations on time scales, Comput. Math. Appl., 59 (2010), 2658-2675. doi: 10.1016/j.camwa.2010.01.035 |
[7] | O. Perron, Die stabilitsfrage bei differentialgleichungen, Math. Z., 32 (1930), 703-728. doi: 10.1007/BF01194662 |
[8] | W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics, Springer, Berlin, Germany, 1978. |
[9] | Y. Gao, Y. Xia, X.Yuan, et al. Linearization of nonautonomous impulsive system with nonuniform exponential dichotomy, Abstr. Appl. Anal., Volume 2014, Article ID 860378, 7 pages. |
[10] | J. Hong, R. Yuan, Z. J. Jing, Exponential dichotomies, almost periodic structurally stable differential systems, and an example, J. Math. Anal. Appl., 208 (1997), 71-84. doi: 10.1006/jmaa.1997.5290 |
[11] | L. Jiang, Generalized exponential dichotomy and global linearization, J. Math. Anal. Appl., 315 (2006), 474-490. doi: 10.1016/j.jmaa.2005.05.042 |
[12] | S. G. Kryzhevich, V. A. Pliss, Structural stability of nonautonomous systems, Differential Equations, 39 (2003), 1395-1403. doi: 10.1023/B:DIEQ.0000017913.79915.b1 |
[13] | F. Lin, Exponential dichotomies, Anhui University Press, Hefei, China, 1999 (in Chinese). |
[14] | F. Lin, Almost periodic structural stability of almost periodic differential equations, Ann. Diff. Equat., 5 (1989), 35-50. |
[15] | K. Lu, Structural stability for scalar parabolic equations, J. Differential Equations, 114 (1994), 253-271. doi: 10.1006/jdeq.1994.1150 |
[16] | L. Markus, Structurally stable differential systems, Ann. Math., 73 (1961), 1-19. doi: 10.2307/1970280 |
[17] | K. J. Palmer, The structurally stable linear systems on the half-line are those with exponential dichotomies, J. Differential Equations, 33 (1979), 16-25. doi: 10.1016/0022-0396(79)90076-7 |
[18] | J. Kurzweil, G. Papaschinopoulos, Structural stability of linear discrete systems via the exponential dichotomy, Czech. Math. J., 38 (1988), 280-284. |
[19] | G. Papaschinopoulos, G. Schinas, Structural stability via the density of a class of linear discrete systems, J. Math. Anal. Appl., 127 (1987), 530-539. doi: 10.1016/0022-247X(87)90127-2 |
[20] | J. Wang, M. Fěckan, Y. Zhou, Center stable manifold for planar fractional damped equations, Appl. Math. Comput., 296 (2017), 257-269. |
[21] | J. Wang, M. Li, M. Fěckan, Robustness for linear evolution equations with non-instantaneous impulsive effects, Bull. Sci. Math., 159 (2020), 102827. |
[22] | L. Popescu, Topological classification and structural stability of strongly continuous groups, Integr. Equ. Oper. Theory, 79 (2014), 355-375. doi: 10.1007/s00020-014-2152-y |
[23] | J. Shi, J. Zhang, The Principle of Classification for Differential Equations, Science Press, Beijing, 2003 (in Chinese). |
[24] | J. C. Willems, Topological classification and structural stability of linear systems, J. Differential Equations, 35 (1980), 306-318. doi: 10.1016/0022-0396(80)90031-5 |
[25] | Y. Xia, X. Chen, V. G. Romanovski, On the linearization theorem of Fenner and Pinto, J. Math. Anal. Appl., 400 (2013), 439-451. doi: 10.1016/j.jmaa.2012.11.034 |
[26] | Y. Xia, R. Wang, K. Kou, et al. On the linearization theorem for nonautonomous differential equations, Bull. Sci. Math., 139 (2015), 820-846. |
[27] | Y. Xia, Y. Bai, D. O'Regan, A new method to prove the nonuniform dichotomy spectrum theorem in Rn, Proc. Amer. Math. Soc., 149 (2019), 3905-3917. |
[28] | C. Zou, Y. Xia, M. pinto, et al. Boundness and Linearisation of a class of differential equations with piecewise constant argument, Qual. Theor. Dyna. Syst., 18 (2019), 495-531. doi: 10.1007/s12346-018-0297-9 |
[29] | C. Zou, Y. Xia, M. Pinto, Hölder Continuity of Topological Equivalence Functions of DEPCAGs, Sci. China Math., 50 (2020), 847-872. |
[30] | A. Algaba, N. Fuentes, E. Gamero, et al. Structural stability of planar quasi-homogeneous vector fields, J. Math. Anal. Appl., 468 (2018), 212-226. doi: 10.1016/j.jmaa.2018.08.005 |
[31] | X. Jarque, J. Llibre, Structural stability of planar Hamiltonian polynomial vector fields, Proc. Lond. Math. Soc., 68 (1994), 617-640. |
[32] | J. Llibre, J. P. del Río, J. A. Rodríguez, Structural stability of planar homogeneous polynomial vector fields: Applications to critical points and to infinity, J. Differential Equations, 125 (1996), 490-520. doi: 10.1006/jdeq.1996.0038 |
[33] | J. Llibre, del Río, J. A. Rodríguez, Structural stability of planar semi-homogeneous polynomial vector fields: Applications to critical points and to infinity, Discrete Contin. Dyn. Syst., 6 (2000), 809-828. doi: 10.3934/dcds.2000.6.809 |
[34] | D. S. Shafer, Structure and stability of gradient polynomial vector fields, J. Lond. Math. Soc., 41 (1990), 109-121. |
[35] | G. Wang, Y. L. Cao, Dynamical spectrum in random dynamical systems, J. Dynamic. Diff. Equat., 26 (2014), 1-20. doi: 10.1007/s10884-013-9340-3 |
[36] | R. Oliveira, Y. Zhao, Structural stability of planar quasi-homogeneous vector fields, Qual. Theory Dyn. Syst., 13 (2014), 39-72. doi: 10.1007/s12346-013-0105-5 |