The consolidation of evaluations from various decision-makers within a group, concerning multiple attributes of limited schemes, seeks to unify or compromise collective preferences according to specific rules. The superior characteristics of Possibility Fuzzy Sets (PFS) in membership endow it with enhanced capabilities in depicting ambiguous information. The Bonferroni operator proficiently mitigates the influences of interrelations between attributes in decision-making dilemmas. To address the Multi-Attribute Decision Making (MADM) conundrum wherein attribute values are associative Triangular Pythagorean Fuzzy Numbers (TPFNs), a novel methodology leveraging the Generalized Triangular Pythagorean Fuzzy Weighted Bonferroni Mean (GTPFWBM) operator and the Generalized Triangular Pythagorean Fuzzy Weighted Bonferroni Geometric Mean (GTPFWBGM) operator is advanced. Initiating with the foundational Triangular Pythagorean Fuzzy Set and the Generalized Bonferroni Mean (GBM) operator, both the GTPFWBM and GTPFWBGM operators are delineated. Subsequent exploration dives into the intrinsic properties of these pioneering operators, encompassing facets like reducibility, permutation invariance, idempotency, monotonicity and boundedness. Building upon this foundation, a MADM methodology predicated on the GTPFWBM and GTPFWBGM operators is conceptualized. The culmination of this research underscores the method's rationality and practicality, illustrated through a venture capital investment exemplar.
Citation: Wei Lu, Yuangang Li, Yixiu Kong, Liangli Yang. Generalized triangular Pythagorean fuzzy weighted Bonferroni operators and their application in multi-attribute decision-making[J]. AIMS Mathematics, 2023, 8(12): 28376-28397. doi: 10.3934/math.20231452
The consolidation of evaluations from various decision-makers within a group, concerning multiple attributes of limited schemes, seeks to unify or compromise collective preferences according to specific rules. The superior characteristics of Possibility Fuzzy Sets (PFS) in membership endow it with enhanced capabilities in depicting ambiguous information. The Bonferroni operator proficiently mitigates the influences of interrelations between attributes in decision-making dilemmas. To address the Multi-Attribute Decision Making (MADM) conundrum wherein attribute values are associative Triangular Pythagorean Fuzzy Numbers (TPFNs), a novel methodology leveraging the Generalized Triangular Pythagorean Fuzzy Weighted Bonferroni Mean (GTPFWBM) operator and the Generalized Triangular Pythagorean Fuzzy Weighted Bonferroni Geometric Mean (GTPFWBGM) operator is advanced. Initiating with the foundational Triangular Pythagorean Fuzzy Set and the Generalized Bonferroni Mean (GBM) operator, both the GTPFWBM and GTPFWBGM operators are delineated. Subsequent exploration dives into the intrinsic properties of these pioneering operators, encompassing facets like reducibility, permutation invariance, idempotency, monotonicity and boundedness. Building upon this foundation, a MADM methodology predicated on the GTPFWBM and GTPFWBGM operators is conceptualized. The culmination of this research underscores the method's rationality and practicality, illustrated through a venture capital investment exemplar.
[1] | C. Jana, G. Muhiuddin, M. Pal, Some Dombi aggregation of Q‐rung orthopair fuzzy numbers in multiple‐attribute decision making, Int. J. Intell. Syst., 34 (2019), 3220–3240. https://doi.org/10.1002/int.22191 doi: 10.1002/int.22191 |
[2] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–356. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[3] | M. J. Khan, P. Kumam, W. Deebani, W. Kumam, Z. Shah, Bi-parametric distance and similarity measures of picture fuzzy sets and their applications in medical diagnosis, Egypt. Inform. J., 22 (2021), 201–212. https://doi.org/10.1016/j.eij.2020.08.002 doi: 10.1016/j.eij.2020.08.002 |
[4] | A. Sarkar, S. Moslem, D. Esztergár-Kiss, M. Akram, L. Jin, T. Senapati, A hybrid approach based on dual hesitant q-rung orthopair fuzzy Frank power partitioned Heronian mean aggregation operators for estimating sustainable urban transport solutions, Eng. Appl. Artif. Intel., 124 (2023), 106505. https://doi.org/10.1016/j.engappai.2023.106505 doi: 10.1016/j.engappai.2023.106505 |
[5] | M. J. Khan, P. Kumam, N. A. Alreshidi, N. Shaheen, W. Kumam, Z. Shah, et al., The renewable energy source selection by remoteness index-based VIKOR method for generalized intuitionistic fuzzy soft sets, Symmetry, 12 (2020), 977. https://doi.org/10.3390/sym12060977 doi: 10.3390/sym12060977 |
[6] | M. J. Khan, P. Kumam, W. Deebani, W. Kumam, Z. Shah, Distance and similarity measures for spherical fuzzy sets and their applications in selecting mega projects, Mathematics, 8 (2020), 519. https://doi.org/10.3390/math8040519 doi: 10.3390/math8040519 |
[7] | G. H. Yuan, F. Xie, H. Dinçer, S. Yüksel, The theory of inventive problem solving (TRIZ)‐based strategic mapping of green nuclear energy investments with spherical fuzzy group decision‐making approach, Int. J. Energ. Res., 45 (2021), 12284–12300. https://doi.org/10.1002/er.6435 doi: 10.1002/er.6435 |
[8] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3 |
[9] | C. Jana, M. A. Pal, Dynamical hybrid method to design decision making process based on GRA approach for multiple attributes problem, Eng. Appl. Artif. Intell., 100 (2021), 104203. https://doi.org/10.1016/j.engappai.2021.104203 doi: 10.1016/j.engappai.2021.104203 |
[10] | R. R. Yager, Pythagorean fuzzy subsets, In: IFSA World Congress and Nafips Annual Meeting, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
[11] | R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and making, Int. J. Intell. Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584 |
[12] | M. Akram, A. Khan, A. Luqman, T. Senapati, D. Pamucar, An extended MARCOS method for MCGDM under 2-tuple linguistic q-rung picture fuzzy environment, Eng. Appl. Artif. Intell., 120 (2023), 105892. https://doi.org/10.1016/j.engappai.2023.105892 doi: 10.1016/j.engappai.2023.105892 |
[13] | D. P. Pu, M. L. Yu, G. H. Yuan, Multiattribute decision-making method based on hesitant triangular fuzzy power average operator, Adv. Fuzzy Syst., 2022 (2022). https://doi.org/10.1155/2022/4467548 doi: 10.1155/2022/4467548 |
[14] | A. Sarkar, T. Senapati, L. S. Jin, R. Mesiar, A. Biswas, R. R. Yager, Sugeno-Weber triangular norm-based aggregation operators under t-spherical fuzzy hypersoft context, Inform. Sci., 645 (2023), 119305. https://doi.org/10.1016/j.ins.2023.119305 doi: 10.1016/j.ins.2023.119305 |
[15] | A. Hussain, K. Ullah, M. Mubasher, T. Senapati, S. Moslem, Interval-valued Pythagorean fuzzy information aggregation based on Aczel-Alsina operations and their application in multiple attribute decision making, IEEE Access, 11 (2023), 34575–34594. https://doi.org/10.1109/ACCESS.2023.3244612 doi: 10.1109/ACCESS.2023.3244612 |
[16] | C. Jana, M. Pal, Extended bipolar fuzzy EDAS approach for multi-criteria group decision-making process, Comput. Appl. Math., 40 (2021), 1–15. https://doi.org/10.1007/s40314-020-01403-4 doi: 10.1007/s40314-020-01403-4 |
[17] | J. Fan, Y. Yan, M. Wu, Triangular Pythagorean fuzzy set and its application to multicriteria decision making, Control Decis., 34 (2019), 1601–1608. |
[18] | C. Bonferroni, Sulle medie multiple dipotenze, Boll. Unione Mat. Ital., 5 (1950), 267–270. |
[19] | S. P. Wan, Z. Jin, J. Y. Dong, A new order relation for Pythagorean fuzzy numbers and application to multi-attribute group decision making, Knowl. Inform. Syst., 62 (2020), 751–785. https://doi.org/10.1007/s10115-019-01369-8 doi: 10.1007/s10115-019-01369-8 |
[20] | L. Pan, X. Gao, Y. Deng, H. C. Kang, The constrained Pythagorean fuzzy sets and its similarity measure, IEEE T. Fuzzy Syst., 30 (2021), 1102–1113. https://doi.org/10.1109/TFUZZ.2021.3052559 doi: 10.1109/TFUZZ.2021.3052559 |
[21] | D. Liang, Z. Xu, D. Liu, Y. Wu, Method for three-way decisions using ideal TOPSIS solutions at Pythagorean fuzzy information, Inform. Sci., 435 (2018), 282–295. https://doi.org/10.1016/j.ins.2018.01.015 doi: 10.1016/j.ins.2018.01.015 |
[22] | S. P. Wan, Z. Jin, J. Y. Dong, Pythagorean fuzzy mathematical programming method for multi-attribute group decision making with Pythagorean fuzzy truth degrees, Knowl. Inform. Syst., 55 (2018), 437–466. https://doi.org/10.1007/s10115-017-1085-6 doi: 10.1007/s10115-017-1085-6 |
[23] | R. Deb, S. Roy, A software defined network information security risk assessment based on Pythagorean fuzzy sets, Exp. Syst. Appl., 9 (2021), 115383. https://doi.org/10.1016/j.eswa.2021.115383 doi: 10.1016/j.eswa.2021.115383 |
[24] | C. Jana, T. Senapati, M. Pal, Pythagorean fuzzy Dombi aggregation operators and its applications in multiple attribute decision‐making, Int. J. Intell. Syst., 34 (2019), 2019–2038. https://doi.org/10.1002/int.22125 doi: 10.1002/int.22125 |
[25] | S. P. Wan, S. Q. Li, J. Y. Dong, A three-phase method for Pythagorean fuzzy multi-attribute group decision making and application to haze management, Comput. Ind. Eng., 123 (2018), 348–363. https://doi.org/10.1016/j.cie.2018.07.005 doi: 10.1016/j.cie.2018.07.005 |
[26] | R. R. Yager, On generalized Bonferroni mean operators for multi-criteria aggregation, Int. J. Approx. Reason., 50 (2009), 1279–1286. https://doi.org/10.1016/j.ijar.2009.06.004 doi: 10.1016/j.ijar.2009.06.004 |
[27] | R. X. Nie, Z. P. Tian, J. Q. Wang, J. H. Hu, Pythagorean fuzzy multiple criteria decision analysis based on Shapley fuzzy measures and partitioned normalized weighted Bonferroni mean operator, Int. J. Intell. Syst., 34 (2019), 297–324. https://doi.org/10.1002/int.22051 doi: 10.1002/int.22051 |
[28] | K. P. Chiao, Multi-criteria decision making with interval type 2 fuzzy Bonferroni mean, Exp. Syst. Appl., 176 (2021), 114789. https://doi.org/10.1016/j.eswa.2021.114789 doi: 10.1016/j.eswa.2021.114789 |
[29] | A. Fatma, A. Diyar, Some picture fuzzy Bonferroni mean operators with their application to multi-criteria decision making, Int. J. Intell. Syst., 35 (2020), 625–649. https://doi.org/10.1002/int.22220 doi: 10.1002/int.22220 |
[30] | S. P. Wan, Y. J. Zhu, Triangular intuitionistic fuzzy triple Bonferroni harmonic mean operators and application to multi-attribute group decision making, Iran. J. Fuzzy Syst., 13 (2016), 117–145. https://doi.org/10.22111/IJFS.2016.2757 doi: 10.22111/IJFS.2016.2757 |
[31] | G. Beliakov, S. James, J. Mordelová, T. Rückschlossová, R. R. Yager, Generalized Bonferroni mean operators in multi-criteria aggregation, Fuzzy Set. Syst., 161 (2010), 2227–2242. https://doi.org/10.1016/j.fss.2010.04.004 doi: 10.1016/j.fss.2010.04.004 |
[32] | M. Xia, Z. Xu, B. Zhu, Generalized intuitionistic fuzzy Bonferroni means, Int. J. Intell.Syst., 27 (2012), 23–47. https://doi.org/10.1002/int.20515 doi: 10.1002/int.20515 |
[33] | P. Liu, W. Liu, Dual generalized Bonferroni mean operators based on 2-dimensional uncertain linguistic information and their applications in multi-attribute decision making, Artif. Intell. Rev., 54 (2021), 491–517. https://doi.org/10.1007/s10462-020-09857-y doi: 10.1007/s10462-020-09857-y |
[34] | J. Wang, G. Wei, Y. Wei, Models for green supplier selection with some 2-tuple linguistic neutrosophic number Bonferroni mean operators, Symmetry, 10 (2018), 131. https://doi.org/10.1109/ACCESS.2019.2930324 doi: 10.1109/ACCESS.2019.2930324 |
[35] | Z. S. Xu, Fuzzy harmonic mean operators, Int. J. Intell. Syst., 24 (2009), 152–172. https://doi.org/10.1002/int.20330 doi: 10.1002/int.20330 |
[36] | D. Liang, Z. Xu, D. Liu, Y. Wu, Method for three-way decisions using ideal TOPSIS solutions at Pythagorean fuzzy information, Inform. Sci., 435 (2018), 282–295. https://doi.org/10.1016/j.ins.2018.01.015 doi: 10.1016/j.ins.2018.01.015 |
[37] | H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making, Int. J. Intell. Syst., 31 (2016), 886–920. https://doi.org/10.1002/int.21809 doi: 10.1002/int.21809 |