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Abstract: The consolidation of evaluations from various decision-makers within a group, concerning 

multiple attributes of limited schemes, seeks to unify or compromise collective preferences according to 

specific rules. The superior characteristics of Possibility Fuzzy Sets (PFS) in membership endow it with 

enhanced capabilities in depicting ambiguous information. The Bonferroni operator proficiently 

mitigates the influences of interrelations between attributes in decision-making dilemmas. To address the 

Multi-Attribute Decision Making (MADM) conundrum wherein attribute values are associative 

Triangular Pythagorean Fuzzy Numbers (TPFNs), a novel methodology leveraging the Generalized 

Triangular Pythagorean Fuzzy Weighted Bonferroni Mean (GTPFWBM) operator and the Generalized 

Triangular Pythagorean Fuzzy Weighted Bonferroni Geometric Mean (GTPFWBGM) operator is 

advanced. Initiating with the foundational Triangular Pythagorean Fuzzy Set and the Generalized 

Bonferroni Mean (GBM) operator, both the GTPFWBM and GTPFWBGM operators are delineated. 

Subsequent exploration dives into the intrinsic properties of these pioneering operators, encompassing 

facets like reducibility, permutation invariance, idempotency, monotonicity and boundedness. Building 

upon this foundation, a MADM methodology predicated on the GTPFWBM and GTPFWBGM operators 

is conceptualized. The culmination of this research underscores the method’s rationality and practicality, 

illustrated through a venture capital investment exemplar. 
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Abbreviations: The following abbreviations are used in this manuscript:  

MADM: multi-attribute decision making; PFS: Pythagorean fuzzy numbers; PFNs: Pythagorean fuzzy 

numbers; GBM: Bonferroni geometric mean 

1. Introduction  

In light of burgeoning societal informatization, the intricacies embedded in contemporary decision-

making processes have intensified, amplifying the ambiguity surrounding individuals’ comprehension of 

such dilemmas and thereby complicating the elicitation of precise evaluative metrics [1]. Consequently, 

to counteract the detrimental repercussions of informational uncertainty on decision outcomes, Zadeh [2] 

introduced the fuzzy set theory, elegantly encapsulating decisional data via the membership degrees of 

constituent elements within the set. Fuzzy multi-attribute decision-making, which converges evaluations 

of multiple attributes pertaining to finite schemes from an array of decision-makers based on specific 

criterion into a unified or compromised collective preference, has been extensively harnessed across a 

gamut of arenas, including economic benefit assessments [3], competitive evaluations [4], environmental 

quality appraisals [5] and project investments [6,7]. 

In the wake of foundational work in fuzzy set theory, Atanassov [8] elegantly posited the Intuitive 

Fuzzy Set (IFS) paradigm, thereby offering a sophisticated augmentation to the said theory. The IFS 

modality is adept at articulating both membership and non-membership gradations, with their cumulative 

value not exceeding unity. When juxtaposed against conventional fuzzy sets, IFS emerges as a more apt 

instrument for characterizing the intricacies and uncertainties inherent in real-world quandaries. Jana et 

al. [9] delved into the MADM paradigm where decision architects employed both two-scale intuitionistic 

fuzzy numerals and interval-valued intuitionistic fuzzy numerals to confer selection directives across 

varied temporal junctures, subsequently unveiling four dynamic weighted aggregation conduits to 

optimize information assimilation efficacy. Intriguingly, within tangible decision-making realms, the 

amalgamation of membership and non-membership degrees often surpasses unity, constricting the 

applicability expanse of the IFS framework. To illustrate, a decision strategist might attribute a 

membership gradation of 0.8 and a non-membership value of 0.4 whilst appraising a scheme’s attributes. 

In response to this lacuna, Yager [10,11] conceptualized the Pythagorean Fuzzy Set (PFS). The PFS 

modality is tailored for scenarios wherein the summation of membership and non-membership values 

can eclipse unity, yet their squared aggregation remains firmly bounded by the same threshold. 

Concurrently, a coterie of scholars has embarked on rigorous inquiries into fuzzy multi-attribute 

dilemmas from diverse fuzzy data set perspectives, encompassing 2-tuple linguistic 𝑞-rung fuzzy [12], 

Hesitant Triangular Fuzzy [13], T-spherical fuzzy [14] and Pythagorean Fuzzy [15]. 

Scholarly pursuits into Pythagorean Fuzzy Set (PFS) have significantly augmented the theoretical 

and methodological dimensions of Multi-Attribute Decision Making (MADM) in nebulous environments. 

It warrants mention that the preponderance of extant methodologies postulates that memberships within 

the PFS realm can be ascertained with precise values. Yet, in manifold real-world scenarios, given the 

intricate nature of attributes coupled with the cognitive constraints of decision architects, a precise 

membership degree often proves elusive in mirroring genuine decision-making conundrums. In a bid to 

obviate the deleterious ramifications of such indeterminacy upon MADM outcomes, academic 

luminaries have channeled their energies into the exploration of information aggregation operators [16]. 

Owing to the pronounced membership degree of triangular fuzzy numbers at their median juxtaposed 

against a diminished membership at their boundaries, these boundary values seldom distort the 

quantitative encapsulation of data. Consequently, a consortium of researchers has melded the PFS 

doctrine with triangular fuzzy numbers to proffer a more nuanced portrayal of information's inherent 
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vagueness. For instance, Fan et al. [17] synthesized triangular fuzzy numerals with PFS, unveiling the 

paradigm of Triangular Pythagorean Fuzzy Numbers (TPFNs). Their inquiry spanned the realms of 

Triangular Pythagorean Fuzzy Weighted Average (TPFWA) operator, Generalized Triangular 

Pythagorean Fuzzy Weighted Average (GTPFWA) operator, Triangular Pythagorean Fuzzy Weighted 

Geometry (TPFWG) operator and Generalized Triangular Pythagorean Fuzzy Weighted Geometry 

(GTPFWG) operator. Presently, aggregation conduits for TPFNs find their relevance solely in scenarios 

where attributes remain mutually exclusive. However, in tangible decision-making realms, attributes 

frequently exhibit interdependence, manifesting traits such as complementarity, redundancy and 

preference hierarchies. Regrettably, antecedent research has not adeptly addressed the intricate web of 

attribute interdependencies, occasionally culminating in decisional distortions in specific contexts. 

Consequently, delving into the interrelations inherent in decision-making information becomes 

paramount in pragmatic contexts. The Bonferroni Mean (BM) operator [18] adeptly amalgamates 

multiple input variables into a singular cohesive entity, striking a balance between extremities—namely 

the apex and nadir. Expanding on the foundational tenets of the BM operator, the Generalized Bonferroni 

Mean (GBM) operator incorporates a tri-parametric perspective, offering a more holistic representation 

of inter-variable dynamics. Given the intrinsic merits of the GBM operator, it stands as a potent tool to 

navigate the challenges posed by inter-attribute correlations within the Triangular Pythagorean fuzzy 

milieu. Viewed through this lens, the BM operator adeptly addresses the conundrums of attribute 

interrelations within fuzzy multi-attribute decision-making paradigms. Consequently, this manuscript 

introduces both the GTPFWBM and the GTPFWBGM operators. The advent of these operators serves 

to enrich the multi-attribute decision-making framework within the Intuitionistic Fuzzy Set (IFS) context. 

The seminal contributions of this manuscript can be delineated into two salient dimensions. First, 

an evident lacuna remains in the academic realm regarding the nexus between the MADM approach, the 

GBM operator and TPFNs. Second, a preponderant segment of contemporary literature on information 

amalgamation operators predicates on the notion that decision attributes are discretely autonomous, 

neglecting the intricate interrelations that weave them together. The advanced GTPFWBM and 

GTPFWBGM operators proffered in this treatise adeptly heighten the fidelity of information 

consolidation in real-world decision-making contexts characterized by intertwined attributes. This 

furnishes not only a groundbreaking trajectory for navigating the MADM quandary but also bolsters the 

theoretical edifice of aggregation paradigms within Pythagorean fuzzy numbers (PFNs). 

The structure of this paper unfolds as follows. Section 2 undertakes a scholarly exposition on PFS 

and BM operators, subsequently elucidating the lacunae in extant literature that this manuscript seeks to 

address. Section 3 commences with a cursory overview of quintessential notions, followed by an in-depth 

dissection of the conceptual underpinnings and properties inherent to the advanced operators; 

culminating with a detailed elucidation of the MADM methodology predicated upon these operators. 

Section 4, through meticulous sensitivity and comparative analyses—epitomized by a venture capital 

firm selection paradigm—, fortifies the robustness and efficacy of the proffered operators. Section 5 

extrapolates managerial sagacity and real-world ramifications of this discourse, both from an academic 

and pragmatic lens. Conclusively, Section 6 encapsulates the core tenets of this treatise and proffers 

potential avenues for future scholarly exploration. 

2. Literature review 

2.1. Review on PFS  

Owing to the distinguished attributes of PFS in representing membership, it possesses a formidable 
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aptitude to delineate fuzzy information, adeptly circumventing the attrition of attribute details [19]. 

Consequently, the refinement of PFS and its application to address the MADM quandaries have emerged 

as focal points of contemporary research. Within the domain of PFS enhancement, Pan et al. [20] 

formulated a circumscribed PFS, employing ordered dyads to characterize both fuzziness and 

stochasticity within an ambivalent milieu, thus eschewing paradoxical outcomes. Meanwhile, Liang et 

al. [21] pioneered a Bayesian decision-centric Pythagorean fuzzy decision theory rough set paradigm 

tailored for the archetypal scenarios of information systems bereft of class labels. This model elucidated 

the selection modus operandi for individual entities, accompanied by pertinent semantic expositions. In 

a similar vein, Wan et al. [22], anchoring on PF-positive ideal solution (PFPIS) and PF-negative ideal 

solution (PFNIS), and with an aim to concurrently diminish dual inconsistency indicators, architected a 

bi-objective Pythagorean fuzzy (PF) mathematical programmatic framework to derive holistic attribute 

weights. This model, accentuating inconsistency indicators rooted in both the positive ideal solution (PIS) 

and negative ideal solution (NIS), adeptly redresses the lacunae inherent in the linear programming 

technique for multidimensional analysis of preference (LINMAP)—a seminal MADM methodology that 

had hitherto overlooked the NIS in its deliberative schema. 

Within the practical domain of PFS, Deb et al. [23] harnessed the Pythagorean fuzzy analytical 

hierarchical process to calibrate the severity weight pertaining to software defined networks (SDN). This 

was orchestrated with the objective of discerning associated perils, thereby facilitating preemptive 

strategic interventions prior to the SDN's deployment. Concurrently, Jana et al. [24] integrated the Dombi 

operation, thereby culminating in the inception of six Pythagorean fuzzy Dombi aggregation operators, 

inclusive of the Pythagorean fuzzy Dombi weighted average operator. These operators were subsequently 

employed to navigate the intricacies of multi-attribute decision-making within a Pythagorean fuzzy 

milieu. In a similar context, Wan et al. [25] architectured a triphasic strategy for multi-attribute group 

decision-making (MAGDM) under the auspices of Pythagorean fuzzy numbers (PFNs), a methodology 

they elegantly applied to the nuances of haze management. Their seminal contribution lay in delineating 

the normalized projection of PFN and formulating an augmented TOPSIS methodology, premised upon 

this normalized projection. This paradigm was adept at ascertaining the weights of decision-makers, 

thereby judiciously obviating the subjective capriciousness endemic to the decision-making process. 

2.2. Review on BM operators 

The Bonferroni mean (BM) operator [18], esteemed for its adeptness at elucidating the interrelation 

amongst input variables, has garnered substantial scholarly interest. Yager [26] elegantly expanded the 

BM operator into a nuanced fuzzy information aggregation mechanism, seamlessly integrating it within 

the MADM domain to aptly represent the symbiotic interplay amidst evaluative information. Subsequent 

to this pioneering effort, the BM operator has been ubiquitously incorporated into fuzzy environmental 

MADM research paradigms. In this context, Nie et al. [27] ingeniously amalgamated the Shapley fuzzy 

measure and the BM operator in scenarios of indeterminate weights, leading to the conception of a 

Pythagorean fuzzy partitioned normalized weighted Bonferroni mean operator; a mechanism specifically 

crafted to navigate the intricacies of the Pythagorean fuzzy MADM conundrum. Chiao [28] 

masterminded aggregation schemas tailored to disentangle multi-criteria decision-making (MCDM) 

challenges inherent to ambiguous milieus, specifically harnessing variants of the BM operator such as 

those juxtaposed with ordered weighted averaging metrics and those combined with OWA weights 

underscored by individual significance. Taking a slightly divergent trajectory, Fatma et al. [29] ventured 

to synergize graph fuzzy numbers with the BM operator, embarking on the exploration of an avant-garde 

graph fuzzy information set operator to untangle the MCDM enigma. Progressing this discourse, Wan et 
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al. [30] sculpted three Bonferroni harmonic mean operators, meticulously crafted to assimilate the 

attribute value information of MAGDM, underpinned by triangular intuitionistic fuzzy numbers (TIFNs). 

This architecture adeptly encapsulated the holistic inclinations of decision-makers, especially within the 

confines of imperative stipulations. 

While the BM operator adeptly elucidates the interrelation between paired evaluations, its capacity 

remains curtailed when confronted with the multifaceted nuances of practical MADM scenarios. 

Addressing this lacuna, Beloakov et al. [31] introduced the generalized Bonferroni mean (GBM) operator, 

crafting a more expansive and intricate tapestry of correlations amidst evaluative data. Building upon 

this foundational work, Xia et al. [32] postulated the generalized weighted Bonferroni mean operator and 

its geometric counterpart, astutely calibrating them to articulate the varying gravitas of disparate 

attributes; these innovations found applicability in deciphering MADM conundrums within the 

intuitionistic fuzzy milieu. Venturing further into this domain, Liu et al. [33] unveiled the dual generalized 

Bonferroni mean operator, a tool designed to augment the veracity of evaluative data. This was achieved 

by deftly modulating the embedding parameters, thereby capturing the intricate interplay among varied 

quantitative attributes. In a synergistic meld, Wang et al. [34] amalgamated the GBM operator with the 

2-tuple linguistic neutrosophic numbers, giving rise to the dual generalized 2-tuple linguistic 

neutrosophic numbers weighted Bonferroni mean operator, accompanied by its cognate multi-objective 

optimization algorithm. 

2.3. Literature summary 

To more aptly align with our research trajectory, which centers upon the generalized triangular 

Pythagorean fuzzy weighted Bonferroni operators, our literature scrutiny bifurcates into two predominant 

vectors: PFS and BM operators. Pertinent insights harvested from the extant literature are succinctly 

encapsulated in Table 1. 

Table 1. The main information from the relevant literature. 

Category Reference Main research contents Main research contributions 

PFS 

Pan et al. [20] A constrained PFS Avoiding counterintuitive results 

Liang et al. [21] 

A Bayesian decision-based 

Pythagorean fuzzy decision 

theory rough set model 

Solving the problem of information 

systems without class labels 

Wan et al. [22] 

A dual-objective PF 

mathematical programming 

model 

Making up for the shortcomings of 

LINMAP ignoring NIS in the 

decision-making process 

Deb et al. [23] 

The Pythagorean fuzzy 

analytical hierarchical 

process 

Identifying the related risks of 

network and taking appropriate 

countermeasures 

Jana et al. [24] 

Six Pythagorean fuzzy 

Dombi aggregation 

operators 

Solving the multi-attribute decision 

making problem in the Pythagorean 

fuzzy environment 

Wan et al. [25] 
A three-phase method for 

MAGDM with PFNs 

Defining the normalized projection 

of PFN 

Continued on next page 
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Category Reference Main research contents Main research contributions 

BM 

operators 

Yager [26] 

Generalizing the BM 

operator as a fuzzy 

information aggregation 

operator 

Reflecting the mutual influence 

between evaluation information 

Nie et al. [27] 

A Pythagorean fuzzy 

partitioned normalized 

weighted Bonferroni mean 

operator 

Solving the Pythagorean fuzzy 

MADM problem 

Chiao [28] 

The BM operator with 

ordered weighted averaging 

weights, et al. 

Solving MCDM problems in 

uncertain environments 

Fatma et al. [29] 
A new type of graph fuzzy 

information set operator 

Combining graph fuzzy numbers 

with the BM operator to solve the 

MCDM problem. 

Wan et al. [30] 
Three Bonferroni harmonic 

mean operators 

Modeling the overall preferences of 

decision makers under mandatory 

requirements. 

Beloakov et al. 

[31] 
The GBM operator 

Describing more correlations 

between evaluation information 

Xia et al. [32] 

The generalized weighted 

Bonferroni mean operator 

and the generalized 

weighted Bonferroni 

geometric mean operator 

Solving the MADM problem in the 

intuitionistic fuzzy environment 

Liu et al. [33] 
The dual generalized 

Bonferroni mean operator 

Enhancing the reliability of the 

evaluation information 

Wang et al. [34] 

A dual generalized 2-tuple 

linguistic neutrosophic 

numbers weighted 

Bonferroni mean operator 

Combining the GBM operator and 

the 2-tuple linguistic neutrosophic 

numbers 

3. Methods 

3.1. Question formulation 

From the scrutiny of literature pertaining to PFS, it emerges that PFS holds a distinctive edge in 

navigating intricate attribute values within pragmatic decision-making contexts. Given that the 

membership degree of PFS is an absolute metric, it often falters in delineating the inherent uncertainty 

of decisional data. This shortcoming of PFS can be ameliorated by triangular PFS. Presently, research on 

triangular PFS remains constrained to scenarios where attributes operate in isolation. However, in real-

world decision-making matrices, attributes frequently exhibit complementary and redundant interplay. 

Delving into the literature on BM operators, one discerns that these operators adeptly capture inter-

variable relationships, thus rectifying this limitation inherent to triangular PFS. Moreover, juxtaposing 

the BM operator, which merely captures dyadic evaluative correlations, the GBM operator incorporates 

a three-parameter input perspective, bestowing it with the capability to holistically represent variable 

interconnections.  

From the aforementioned literature review, the significance of the nexus between information 
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ambiguity and attribute values in the domain of multi-attribute decision-making is patently evident. 

Concurrently, extant studies offer no insights into the amalgamation of the GBM operator with the 

triangular PFS operator. Hence, this investigation paves a novel avenue to address the MADM 

conundrum and augments the theoretical landscape of triangular PFS integration methodologies. 

3.1.1. TPFNs definition 

Definition 1. [20] Let 𝑋  be a non-empty set, and any PFS expression in 𝑋  is as 𝑃 =
{⟨𝑥, 𝜇𝑝(𝑥), 𝜈𝑝(𝑥)|𝑥 ∈ 𝑋⟩} . The functions 𝜇𝑃(𝑥)  and 𝜈𝑃(𝑥)  are the membership degree and non-

membership degree of the element 𝑥 ∈ 𝑋  in the set 𝑃 , respectively, satisfying the constraint 0 ≤

(𝜇𝑃(𝑥))
2 + (𝜈𝑃(𝑥))

2 ≤ 1, 𝜇𝑃(𝑥) ∈ [0,1], 𝜈𝑃(𝑥) ∈ [0,1] . 𝜋𝑃(𝑥) = √1 − (𝜇𝑃(𝑥))2 − (𝜈𝑃(𝑥))2 

represents the hesitancy degree that the element 𝑥  belongs to 𝑋 . The smaller the value of 𝜋𝑃(𝑥) , 

indicates that there is more useful information about 𝑥 and vice versa.  

Definition 2. [17] Let 𝑋  be a non-empty set, and any triangular Pythagorean fuzzy set (TPFS) 

expression in 𝑋  is as 𝑃̃ = {⟨𝑥, 𝜇𝑝(𝑥), 𝜈𝑝(𝑥)⟩|𝑥 ∈ 𝑋} . The functions 𝜇𝑃(𝑥) ⊂ [0,1]  and 𝜈𝑃(𝑥) ⊂

[0,1]  are two triangular fuzzy numbers𝜇𝑃(𝑥) = (𝜇𝑃
𝑙 (𝑥)，𝜇𝑃

𝑚(𝑥)，𝜇𝑃
𝑢(𝑥)): 𝑋 → [0,1]  and 𝜈𝑃(𝑥) =

(𝜈𝑃
𝑙 (𝑥)，𝜈𝑃

𝑚(𝑥)，𝜈𝑃
𝑢(𝑥))：𝑋 → [0,1] and they are also the degree of membership and non-membership 

of the element 𝑥 in the set P belonging to 𝑋, and 0 ≤ (𝜇𝑝
𝑢(𝑥))2 + (𝜈𝑝

𝑢(𝑥))2 ≤ 1, 𝑥 ∈ 𝑋. The hesitancy 

degree of TPFS is 𝜋̃𝑃(𝑥) = (𝜋̃𝑃
𝑙 (𝑥), 𝜋̃𝑃

𝑚(𝑥), 𝜋̃𝑃
𝑢(𝑥)) = (√1 − (𝜇𝑃

𝑢(𝑥))2 − (𝜈𝑃
𝑢(𝑥))2,

√1 − (𝜇𝑃
𝑚(𝑥))2 − (𝜈𝑃

𝑚(𝑥))2, √1 − (𝜇𝑃
𝑙 (𝑥))2 − (𝜈𝑃

𝑙 (𝑥))2) . When 𝜇𝑃
𝑙 (𝑥) = 𝜇𝑃

𝑚(𝑥) = 𝜇𝑃
𝑢(𝑥), 𝜈𝑃

𝑙 (𝑥) =

𝜈𝑃
𝑚(𝑥) = 𝜈𝑃

𝑢(𝑥) , TPFS degenerates into PFS. Note that the elements of TPFS are TPFNs,  𝛼̃ =

𝑃(𝜇𝑝, 𝜈𝑝) = 𝑃⟨(𝜇𝑃
𝑙 , 𝜇𝑃

𝑚, 𝜇𝑃
𝑢), (𝜈𝑃

𝑙 , 𝜈𝑃
𝑚, 𝜈𝑃

𝑢)⟩ ， 𝜋𝛼 = (𝜋𝑃
𝑙 , 𝜋𝑃

𝑚, 𝜋𝑃
𝑢) = (√1 − (𝜇𝑃

𝑢)2 − (𝜈𝑃
𝑢)2,

√1 − (𝜇𝑃
𝑚)2 − (𝜈𝑃

𝑚)2, √1 − (𝜇𝑃
𝑙 )2 − (𝜈𝑃

𝑙 )2) , where 0 ≤ (𝜇𝑃
𝑢)2 + (𝜈𝑃

𝑢)2 ≤ 1 . Shorthand 

⟨(𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑓)⟩. When 𝜇𝑃
𝑙 = 𝜇𝑃

𝑚 = 𝜇𝑃
𝑢，𝜈𝑃

𝑙 = 𝜈𝑃
𝑚 = 𝜈𝑃

𝑢, TPFNs degenerate into PFNs. 

3.1.2. TPFNs algorithm 

Definition 3. [17] Let 𝛼̃1 = ⟨(𝑎1, 𝑏1, 𝑐1), (𝑑1, 𝑒1, 𝑓1)⟩  and 𝛼̃2 = ⟨(𝑎2, 𝑏2, 𝑐2), (𝑑2, 𝑒2, 𝑓2)⟩  be two 

arbitrary TPFNs, the real number 𝜆 > 0, the algorithm is as shown in Eqs (1)–(4). 

𝛼̃1⊕ 𝛼̃2 = ⟨(√𝑎1
2 + 𝑎2

2 − 𝑎1
2𝑎2

2, √𝑏1
2 + 𝑏2

2 − 𝑏1
2𝑏2

2, √𝑐1
2 + 𝑐2

2 − 𝑐1
2𝑐2
2), (𝑑1𝑑2, 𝑒1𝑒2, 𝑓1𝑓2)⟩  (1) 

𝛼̃1⊗ 𝛼̃2 = ⟨(𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2), (√𝑑1
2 + 𝑑2

2 − 𝑑1
2𝑑2

2, √𝑒1
2 + 𝑒2

2 − 𝑒1
2𝑒2

2, √𝑓1
2 + 𝑓2

2 − 𝑓1
2𝑓2

2)⟩  (2) 

𝜆𝛼̃1 = ⟨(√1 − (1 − 𝑎1
2)𝜆, √1 − (1 − 𝑏1

2)𝜆，√1 − (1 − 𝑐1
2)𝜆), (𝑑1

𝜆, 𝑒1
𝜆, 𝑓1

𝜆)⟩   (3) 

𝛼̃1
𝜆 = ⟨(𝑎1

𝜆, 𝑏1
𝜆, 𝑐1

𝜆), (√1 − (1 − 𝑑1
2)𝜆, √1 − (1 − 𝑒1

2)𝜆，√1 − (1 − 𝑓1
2)𝜆)⟩.   (4) 

3.1.3. TPFN sorting method  

Definition 4. [17] Let 𝛼̃ = ⟨(𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑓)⟩ be TPFN, then its score function and exact function are 

Eqs (5) and (6) respectively. 
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𝑆(𝛼̃) =
1

3
(
𝑎2+2𝑏2+𝑐2−(𝑑2+2𝑒2+𝑓2)

4
+ 2)       (5) 

𝐻(𝛼̃) =
1

3
(
𝑎2+2𝑏2+𝑐2+𝑑2+2𝑒2+𝑓2

4
+ 2).       (6) 

The larger the value of 𝑆(𝛼̃) ∈ [0,1], the larger the corresponding TPFN 𝛼̃. Two TPFNs can be 

compared according to the calculated score functions, and when the score functions are equal, the size of 

the two can be compared according to their exact functions. 

Reference [17] gives the sorting method of TPFN, let 𝛼̃1, 𝛼̃2 be two TPFNs 

(1) If 𝑆(𝛼̃1) < 𝑆(𝛼̃2), then 𝛼̃1 < 𝛼̃2. 

(2) If 𝑆(𝛼̃1) = 𝑆(𝛼̃2), then when 𝐻(𝛼̃1) < 𝐻(𝛼̃2), 𝛼̃1 < 𝛼̃2, when 𝐻(𝛼̃1) = 𝐻(𝛼̃2), 𝛼̃1 = 𝛼̃2. 

3.1.4. GBM operator theory 

Definition 5. [35] Let 𝑝, 𝑞, 𝑟 ≥ 0 , the set of non-negative real numbers is {𝑎1, 𝑎2, ⋯ , 𝑎𝑛} . If 

{𝑤1, 𝑤2, ⋯ ,𝑤𝑛}  is 𝑎𝑖(𝑖 = 1,2,⋯ , 𝑛)  corresponding weights, satisfying 𝑤𝑖 ∈ [0,1], ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, 𝑖 =

1,2,⋯ , 𝑛, and there is Eq (7). 

𝐺𝑊𝐵𝑀𝑝,𝑞,𝑟(𝑎1, 𝑎2, ⋯ , 𝑎𝑛) = (∑ 𝑤𝑖𝑤𝑗𝑤𝑘𝑎𝑖
𝑝𝑛

𝑖,𝑗,𝑘=1 𝑎𝑗
𝑞𝑎𝑘

𝑟)
1

𝑝+𝑞+𝑟.    (7) 

Then the function 𝐺𝑊𝐵𝑀𝑝,𝑞,𝑟 is called the generalized weighted Bonferroni mean (GWBM) operator.  

Definition 6. [35] Let 𝑝, 𝑞, 𝑟 ≥ 0 , the set of non-negative real numbers is {𝑎1, 𝑎2, ⋯ , 𝑎𝑛} . If 

{𝑤1, 𝑤2, ⋯ ,𝑤𝑛}  is 𝑎𝑖(𝑖 = 1,2,⋯ , 𝑛)  corresponding weights, satisfying 𝑤𝑖 ∈ [0,1], ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, 𝑖 =

1,2,⋯ , 𝑛, and there is Eq (8). 

𝐺𝑊𝐵𝐺𝑀𝑝,𝑞,𝑟(𝑎1, 𝑎2, ⋯ , 𝑎𝑛) =
1

𝑝+𝑞+𝑟
∑ 𝑝𝑎𝑖 + 𝑞𝑎𝑗 + 𝑟𝑎𝑘
𝑛
𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘.  (8) 

Then the function 𝐺𝑊𝐵𝐺𝑀𝑝,𝑞,𝑟  is called the generalized weighted Bonferroni geometric mean 

(GWBGM) operator. 

The GWBM operator and the GWBGM operator not only have excellent properties such as 

reducibility, idempotency, monotonicity and boundedness, but also expand the input variables to the 

three-parameter case in the process of information aggregation, which can effectively capture more 

associated information between the input variables [35]. The GWBM and GWBGM operators, while 

boasting commendable attributes like reducibility, idempotency, monotonicity and boundedness, also 

extend the input variables to a tri-parametric context during information aggregation, adeptly 

encapsulating the intricate interrelations amongst the input variables [35]. 

3.2. Mathematical model 

3.2.1. GTPFWBM operator concept 

Definition 7. Let 𝛼̃𝑖 = ⟨(𝑎𝑖, 𝑏𝑖 , 𝑐𝑖), (𝑑𝑖, 𝑒𝑖, 𝑓𝑖)⟩ be a set of TPFNs and 𝑝, 𝑞, 𝑟 ≥ 0. If {𝑤1, 𝑤2, ⋯ ,𝑤𝑛} 
is the corresponding weights of 𝛼̃𝑖(𝑖 = 1,2,⋯ , 𝑛), satisfy 𝑤𝑖 ∈ [0,1], ∑ 𝑤𝑖

𝑛
𝑖=1 = 1, 𝑖 = 1,2,⋯ , 𝑛, then 

the GTPFWBM operator is Eq (9). 

𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) = (⊕ 𝑤𝑖𝑤𝑗𝑤𝑘(𝛼̃𝑖
𝑝⊗ 𝛼̃𝑗

𝑞⊗ 𝛼̃𝑘
𝑟)𝑛

𝑖,𝑗,𝑘=1 )
1

𝑝+𝑞+𝑟.  (9) 

Theorem 1. Let 𝛼̃𝑖 = ⟨(𝑎𝑖, 𝑏𝑖 , 𝑐𝑖), (𝑑𝑖, 𝑒𝑖, 𝑓𝑖)⟩ be a set of TPFNs and 𝑝, 𝑞, 𝑟 ≥ 0. If {𝑤1, 𝑤2, ⋯ ,𝑤𝑛} is 
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the corresponding weights of 𝛼̃𝑖(𝑖 = 1,2,⋯ , 𝑛), satisfy 𝑤𝑖 ∈ [0,1], ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, 𝑖 = 1,2,⋯ , 𝑛, then the 

result after aggregation by Definition 7 is still TPFN and satisfies Eq (10). 

𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) = ⟨(√(1 − ∏ (1 − 𝑎𝑖
2𝑝𝑎𝑗

2𝑞𝑎𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
            ，

 √(1 − ∏ (1 − 𝑏𝑖
2𝑝𝑏𝑗

2𝑞𝑏𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
，√(1 − ∏ (1 − 𝑐𝑖

2𝑝𝑐𝑗
2𝑞𝑐𝑘

2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛
𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
)，

(√1 − (1 − ∏ (1 − (1 − 𝑑𝑖
2)𝑝(1 − 𝑑𝑗

2)𝑞(1 − 𝑑𝑘
2)𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟                   ，

 √1 − (1 − ∏ (1 − (1 − 𝑒𝑖
2)𝑝(1 − 𝑒𝑗

2)𝑞(1 − 𝑒𝑘
2)𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟                    ，

√1 − (1 − ∏ (1 − (1 − 𝑓𝑖
2)𝑝(1 − 𝑓𝑗

2)𝑞(1 − 𝑓𝑘
2)𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟)⟩.   (10) 

Proof of Theorem 1. Because 𝛼𝑖 = ⟨(𝑎𝑖, 𝑏𝑖, 𝑐𝑖), (𝑑𝑖, 𝑒𝑖, 𝑓𝑖)⟩ and 𝛼𝑗 = ⟨(𝑎𝑗, 𝑏𝑗 , 𝑐𝑗), (𝑑𝑗 , 𝑒𝑗 , 𝑓𝑗)⟩, 𝛼𝑖
𝑝
, 𝛼𝑗

𝑞
, 

𝛼𝑘
𝑟 can be get from Eq (4). 

𝛼𝑖
𝑝 = ⟨(𝑎𝑖

𝑝, 𝑏𝑖
𝑝, 𝑐𝑖

𝑝),(√1 − (1 − 𝑑𝑖
2)𝑝, √1 − (1 − 𝑒𝑖

2)𝑝，√1 − (1 − 𝑓𝑖
2)𝑝⟩ 

𝛼𝑗
𝑞 = ⟨(𝑎𝑗

𝑞 , 𝑏𝑗
𝑞 , 𝑐𝑗

𝑞),(√1 − (1 − 𝑑𝑗
2)𝑞 , √1 − (1 − 𝑒𝑗

2)𝑞，√1 − (1 − 𝑓𝑗
2)𝑞)⟩ 

𝛼𝑘
𝑟 = ⟨(𝑎𝑘

𝑟 , 𝑏𝑘
𝑟 , 𝑐𝑘

𝑟),(√1 − (1 − 𝑑𝑘
2)𝑟 , √1 − (1 − 𝑒𝑘

2)𝑟，√1 − (1 − 𝑓𝑘
2)𝑟)⟩. 

According to Eq (2), Eq (11) can be obtained. 

𝛼𝑖
𝑝⊗𝛼𝑗

𝑞⊗𝛼𝑘
𝑟 = ⟨(𝑎𝑖

𝑝𝑎𝑗
𝑞𝑎𝑘

𝑟 , 𝑏𝑖
𝑝𝑏𝑗

𝑞𝑏𝑘
𝑟 , 𝑐𝑖

𝑝𝑐𝑗
𝑞𝑐𝑘

𝑟), (√1 − (1 − 𝑑𝑖
2)𝑝(1 − 𝑑𝑗

2)𝑞(1 − 𝑑𝑘
2)𝑟 , 

√1 − (1 − 𝑒𝑖
2)𝑝(1 − 𝑒𝑗

2)𝑞(1 − 𝑒𝑘
2)𝑟 , √1 − (1 − 𝑓𝑖

2)𝑝(1 − 𝑓𝑗
2)𝑞(1 − 𝑓𝑘

2)𝑟)⟩.   (11) 

Therefore, Eq (12) can be obtained. 

⊕ 𝑤𝑖𝑤𝑗𝑤𝑘(𝛼𝑖
𝑝⊗𝛼𝑗

𝑞⊗𝛼𝑘
𝑟)

𝑛

𝑖,𝑗,𝑘=1

= ⟨(√1 − ∏ (1 − 𝑎𝑖
2𝑝𝑎𝑗

2𝑞𝑎𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

, √1 − ∏ (1 − 𝑏𝑖
2𝑝𝑏𝑗

2𝑞𝑏𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

， 

√1 − ∏ (1 − 𝑐𝑖
2𝑝𝑐𝑗

2𝑞𝑐𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

) ,

(

 
 
( ∏ (1 − (1 − 𝑑𝑖

2)𝑝(1 − 𝑑𝑗
2)𝑞(1 − 𝑑𝑘

2)𝑟)

𝑛

𝑖,𝑗,𝑘=1

)

𝑤𝑖𝑤𝑗𝑤𝑘
2

, 
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(∏ (1 − (1 − 𝑒𝑖
2)𝑝(1 − 𝑒𝑗

2)𝑞(1 − 𝑒𝑘
2)𝑟)𝑛

𝑖,𝑗,𝑘=1 )

𝑤𝑖𝑤𝑗𝑤𝑘

2 , (∏ (1 − (1 − 𝑓𝑖
2)𝑝(1 − 𝑓𝑗

2)𝑞(1 −𝑛
𝑖,𝑗,𝑘=1

𝑒𝑘
2)𝑟))

𝑤𝑖𝑤𝑗𝑤𝑘

2 )⟩.          (12) 

Furthermore, from the Eq (4), the Eq (13) can be obtained. 

𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) = (⊕ 𝑤𝑖𝑤𝑗𝑤𝑘(𝛼̃𝑖
𝑝⊗ 𝛼̃𝑗

𝑞⊗ 𝛼̃𝑗
𝑟)𝑛

𝑖,𝑗,𝑘=1 )
1

𝑝+𝑞+𝑟 =

⟨(√(1 − ∏ (1 − 𝑎𝑖
2𝑝𝑎𝑗

2𝑞𝑎𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
，√(1 − ∏ (1 − 𝑏𝑖

2𝑝𝑏𝑗
2𝑞𝑏𝑘

2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛
𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
，

√(1 − ∏ (1 − 𝑐𝑖
2𝑝𝑐𝑗

2𝑞𝑐𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
)，

(√1 − (1 − ∏ (1 − (1 − 𝑑𝑖
2)𝑝(1 − 𝑑𝑗

2)𝑞(1 − 𝑑𝑘
2)𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟，

√1 − (1 − ∏ (1 − (1 − 𝑒𝑖
2)𝑝(1 − 𝑒𝑗

2)𝑞(1 − 𝑒𝑘
2)𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟，

                       √1 − (1 − ∏ (1 − (1 − 𝑓𝑖
2)𝑝(1 − 𝑓𝑗

2)𝑞(1 − 𝑓𝑘
2)𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟)⟩.   (13) 

In Eq (13), 0 ≤ √(1 − ∏ (1 − 𝑎𝑖
2𝑝𝑎𝑗

2𝑞𝑎𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
 ≤

√(1 − ∏ (1 − 𝑏𝑖
2𝑝𝑏𝑗

2𝑞𝑏𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
 ≤ √(1 − ∏ (1 − 𝑐𝑖

2𝑝𝑐𝑗
2𝑞𝑐𝑘

2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛
𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
≤ 1 . At 

the same time, 0 ≤ √1 − (1 − ∏ (1 − (1 − 𝑑𝑖
2)𝑝(1 − 𝑑𝑗

2)𝑞(1 − 𝑑𝑘
2)𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟 ≤

√1 − (1 − ∏ (1 − (1 − 𝑒𝑖
2)𝑝(1 − 𝑒𝑗

2)𝑞(1 − 𝑒𝑘
2)𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟 ≤

√1 − (1 − ∏ (1 − (1 − 𝑓𝑖
2)𝑝(1 − 𝑓𝑗

2)𝑞(1 − 𝑓𝑘
2)𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟 ≤ 1 , and satisfies 0 ≤ (1 −

∏ (1 − 𝑐𝑖
2𝑝𝑐𝑗

2𝑞𝑐𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )
1

𝑝+𝑞+𝑟 + (1 − (1 − ∏ (1 − (1 − 𝑓𝑖
2)𝑝(1 − 𝑓𝑗

2)𝑞(1 −𝑛
𝑖,𝑗,𝑘=1

𝑓𝑘
2)𝑟))𝑤𝑖𝑤𝑗𝑤𝑘)

1

𝑝+𝑞+𝑟) ≤ 1. So, Theorem 1 is proved. 

3.2.2. GTPFWBM properties 

I. Idempotency 

Let TPFN 𝛼̃𝑖 = ⟨(𝑎𝑖, 𝑏𝑖, 𝑐𝑖), (𝑑𝑖, 𝑒𝑖, 𝑓𝑖)⟩ = 𝛼̃ = ⟨(𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑓)⟩  for all (𝑖 = 1,2,⋯ , 𝑛)  satisfy 

Eq (14). 

𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) = 𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃, 𝛼̃,⋯ , 𝛼̃) = 𝛼̃.   (14) 
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Proof. Because 𝛼̃𝑖 = ⟨(𝑎𝑖, 𝑏𝑖, 𝑐𝑖), (𝑑𝑖, 𝑒𝑖, 𝑓𝑖)⟩ = 𝛼̃ = ⟨(𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑓)⟩ , we can get 

𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) = (⊕ 𝑤𝑖𝑤𝑗𝑤𝑘(𝛼̃
𝑝⊗ 𝛼̃𝑞⊗ 𝛼̃𝑟)𝑛

𝑖,𝑗,𝑘=1 )
1

𝑝+𝑞+𝑟 =

(∑ 𝑤𝑖𝑤𝑗𝑤𝑘𝛼̃
𝑛
𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟 = ∑ 𝑤𝑖
𝑛
𝑖=1 ∑ 𝑤𝑗

𝑛
𝑗=1 ∑ 𝑤𝑘𝛼̃

𝑛
𝑘=1 = 𝛼̃. 

II. Permutation invariance 

Let (𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛)  be a set of TPFNs, and (𝛼̄̃1, 𝛼̄̃2, ⋯ , 𝛼̄̃𝑛)  be any permutation of 

(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛), then there is Eq (15). 

𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) = 𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̄̃1, 𝛼̄̃2, ⋯ , 𝛼̄̃𝑛).    (15) 

Proof. Because (𝛼̄̃1, 𝛼̄̃2, ⋯ , 𝛼̄̃𝑛) is any permutation of (𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) 

𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) = ( ⊕ 𝑤𝑖𝑤𝑗𝑤𝑘(𝛼̃𝑖
𝑝⊗ 𝛼̃𝑗

𝑞⊗ 𝛼̃𝑗
𝑟)

𝑛

𝑖,𝑗,𝑘=1
)

1
𝑝+𝑞+𝑟

 

= (⊕ 𝑤𝑖𝑤𝑗𝑤𝑘(𝛼̄̃𝑖
𝑝⊗ 𝛼̄̃𝑗

𝑞⊗ 𝛼̄̃𝑗
𝑟)𝑛

𝑖,𝑗,𝑘=1 )
1

𝑝+𝑞+𝑟 = 𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̄̃1, 𝛼̄̃2, ⋯ , 𝛼̄̃𝑛). 

III. Monotonicity 

Let 𝐴 = {𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛}  and 𝐵 = {𝛽1, 𝛽2, ⋯ , 𝛽𝑛}  be two different TPFN sets, where 𝛼̃𝑖 =
⟨(𝑎𝛼𝑖 , 𝑏𝛼𝑖 , 𝑐𝛼𝑖), (𝑑𝛼𝑖 , 𝑒𝛼𝑖 , 𝑓𝛼𝑖)⟩  and 𝛽𝑖 = ⟨(𝑎𝛽𝑖 , 𝑏𝛽𝑖 , 𝑐𝛽𝑖), (𝑑𝛽𝑖 , 𝑒𝛽𝑖 , 𝑓𝛽𝑖)⟩ . If for any 𝑖 , there are 𝑎𝛽𝑖 ≥

𝑎𝛼𝑖 , 𝑏𝛽𝑖 ≥ 𝑏𝛼𝑖 , 𝑐𝛽𝑖 ≥ 𝑐𝛼𝑖 , 𝑑𝛽𝑖 ≤ 𝑑𝛼𝑖 , 𝑒𝛽𝑖 ≤ 𝑒𝛼𝑖 , 𝑓𝛽𝑖 ≤ 𝑓𝛼𝑖, that is, 𝛼̃𝑖 ≤ 𝛽𝑖, then there is Eq (16). 

𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) ≤ 𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛽̃1, 𝛽2, ⋯ , 𝛽𝑛).   (16) 

Proof. Because for any 𝑖, there are 𝑎𝛽𝑖 ≥ 𝑎𝛼𝑖 , 𝑏𝛽𝑖 ≥ 𝑏𝛼𝑖 , 𝑐𝛽𝑖 ≥ 𝑐𝛼𝑖 , 𝑑𝛽𝑖 ≤ 𝑑𝛼𝑖 , 𝑒𝛽𝑖 ≤ 𝑒𝛼𝑖 , 𝑓𝛽𝑖 ≤ 𝑓𝛼𝑖, then 

there are 

𝑎𝛼𝑖
𝑝 𝑎𝛼𝑗

𝑞 𝑎𝛼𝑘
𝑟 ≤ 𝑎𝛽𝑖

𝑝 𝑎𝛽𝑗
𝑞 𝑎𝛽𝑘

𝑟 , 𝑏𝛼𝑖
𝑝 𝑏𝛼𝑗

𝑞 𝑏𝛼𝑘
𝑟 ≤ 𝑏𝛽𝑖

𝑝 𝑏𝛽𝑗
𝑞 𝑏𝛽𝑘

𝑟 , 𝑐𝛼𝑖
𝑝 𝑐𝛼𝑗

𝑞 𝑐𝛼𝑘
𝑟 ≤ 𝑐𝛽𝑖

𝑝 𝑐𝛽𝑗
𝑞 𝑐𝛽𝑘

𝑟  

⇒

{
 
 
 
 

 
 
 
 ∏ (1 − 𝑎𝛼𝑖

2𝑝𝑎𝛼𝑗
2𝑞𝑎𝛼𝑘

2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘
𝑛

𝑖,𝑗,𝑘=1

≥ ∏ (1 − 𝑎𝛽𝑖
2𝑝𝑎𝛽𝑗

2𝑞𝑎𝛽𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

∏ (1− 𝑏𝛼𝑖
2𝑝𝑏𝛼𝑗

2𝑞𝑏𝛼𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

≥ ∏ (1 − 𝑏𝛽𝑖
2𝑝𝑏𝛽𝑗

2𝑞𝑏𝛽𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

∏ (1− 𝑐𝛼𝑖
2𝑝𝑐𝛼𝑗

2𝑞𝑐𝛼𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

≥ ∏ (1 − 𝑐𝛽𝑖
2𝑝𝑐𝛽𝑗

2𝑞𝑐𝛽𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1
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⇒

{
 
 
 
 

 
 
 
 1 − ∏ (1 − 𝑎𝛼𝑖

2𝑝𝑎𝛼𝑗
2𝑞𝑎𝛼𝑘

2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘
𝑛

𝑖,𝑗,𝑘=1

≤ 1 − ∏ (1 − 𝑎𝛽𝑖
2𝑝𝑎𝛽𝑗

2𝑞𝑎𝛽𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

1 − ∏ (1 − 𝑏𝛼𝑖
2𝑝𝑏𝛼𝑗

2𝑞𝑏𝛼𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

≤ 1 − ∏ (1 − 𝑏𝛽𝑖
2𝑝𝑏𝛽𝑗

2𝑞𝑏𝛽𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

1 − ∏ (1 − 𝑐𝛼𝑖
2𝑝𝑐𝛼𝑗

2𝑞𝑐𝛼𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

≤ 1 − ∏ (1 − 𝑐𝛽𝑖
2𝑝𝑐𝛽𝑗

2𝑞𝑐𝛽𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑖,𝑗,𝑘=1

 

⇒

{
 
 
 
 

 
 
 
 
√(1 −∏ (1 − 𝑎𝛼𝑖

2𝑝
𝑎𝛼𝑗
2𝑞
𝑎𝛼𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
≤ √(1 −∏ (1 − 𝑎𝛽𝑖

2𝑝
𝑎𝛽𝑗
2𝑞
𝑎𝛽𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟

√(1 −∏ (1 − 𝑏𝛼𝑖
2𝑝
𝑏𝛼𝑗
2𝑞
𝑏𝛼𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
≤ √(1 −∏ (1 − 𝑏𝛽𝑖

2𝑝
𝑏𝛽𝑗
2𝑞
𝑏𝛽𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟

√(1 −∏ (1 − 𝑐𝛼𝑖
2𝑝
𝑐𝛼𝑗
2𝑞
𝑐𝛼𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
≤ √(1 −∏ (1 − 𝑐𝛽𝑖

2𝑝
𝑐𝛽𝑗
2𝑞
𝑐𝛽𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟

. 

At the same time, 

𝑑𝛽𝑖 ≤ 𝑑𝛼𝑖 , 𝑒𝛽𝑖 ≤ 𝑒𝛼𝑖 , 𝑓𝛽𝑖 ≤ 𝑓𝛼𝑖 

⇒

{
 

 
(1 − 𝑑𝛼𝑖

2 )𝑝(1 − 𝑑𝛼𝑗
2 )𝑞(1 − 𝑑𝛼𝑘

2 )𝑟 ≤ (1 − 𝑑𝛽𝑖
2 )𝑝(1 − 𝑑𝛽𝑗

2 )𝑞(1 − 𝑑𝛽𝑘
2 )𝑟

(1 − 𝑒𝛼𝑖
2 )𝑝(1 − 𝑒𝛼𝑗

2 )𝑞(1 − 𝑒𝛼𝑘
2 )𝑟 ≤ (1 − 𝑒𝛽𝑖

2 )𝑝(1 − 𝑒𝛽𝑗
2 )𝑞(1 − 𝑒𝛽𝑘

2 )𝑟

(1 − 𝑓𝛼𝑖
2)𝑝(1 − 𝑓𝛼𝑗

2 )𝑞(1 − 𝑓𝛼𝑘
2 )𝑟 ≤ (1 − 𝑓𝛽𝑖

2)𝑝(1 − 𝑓𝛽𝑗
2 )𝑞(1 − 𝑓𝛽𝑘

2 )𝑟
 

⇒

{
 
 
 
 
 
 

 
 
 
 
 
 √1 − (1 − ∏ (1 − (1 − 𝑑𝛼𝑖

2 )𝑝(1 − 𝑑𝛼𝑗
2 )𝑞(1 − 𝑑𝛼𝑘

2 )𝑟)𝑛
𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)

1

𝑝+𝑞+𝑟

≥ √1 − (1 − ∏ (1 − (1 − 𝑑𝛽𝑖
2 )𝑝(1 − 𝑑𝛽𝑗

2 )𝑞(1 − 𝑑𝛽𝑘
2 )𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟

√1 − (1 − ∏ (1 − (1 − 𝑒𝛼𝑖
2 )𝑝(1 − 𝑒𝛼𝑗

2 )𝑞(1 − 𝑒𝛼𝑘
2 )𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟

≥ √1 − (1 − ∏ (1 − (1 − 𝑒𝛽𝑖
2 )𝑝(1 − 𝑒𝛽𝑗

2 )𝑞(1 − 𝑒𝛽𝑘
2 )𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟

√1 − (1 −∏ (1 − (1 − 𝑓𝛼𝑖
2)𝑝(1 − 𝑓𝛼𝑗

2 )𝑞(1 − 𝑓𝛼𝑘
2 )𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟

≥ √1 − (1 − ∏ (1 − (1 − 𝑓𝛽𝑖
2)𝑝(1 − 𝑓𝛽𝑗

2 )𝑞(1 − 𝑓𝛽𝑘
2 )𝑟)𝑛

𝑖,𝑗,𝑘=1 )𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟

. 

Therefore, 𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) ≤ 𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛽̃1, 𝛽2, ⋯ , 𝛽𝑛) is proved. 

IV. Boundedness 

Let 𝛼̃𝑖 = ⟨(𝑎𝑖, 𝑏𝑖, 𝑐𝑖), (𝑑𝑖 , 𝑒𝑖, 𝑓𝑖)⟩ be a set of TPFNs, then there is Eq (17). 

𝛼̃− ≤ 𝐺𝑇𝑃𝐹𝑊𝐵𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) ≤ 𝛼̃+.     (17) 

In Eq (17), 
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𝛼̃− = ⟨(𝑚𝑖𝑛
𝑖
𝑎𝑖, 𝑚𝑖𝑛

𝑖
𝑏𝑖, 𝑚𝑖𝑛

𝑖
𝑐𝑖), (𝑚𝑖𝑛

𝑖
𝑑𝑖, 𝑚𝑖𝑛

𝑖
𝑒𝑖, 𝑚𝑖𝑛

𝑖
𝑓𝑖)⟩ 

𝛼̃+ = ⟨(𝑚𝑎𝑥
𝑖
𝑎𝑖,𝑚𝑎𝑥

𝑖
𝑏𝑖, 𝑚𝑎𝑥

𝑖
𝑐𝑖), (𝑚𝑎𝑥

𝑖
𝑑𝑖, 𝑚𝑎𝑥

𝑖
𝑒𝑖, 𝑚𝑎𝑥

𝑖
𝑓𝑖)⟩. 

3.2.3. The GTPFWBGM operator 

Definition 8. Let 𝛼̃𝑖 = ⟨(𝑎𝑖, 𝑏𝑖 , 𝑐𝑖), (𝑑𝑖, 𝑒𝑖, 𝑓𝑖)⟩ be a set of TPFNs and 𝑝, 𝑞, 𝑟 ≥ 0. If {𝑤1, 𝑤2, ⋯ ,𝑤𝑛} 
is the corresponding weight of 𝛼̃𝑖(𝑖 = 1,2,⋯ , 𝑛) , 𝑤𝑖 ∈ [0,1], ∑ 𝑤𝑖

𝑛
𝑖=1 = 1, 𝑖 = 1,2,⋯ , 𝑛 , then the 

GTPFWBGM operator is Eq (18). 

𝐺𝑇𝑃𝐹𝑊𝐵𝐺𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) =
1

𝑝+𝑞+𝑟
(⊗ (𝑝𝛼̃𝑖⊕𝑞𝛼̃𝑗⊕ 𝑟𝛼̃𝑘)

𝑤𝑖𝑤𝑗𝑤𝑘𝑛
𝑖,𝑗,𝑘=1 ).   (18) 

Theorem 2. Let 𝛼̃𝑖 = ⟨(𝑎𝑖, 𝑏𝑖 , 𝑐𝑖), (𝑑𝑖, 𝑒𝑖, 𝑓𝑖)⟩ be a set of TPFNs and 𝑝, 𝑞, 𝑟 ≥ 0. If {𝑤1, 𝑤2, ⋯ ,𝑤𝑛} is 

the corresponding weight of 𝛼̃𝑖(𝑖 = 1,2,⋯ , 𝑛), 𝑤𝑖 ∈ [0,1], ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, 𝑖 = 1,2,⋯ , 𝑛, then the result 

of aggregation by Definition 8 is still TPFN.  

𝐺𝑇𝑃𝐹𝑊𝐵𝐺𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛)

= ⟨(√1 − (1 − ∏ (1 − (1 − 𝑎𝑖
2)𝑝(1 − 𝑎𝑗

2)𝑞(1 − 𝑎𝑘
2)𝑟)

𝑛

𝑖,𝑗,𝑘=1

)𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟 , 

 √1 − (1 − ∏ (1 − (1 − 𝑏𝑖
2)𝑝(1 − 𝑏𝑗

2)𝑞(1 − 𝑏𝑘
2)𝑟)

𝑛

𝑖,𝑗,𝑘=1

)𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟 

√1 − (1 − ∏ (1 − (1 − 𝑐𝑖
2)𝑝(1 − 𝑐𝑗

2)𝑞(1 − 𝑐𝑘
2)𝑟)

𝑛

𝑖,𝑗,𝑘=1

)𝑤𝑖𝑤𝑗𝑤𝑘)
1

𝑝+𝑞+𝑟), 

(√(1 − ∏ (1 − 𝑑𝑖
2𝑝𝑑𝑗

2𝑞𝑑𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
, √(1 − ∏ (1 − 𝑒𝑖

2𝑝𝑒𝑗
2𝑞𝑒𝑘

2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛
𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
，

√(1 − ∏ (1 − 𝑓𝑖
2𝑝𝑓𝑗

2𝑞𝑓𝑘
2𝑟)𝑤𝑖𝑤𝑗𝑤𝑘𝑛

𝑖,𝑗,𝑘=1 )

1

𝑝+𝑞+𝑟
)⟩.     (19) 

3.2.4. GTPFWBGM operator properties 

I. Idempotency 

Let TPFN 𝛼̃𝑖 = ⟨(𝑎𝑖, 𝑏𝑖, 𝑐𝑖), (𝑑𝑖, 𝑒𝑖, 𝑓𝑖)⟩ = 𝛼̃ = ⟨(𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑓)⟩  for all (𝑖 = 1,2,⋯ , 𝑛)  satisfy 

Eq (20). 

𝐺𝑇𝑃𝐹𝑊𝐵𝐺𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) = 𝐺𝑇𝑃𝐹𝑊𝐵𝐺𝑀
𝑝,𝑞,𝑟(𝛼̃, 𝛼̃,⋯ , 𝛼̃) = 𝛼̃.   (20) 
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II. Permutation invariance 

Let (𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛)  be a set of TPFNs, and (𝛼̄̃1, 𝛼̄̃2, ⋯ , 𝛼̄̃𝑛)  be any permutation of 

(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛), then there is Eq (21). 

𝐺𝑇𝑃𝐹𝑊𝐵𝐺𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) = 𝐺𝑇𝑃𝐹𝑊𝐵𝐺𝑀
𝑝,𝑞,𝑟(𝛼̄̃1, 𝛼̄̃2, ⋯ , 𝛼̄̃𝑛).   (21) 

III. Monotonicity 

Let 𝐴 = {𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛}  and 𝐵 = {𝛽1, 𝛽2, ⋯ , 𝛽𝑛}  be two different TPFN sets, where 𝛼̃𝑖 =
⟨(𝑎𝛼𝑖 , 𝑏𝛼𝑖 , 𝑐𝛼𝑖), (𝑑𝛼𝑖 , 𝑒𝛼𝑖 , 𝑓𝛼𝑖)⟩  and 𝛽𝑖 = ⟨(𝑎𝛽𝑖 , 𝑏𝛽𝑖 , 𝑐𝛽𝑖), (𝑑𝛽𝑖 , 𝑒𝛽𝑖 , 𝑓𝛽𝑖)⟩ . If for any 𝑖 , there are 𝑎𝛽𝑖 ≥

𝑎𝛼𝑖 , 𝑏𝛽𝑖 ≥ 𝑏𝛼𝑖 , 𝑐𝛽𝑖 ≥ 𝑐𝛼𝑖，𝑑𝛽𝑖 ≤ 𝑑𝛼𝑖 , 𝑒𝛽𝑖 ≤ 𝑒𝛼𝑖 , 𝑓𝛽𝑖 ≤ 𝑓𝛼𝑖, that is, 𝛼̃𝑖 ≤ 𝛽𝑖, then there is Eq (22). 

𝐺𝑇𝑃𝐹𝑊𝐵𝐺𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) ≤ 𝐺𝑇𝑃𝐹𝑊𝐵𝐺𝑀𝑝,𝑞,𝑟(𝛽̃1, 𝛽2,⋯ , 𝛽𝑛).   (22) 

IV. Boundedness 

Let 𝛼̃𝑖 = ⟨(𝑎𝑖, 𝑏𝑖, 𝑐𝑖), (𝑑𝑖 , 𝑒𝑖, 𝑓𝑖)⟩ be a TPFN set, then there is Eq (23). 

𝛼̃− ≤ 𝐺𝑇𝑃𝐹𝑊𝐵𝐺𝑀𝑝,𝑞,𝑟(𝛼̃1, 𝛼̃2, ⋯ , 𝛼̃𝑛) ≤ 𝛼̃+.      (23) 

In Eq (23), 

𝛼̃− = ⟨(𝑚𝑖𝑛
𝑖
𝑎𝑖, 𝑚𝑖𝑛

𝑖
𝑏𝑖, 𝑚𝑖𝑛

𝑖
𝑐𝑖), (𝑚𝑖𝑛

𝑖
𝑑𝑖, 𝑚𝑖𝑛

𝑖
𝑒𝑖, 𝑚𝑖𝑛

𝑖
𝑓𝑖)⟩ 

𝛼̃+ = ⟨(𝑚𝑎𝑥
𝑖
𝑎𝑖,𝑚𝑎𝑥

𝑖
𝑏𝑖, 𝑚𝑎𝑥

𝑖
𝑐𝑖), (𝑚𝑎𝑥

𝑖
𝑑𝑖, 𝑚𝑎𝑥

𝑖
𝑒𝑖, 𝑚𝑎𝑥

𝑖
𝑓𝑖)⟩. 

3.2.5. Weight calculation 

We employ the differential weight methodology for weight computation. This method elucidates the 

significance of a metric via the variance amidst indicators. An indicator's pronounced divergence from 

its counterparts amplifies its efficacy in discerning the caliber of the scheme. 

The Mean Squared Displacement similarity formula is used to calculate the similarity between the 

indicators, and the difference between the indicators is calculated by taking its opposite number, as shown 

in Eq (24). 

𝑑(𝑦𝑖, 𝑦𝑗) =
∑ (𝑏ℎ𝑖−𝑏ℎ𝑗)

2
𝑐𝑎𝑟𝑑(𝑆𝑖𝑗)

ℎ=1

𝑐𝑎𝑟𝑑(𝑆𝑖𝑗)
.       (24) 

In Eq (24), 𝑑(𝑦𝑖 , 𝑦𝑗)  is the difference between indicators 𝑦𝑖  and 𝑦𝑗 . 𝑆𝑖𝑗  is the set of schemes with 

indicator values on both 𝑦𝑖 and 𝑦𝑗. 𝑏ℎ𝑖 is the standardized evaluation value of scheme 𝑠ℎ on indicator 𝑦𝑖. 

The difference matrix is constructed according to the difference between indicators, as shown in Eq (25). 

𝐷 = [

𝑑11 𝑑12
𝑑21 𝑑22

⋯ 𝑑1𝑛
⋯ 𝑑2𝑛

⋮ ⋮
𝑑𝑛1 𝑑𝑛2

⋮
⋯ 𝑑𝑛𝑛

].         (25) 

In Eq (25), 𝑑𝑖𝑗 is the difference between the ith indicator 𝑦𝑖 and the jth indicator 𝑦𝑗. 
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The average difference 𝑑𝑖̅ between the indicator 𝑦𝑖 and all the other indicators is calculated as 

shown in Eq (26). 

𝑑𝑖̅ =
∑ 𝑑𝑖𝑗
𝑛
𝑗=1

𝑛
.         (26) 

The difference weight 𝜔𝑖 of indicator 𝑦𝑖 is shown in Eq (27). 

𝜔𝑖 =
𝑑𝑖̅̅ ̅

∑ 𝑑𝑖̅̅ ̅
𝑛
𝑖=1

.         (27) 

3.3. Solution approach 

Aiming at the MADM problem in which the decision information is given by TPFNs, this paper 

constructs a new method based on the GTPFWBM operator and the GTPFWBGM operator. For a 

MADM problem, the decision-making scheme set is 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑡} , the attribute set is 𝐶 =
{𝐶1, 𝐶2, … , 𝐶𝑛} , the attribute weight is 𝑤 = (𝑤1, 𝑤2, ⋯ ,𝑤𝑛)  and 𝑤𝑗 ∈ [0,1](𝑗 = 1,2, … , 𝑛) . 𝐷 =

{𝑑1, 𝑑2, … , 𝑑𝑚} is the decision set. 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑚) is the decision maker’s weight vector 𝜔𝑘 ∈

[0,1], where ∑ 𝜔𝑘
𝑚
𝑘=1 = 1, ∑ 𝑤𝑗

𝑛
𝑗=1 = 1. The specific decision-making steps are as follows: 

Step 1: Assume that the decision maker 𝑑𝑘 gives the evaluation value of the scheme 𝐴𝑖 under the 

attribute 𝐶𝑗 as TPFN, and the decision matrix is obtained as 𝐷(𝑘) = (𝛼̃𝑖𝑗
(𝑘)
)𝑛×𝑡. 

Step 2: Standardize the decision matrix 𝐷(𝑘) using Eq (28) to obtain 𝐷(𝑘). 

𝛼𝑖𝑗 = (𝜇𝑖𝑗, 𝜈𝑖𝑗) = {
(𝜇𝑖𝑗, 𝜈𝑖𝑗) 𝐶𝑗 ∈ 𝐼1

(𝜈𝑖𝑗, 𝜇𝑖𝑗) 𝐶𝑗 ∈ 𝐼2
, 𝑖 = 1,2,⋯ , 𝑡; 𝑗 = 1,2,⋯ , 𝑛.  (28) 

Among them, 𝐼1 and 𝐼2 represent the benefit attribute and the cost attribute, respectively. 

Step 3: Calculate the weights of decision makers and attributes using Eqs (24)–(27). 

Step 4: Use the GTPFWBM operator and the GTPFWBGM operator to integrate information on 

the decision matrix given by the decision experts, and synthesize the weights to obtain the overall 

evaluation value of the scheme 𝐴𝑖(𝑖 = 1,2,⋯ , 𝑡). 

Step 5: Calculate the score function value and then rank the schemes according to the TPFN sorting 

method to obtain the best scheme. 

4. Results 

4.1. Computational results 

During the intricacies of venture capital investment, a thorough analysis of prospective entities’ 

multifaceted factors is imperative. A venture capital firm convened a triumvirate of industry decision-

making connoisseurs to appraise five prospective entities across four pivotal metrics: Competitive 

prowess (C1), expansion potential (C2), societal resonance (C3) and environmental imprint magnitude 

(C4). To encapsulate the inherent uncertainty of attribute values proffered by the experts more 

authentically, these values are delineated using TPFNs, as depicted in Tables 2–4. 
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Table 2. Decision matrix given by the expert d1. 

 C1 C2 C3 C4 

A1 
<(0.3,0.4,0.5), 

(0.4,0.5,0.5)> 

<(0.6,0.7,0.8), 

(0.1,0.1,0.2)> 

<(0.6,0.6,0.7), 

(0.2,0.2,0.3)> 

<(0.5,0.6,0.7), 

(0.1,0.2,0.2)> 

A2 
<(0.4,0.5,0.6), 

(0.2,0.3,0.4)> 

<(0.5,0.6,0.6), 

(0.1,0.2,0.3)> 

<(0.4,0.5,0.6), 

(0.2,0.3,0.4)> 

<(0.2,0.3,0.4), 

(0.4,0.5,0.6)> 

A3 
<(0.2,0.3,0.4), 

(0.4,0.5,0.6)> 

<(0.4,0.5 0.6), 

(0.3,0.3,0.4)> 

<(0.7,0.8,0.9), 

(0.1,0.1,0.1)> 

<(0.1,0.2,0.3), 

(0.5,0.6,0.7)> 

A4 
<(0.5,0.6,0.7), 

(0.1,0.2,0.2)> 

<(0.8,0.8,0.8), 

(0.2,0.2,0.2)> 

<(0.5,0.6,0.6), 

(0.2,0.3,0.4)> 

<(0.4,0.5,0.6), 

(0.3,0.4,0.4)> 

A5 
<(0.7,0.7,0.8), 

(0.1,0.1,0.2)> 

<(0.5,0.5,0.5), 

(0.2,0.3,0.4)> 

<(0.7,0.7,0.7), 

(0.1,0.1,0.1)> 

<(0.3,0.4,0.4), 

(0.4,0.5,0.6)> 

Table 3. Decision matrix given by the expert d2. 

 C1 C2 C3 C4 

A1 
<(0.2,0.3,0.4), 

(0.3,0.4,0.4)> 

<(0.5,0.6,0.7), 

(0.1,0.1,0.1)> 

<(0.5,0.5,0.6), 

(0.1,0.1,0.2)> 

<(0.4,0.5,0.6), 

(0.1,0.1,0.1)> 

A2 
<(0.3,0.4,0.5), 

(0.1,0.2,0.3)> 

<(0.4,0.5,0.5), 

(0.1,0.2,0.2)> 

<(0.3,0.4,0.5), 

(0.1,0.2,0.3)> 

<(0.1,0.2,0.3), 

(0.3,0.4,0.5)> 

A3 
<(0.1,0.2,0.3), 

(0.3,0.4,0.5)> 

<(0.3,0.4,0.5), 

(0.2,0.2,0.3)> 

<(0.6,0.7,0.8), 

(0.1,0.1,0.1)> 

<(0.1,0.1,0.2), 

(0.4,0.5,0.6)> 

A4 
<(0.4,0.5,0.6), 

(0.1,0.1,0.1)> 

<(0.7,0.7,0.7), 

(0.1,0.1,0.1)> 

<(0.4,0.5,0.5), 

(0.1,0.2,0.3)> 

<(0.3,0.4,0.5), 

(0.2,0.3,0.3)> 

A5 
<(0.6,0.6,0.7), 

(0.1,0.1,0.1)> 

<(0.4,0.4,0.4), 

(0.1,0.2,0.3)> 

<(0.6,0.6,0.6), 

(0.1,0.1,0.1)> 

<(0.2,0.3,0.3), 

(0.3,0.4,0.5)> 

Table 4. Decision matrix given by the expert d3. 

 C1 C2 C3 C4 

A1 
<(0.1,0.2,0.3), 

(0.6,0.7,0.7)> 

<(04,0.5,0.6), 

(0.3,0.3,0.4)> 

<(0.4,0.4,0.5), 

(0.4,0.4,0.5)> 

<(0.3,0.4,0.5), 

(0.3,0.4,0.4)> 

A2 
<(0.2,0.3,0.4), 

(0.4,0.5,0.6)> 

<(0.3,0.4,0.4), 

(0.3,0.4,0.5)> 

<(0.2,0.3,0.4), 

(0.4,0.5,0.6)> 

<(0.1,0.1,0.2), 

(0.6,0.7,0.8)> 

A3 
<(0.1,0.2,0.2), 

(0.6,0.7,0.8)> 

<(0.2,0.3,0.4), 

(0.5,0.5,0.6)> 

<(0.5,0.6,0.7), 

(0.3,0.3,0.3)> 

<(0.1,0.1,0.1), 

(0.7,0.8,0.9)> 

A4 
<(0.3,0.4,0.5), 

(0.3,0.4,0.4)> 

<(0.6,0.6,0.6), 

(0.4,0.4,0.4)> 

<(0.3,0.4,0.4), 

(0.4,0.5,0.6)> 

<(0.2,0.3,0.4), 

(0.5,0.6,0.6)> 

A5 
<(0.5,0.5,0.6), 

(0.3,0.3,0.4)> 

<(0.3,0.3,0.3), 

(0.4,0.5,0.6)> 

<(0.5,0.5,0.5), 

(0.3,0.3,0.3)> 

<(0.1,0.2,0.2), 

(0.6,0.7,0.8)> 

Step 1: Establish the triangular Pythagorean fuzzy matrix, as shown in Tables 2–4. 

Step 2: Because each decision attribute is a benefit attribute, there is no need to standardize the 

decision matrix 𝐷(𝑘). 
Step 3: Calculate the weight vector of the three decision makers, adopting the Pythagorean fuzzy 

weights 𝜔𝑘 = (0.312748098, 0.307266963, 0.37998494), and the weight vectors of the four indicators 

are 𝑤𝑗 = (0.24159086, 0.242205478, 0.262497977, 0.253705685). 

Step 4: This paper studies the case of 𝑝 = 𝑞 = 𝑟 = 1, and calculates the comprehensive evaluation 

value of the three experts for the five candidate companies by Eqs (10) and (19). The weighted evaluation 
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results of each candidate company are shown in Table 5. 

Step 5: According to the TPFN sorting method, the candidate companies are ranked as 

A2>A4>A5>A1>A3 and A2>A1>A3>A4>A5. Therefore, the optimal company is A2. 

Table 5. Comprehensive TPFNs and scoring functions. 

 TPFNs after aggregation of 

GTPFWBM operator 

Score 

function 

TPFNs after aggregation of 

GTPFWBGM operator 

Score 

function 

A1 
<(0.4981,0.5023,0.5964), 

(0.6103,0.6218,0.7526> 
0.6612 

<(0.3956,0.5213,0.5969), 

(0.6623,0.6659,0.7743> 
0.3641 

A2 
<(0.5416,0.5632,0.5961), 

(0.4518,0.47220.5103> 
0.8851 

<(0.3642,0.4518,0.4321), 

(0.3342,0.3611 0.6481> 
0.5542 

A3 
<(0.4491,0.4681,0.4964), 

(0.3651,0.3342,0.4803> 
0.6112 

<(0.6621,0.6596,0.6802), 

(0.2351,0.2832,0.3942> 
0.3241 

A4 
<(0.4862,0.5109,0.6237), 

(0.3412,0.3699,0.3781> 
0.8469 

<(0.6723,0.6869,0.7427), 

(0.4581,0.5152,0.5199> 
0.3012 

A5 
<(0.2632,0.3214,0.4201), 

(0.5427,0.5581,0.5742> 
0.7812 

<(0.1211,0.2453,0.5104), 

(0.6821,0.6942,0.752> 
0.1624 

4.2. Sensitivity analysis 

A group test experiment is conducted for the 𝑝, 𝑞, 𝑟 parameters of the GTPFWBM operator and the 

GTPFWBGM operator in order to prove the stability and effectiveness of the two operators. The design 

parameters 𝑝, 𝑞, 𝑟  are different numerical combinations to conduct numerical experiments, and the 

experimental results of group testing are shown in Table 6.  

Table 6. Sorting results of candidate companies corresponding to different parameters 𝑝, 𝑞, 𝑟. 

Parameter value GTPFWBM operator sorting 

results 

GTPFWBGM operator 

sorting results 

p=1,q=1,r=1 A2>A4>A3>A1>A5 A2>A3>A5>A1>A4 

p=2,q=2,r=2 A2>A3>A5>A4>A1 A2>A5>A4>A1>A3 

p=3,q=3,r=3 A2>A5>A4>A1>A3 A2>A4>A5>A1>A3 

p=4,q=4,r=4 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 

p=5,q=5,r=5 A2>A5>A1>A4>A3 A2>A4>A5>A1>A3 

p=6,q=6,r=6 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 

p=7,q=7,r=7 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 

p=8,q=8,r=8 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 

p=9,q=9,r=9 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 

p=10,q=10,r=10 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 

It can be seen from Table 6 that, on the one hand, although the change of the fixed parameters 𝑝, 𝑞, 𝑟 

affects the ranking of the candidate companies, the optimal candidate company is still A2. On the other 

hand, when the parameters 𝑝, 𝑞, 𝑟 become larger, although the score function value and exact function 

value of each candidate company change, their ranking remains unchanged. This proves that the 

GTPFWBM operator and the GTPFWBGM operator studied in this paper tend to be stable. 
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4.3. Discussion 

In this paper, the duo of operators introduced are juxtaposed against the TPFWA operator [17], 

GTPFWA operator [17], TPFWG operator [17], GTPFWG operator [17], Pythagorean fuzzy three-way 

decisions-based (PFTWDB) operator [36] and Pythagorean fuzzy Einstein weighted averaging (PFEWA) 

operator [37]. The hierarchical results for each potential entity are elucidated in Table 7. The quartet of 

operators - TPFWA, GTPFWA, TPFWG and GTPFWG - are elected as reference benchmarks given their 

kinship with the proposed operators, both sets being enhanced variants predicated on TPFNs. The 

inclusion of PFTWDB and PFEWA operators as referential entities stems from their affiliation with the 

Pythagorean Fuzzy Aggregation operator family. 

Table 7. Sorting results of each candidate company. 

Decision operator Ranking of candidate companies 

GTPFWBM operator in this paper A2>A4>A5>A1>A3 

GTPFWBGM operator in this paper A2>A1>A3>A4>A5 

GTPFWA operator in [17] (𝜆=2) A2>A3>A4>A5>A1 

TPFWG operator in [17] A2>A3>A4>A5>A1 

GTPFWG operator in [17] (𝜆=2) A2>A3>A4>A5>A1 

TPFWA operator in [17] A2>A3>A4>A5>A1 

PFTWDB operator in [36] A2>A4>A1>A5>A3 

PFEWA operator in [37] A2>A3>A4>A1>A5 

From the aforementioned comparative scrutiny, it becomes evident that, despite the variances in 

company rankings among the sextet of operators and the two delineated in this treatise, the quintessential 

candidate consistently emerges as A2. This solidifies the efficacy of the proposed adjudicative 

methodology. The nuances in ranking owe their existence to the divergent decision-making paradigms 

inherent to this study and those rooted in varied Pythagorean fuzzy aggregation operators. The 

adjudicative strategy expounded in the references [17,36,37] seeks to derive a holistic attribute value for 

each firm via distinctive Pythagorean fuzzy aggregation mechanisms, subsequently hierarchizing each 

entity based on a scoring function. This approach adeptly captures the inherent ambiguity of data amidst 

the realm of autonomous attributes. 

In real-world company selection scenarios, firms boasting pronounced competitive edges invariably 

manifest concomitant strengths in their growth potential. This inevitably leads to an overlap of evaluative 

information provided by experts. By meticulously eliminating such redundancies and fostering 

complementarity within attribute data, one can safeguard the veracity and cogency of decision outcomes. 

This manuscript adeptly amalgamates the GBM operator with TPFNs, ensuring that the introduced 

operators are not merely apt for decision-making in ambiguous contexts but also intricately consider 

inter-attribute correlations courtesy of the tri-parametric characteristic. In conclusion, when confronting 

interrelationships among evaluative attributes in tangible decision-making scenarios, only by holistically 

acknowledging these correlations can decisions achieve optimal soundness. Consequently, the 

GTPFWBM and GTPFWBGM operators, as expounded in this treatise, resonate with real-world 

dynamics and adeptly discern the merits and demerits of the proposition in question. 

5. Conclusions and outlook 
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The inherent uncertainty in decision-making attributes amplifies the complexity of multi-attribute 

decision-making (MADM) endeavors. Oftentimes, decision-makers, constrained by their experiential 

knowledge, introduce attributes replete with interdependencies. Consider, for instance, the decision 

attributes integral to the holistic appraisal of potential companies: competitive prowess (C1), growth 

potential (C2), societal influence (C3) and environmental impact magnitude (C4). Typically, an enterprise 

exhibiting superior competitive advantage (C1) tends to highlight commensurately elevated growth 

potential (C2). Hence, an information aggregation operator that accounts for inter-attribute relationships 

demonstrably aligns with practical decision-making exigencies. This compensates for the limitations of 

existing TPFN information aggregation operators, which are solely efficacious when attributes are 

mutually exclusive. The selection outcomes for prospective companies validate the accuracy of the novel 

decision-making algorithm introduced herein. This avant-garde algorithm adeptly mitigates the influence 

of attribute interdependencies on decision outcomes, rendering the conclusions more authentic and credible. 

Confronted with MADM challenges characterized by escalating intricacy due to ambiguous data, 

decision-makers, bounded by their cumulative wisdom, often induce notable interrelations amidst 

evaluative metrics. To illustrate, attributes delineating the overarching assessment of corporations 

encompass facets like competitive edge and growth trajectory. These attributes bear substantial overlaps. 

Many, in addressing such decision conundrums, endeavor to obviate commonalities amidst indicators, 

inadvertently sidelining their intrinsically synergistic decision-making essence. Ergo, an information 

aggregation methodology that duly acknowledges attribute correlations resonates profoundly with 

tangible decision-making paradigms. 

To address the shortcomings of prevailing TPFNs methodologies, which function optimally solely 

under mutually exclusive attributes, this manuscript introduces the GTPFWBM and GTPFWBGM 

operators in tandem with the GBM operator, delving into their inherent characteristics. A decision-

making paradigm, predicated upon the GTPFWBM and GTPFWBGM operators, is conceptualized and 

subsequently applied to the enterprise selection conundrum inherent in venture capital endeavors. 

Sensitivity analysis underscores that variances in parameters leave the optimal outcome unaltered, 

attesting to the robustness of the delineated operators. Comparative assessments with six alternative 

methodologies elucidate a consistent identification of optimal candidate corporations, reinforcing the 

efficacy of the operators posited herein. Relative to alternate strategies, the considerations integral to this 

paper’s comprehensive ranking appear the most cogent, underscoring the precision of the introduced 

operators. In summation, the articulated method adeptly obviates the deleterious implications of attribute 

interdependencies on decision outcomes, yielding results of heightened authenticity and credibility, thus 

proffering an innovative solution to the MADM quandary. This investigation bridges the extant scholarly 

lacuna pertaining to MADM approaches premised upon GBM operators and TPFNs, enhancing the 

theoretical corpus on PFNs aggregation methodologies. 

Future refinements of this research will pivot around two salient vectors: First, acknowledging that 

decision-makers, swayed by external contingencies, may exhibit hesitation in providing evaluative data, 

forthcoming endeavors will extrapolate generalized triangular Pythagorean fuzzy weighted Bonferroni 

operators into the domain of Pythagorean hesitant fuzzy sets, crafting a congruent MADM model for 

indeterminate attribute weights. Second, the decision framework anchored on the GTPFWBM and 

GTPFWBGM operators caters to scenarios with limited scheme samples. However, as societal evolution 

mandates optimal verdicts amidst a plethora of candidates, future research, cognizant of the nuance of 

decision-maker weight sensitivities, will amalgamate the BM operator to probe large-scale collective 

Pythagorean fuzzy decision-making challenges. 
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