In this article, we use elementary methods and the estimate for character sums to study the properties of a certain primitive roots modulo p (an odd prime), and prove that the generalized Golomb's conjecture is correct in a reduced residue system modulo p. This solved an open problem proposed by W. P. Zhang and T. T. Wang in [
Citation: Jiafan Zhang, Xingxing Lv. On the primitive roots and the generalized Golomb's conjecture[J]. AIMS Mathematics, 2020, 5(6): 5654-5663. doi: 10.3934/math.2020361
In this article, we use elementary methods and the estimate for character sums to study the properties of a certain primitive roots modulo p (an odd prime), and prove that the generalized Golomb's conjecture is correct in a reduced residue system modulo p. This solved an open problem proposed by W. P. Zhang and T. T. Wang in [
[1] | S. W. Golomb, Algebraic constructions for costas arrays, Journal of Combinatoral Theory Series A, 37 (1984), 13-21. doi: 10.1016/0097-3165(84)90015-3 |
[2] | Q. Sun, On primitive roots in a finite field, Journal of Sichuan University, Natural Science Edition, 25 (1988), 133-139. |
[3] | W. P. Zhang and T. T. Wang, The primitive roots and a problem related to the Golomb conjecture, AIMS Mathematics, 5 (2020), 3899-3905. doi: 10.3934/math.2020252 |
[4] | C. Cobeli and A. Zaharescu, On the distribution of primitive roots (mod p), Acta Arith., 83 (1998), 143-153. doi: 10.4064/aa-83-2-143-153 |
[5] | J. P. Wang, On Golomb's conjecture, Science in China (Ser. A.), 9 (1987), 927-935. |
[6] | T. T. Wang and X. N. Wang, On the Golomb's conjecture and Lehmer's numbers, Open Math., 15 (2017), 1003-1009. doi: 10.1515/math-2017-0083 |
[7] | M. Munsch, T. Trudgian, Square-full primitive roots, Int. J. Number Theory, 14 (2018), 1013-1021. |
[8] | W. Q. Wang and W. P. Zhang, A mean value related to primitive roots and Golomb's conjectures, Absract and Applied analysis, 2014 (2014), 908273. |
[9] | W. P. Zhang, On a problem related to Golomb's conjectures, J. Syst. Sci. Complexity, 16 (2003), 13-18. |
[10] | T. Tian and W. Qi, Primitive normal element and its inverse in finite fields, Acta Math. Sinica, 49 (2006), 657-668. |
[11] | S. Andrea, Least primitive root and simultaneous power non-residues, J. Number Theory, 204 (2019), 246-263. doi: 10.1016/j.jnt.2019.04.004 |
[12] | M. Anwar and F. Pappalardi, On simultaneous primitive roots, Acta Arith., 180 (2017), 35-43. doi: 10.4064/aa8566-3-2017 |
[13] | S. D. Cohen and T. Trudgian, Lehmer numbers and primitive roots modulo a prime, J. Number Theory, 203 (2019), 68-79. doi: 10.1016/j.jnt.2019.03.004 |
[14] | S. D. Cohen and T. Trudgian, On the least square-free primitive root modulo p, J. Number Theory, 170 (2017), 10-16. doi: 10.1016/j.jnt.2016.06.011 |
[15] | S. D. Cohen and W. P. Zhang, Sums of two exact powers, Finite Fields Th. App., 8 (2002), 471-477. |
[16] | S. D. Cohen, Pairs of primitive roots, Mathematica, 32 (1985), 276-285. |
[17] | T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. |
[18] | W. Narkiewicz, Classical Problems in Number Theory, Polish Scientifc Publishers, 1986. |
[19] | J. Bourgain, Z. M. Garaev and V. S. Konyagin, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524-1557. doi: 10.1137/110850414 |
[20] | A. Weil, Basic number theory, Springer-Verlag, New York, 1974. |
[21] | L. Carlitz, Sets of primitive roots, Compos. Math., 13 (1956), 65–70. |