Research article

On the primitive roots and the generalized Golomb's conjecture

  • Received: 30 April 2020 Accepted: 22 June 2020 Published: 02 July 2020
  • MSC : 11A07, 11D85

  • In this article, we use elementary methods and the estimate for character sums to study the properties of a certain primitive roots modulo p (an odd prime), and prove that the generalized Golomb's conjecture is correct in a reduced residue system modulo p. This solved an open problem proposed by W. P. Zhang and T. T. Wang in [3].

    Citation: Jiafan Zhang, Xingxing Lv. On the primitive roots and the generalized Golomb's conjecture[J]. AIMS Mathematics, 2020, 5(6): 5654-5663. doi: 10.3934/math.2020361

    Related Papers:

  • In this article, we use elementary methods and the estimate for character sums to study the properties of a certain primitive roots modulo p (an odd prime), and prove that the generalized Golomb's conjecture is correct in a reduced residue system modulo p. This solved an open problem proposed by W. P. Zhang and T. T. Wang in [3].



    加载中


    [1] S. W. Golomb, Algebraic constructions for costas arrays, Journal of Combinatoral Theory Series A, 37 (1984), 13-21. doi: 10.1016/0097-3165(84)90015-3
    [2] Q. Sun, On primitive roots in a finite field, Journal of Sichuan University, Natural Science Edition, 25 (1988), 133-139.
    [3] W. P. Zhang and T. T. Wang, The primitive roots and a problem related to the Golomb conjecture, AIMS Mathematics, 5 (2020), 3899-3905. doi: 10.3934/math.2020252
    [4] C. Cobeli and A. Zaharescu, On the distribution of primitive roots (mod p), Acta Arith., 83 (1998), 143-153. doi: 10.4064/aa-83-2-143-153
    [5] J. P. Wang, On Golomb's conjecture, Science in China (Ser. A.), 9 (1987), 927-935.
    [6] T. T. Wang and X. N. Wang, On the Golomb's conjecture and Lehmer's numbers, Open Math., 15 (2017), 1003-1009. doi: 10.1515/math-2017-0083
    [7] M. Munsch, T. Trudgian, Square-full primitive roots, Int. J. Number Theory, 14 (2018), 1013-1021.
    [8] W. Q. Wang and W. P. Zhang, A mean value related to primitive roots and Golomb's conjectures, Absract and Applied analysis, 2014 (2014), 908273.
    [9] W. P. Zhang, On a problem related to Golomb's conjectures, J. Syst. Sci. Complexity, 16 (2003), 13-18.
    [10] T. Tian and W. Qi, Primitive normal element and its inverse in finite fields, Acta Math. Sinica, 49 (2006), 657-668.
    [11] S. Andrea, Least primitive root and simultaneous power non-residues, J. Number Theory, 204 (2019), 246-263. doi: 10.1016/j.jnt.2019.04.004
    [12] M. Anwar and F. Pappalardi, On simultaneous primitive roots, Acta Arith., 180 (2017), 35-43. doi: 10.4064/aa8566-3-2017
    [13] S. D. Cohen and T. Trudgian, Lehmer numbers and primitive roots modulo a prime, J. Number Theory, 203 (2019), 68-79. doi: 10.1016/j.jnt.2019.03.004
    [14] S. D. Cohen and T. Trudgian, On the least square-free primitive root modulo p, J. Number Theory, 170 (2017), 10-16. doi: 10.1016/j.jnt.2016.06.011
    [15] S. D. Cohen and W. P. Zhang, Sums of two exact powers, Finite Fields Th. App., 8 (2002), 471-477.
    [16] S. D. Cohen, Pairs of primitive roots, Mathematica, 32 (1985), 276-285.
    [17] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
    [18] W. Narkiewicz, Classical Problems in Number Theory, Polish Scientifc Publishers, 1986.
    [19] J. Bourgain, Z. M. Garaev and V. S. Konyagin, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524-1557. doi: 10.1137/110850414
    [20] A. Weil, Basic number theory, Springer-Verlag, New York, 1974.
    [21] L. Carlitz, Sets of primitive roots, Compos. Math., 13 (1956), 65–70.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3476) PDF downloads(332) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog