The current study proposes the idea of the N-cubic Pythagorean fuzzy set with their basic arithmetic operations to aggregate these sets. We define the score and accuracy functions for the comparison purpose. Finally, we discuss Chang's extent analysis of AHP under the environment of the N-cubic Pythagorean fuzzy set using the idea of triangular N-cubic Pythagorean fuzzy set. As an application, we discuss the reason for the downfall of international airlines using the developed approach.
Citation: Hifza, Muhammad Gulistan, Zahid Khan, Mohammed M. Al-Shamiri, Muhammad Azhar, Asad Ali, Joseph David Madasi. A new fuzzy decision support system approach; analysis and applications[J]. AIMS Mathematics, 2022, 7(8): 14785-14825. doi: 10.3934/math.2022812
The current study proposes the idea of the N-cubic Pythagorean fuzzy set with their basic arithmetic operations to aggregate these sets. We define the score and accuracy functions for the comparison purpose. Finally, we discuss Chang's extent analysis of AHP under the environment of the N-cubic Pythagorean fuzzy set using the idea of triangular N-cubic Pythagorean fuzzy set. As an application, we discuss the reason for the downfall of international airlines using the developed approach.
[1] | L. A. Zadeh, Fuzzy sets, Adv. Fuzzy Syst., 1996,394-432. https://doi.org/10.1142/9789814261302_0021 |
[2] | K. T. Atanassov, Intuitionistic fuzzy sets, Int. J. Bioautom., 20 (2016), S1-S6. https://doi.org/10.1007/978-3-7908-1870-3_1 |
[3] | S. K. De, R. Biswas, A. R. Roy, Some operations on intuitionistic fuzzy sets, Fuzzy Set. Syst., 114 (2000), 477-484. https://doi.org/10.1016/s0165-0114(98)00191-2 doi: 10.1016/s0165-0114(98)00191-2 |
[4] | P. A. Ejegwa, Pythagorean fuzzy set and its application in career placements based on academic performance using max-min-max composition, Complex Intell. Syst., 5 (2019), 165-175. https://doi.org/10.1007/s40747-019-0091-6 doi: 10.1007/s40747-019-0091-6 |
[5] | P. Angelov, S. Sotirov, Imprecision and uncertainty in information representation and processing, Springer Cham, Switzerland, 332 (2016), 249-271. https://doi.org/10.1007/978-3-319-26302-1 |
[6] | H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process, Int. J. Intell. Syst., 33 (2018), 1234-1263. https://doi.org/10.1002/int.21979 doi: 10.1002/int.21979 |
[7] | D. Li, W. Zeng, Distance measure of Pythagorean fuzzy sets, Int. J. Intell. Syst., 33 (2018), 348-361. https://doi.org/10.1002/int.21934 doi: 10.1002/int.21934 |
[8] | M. Gehrke, C. Walker, E. Walker, Some basic theory of interval-valued fuzzy sets, IEEE Access, 3 (2001), 1332-1336. https://doi.org/10.1109/NAFIPS.2001.943741 doi: 10.1109/NAFIPS.2001.943741 |
[9] | C. Cornelis, G. Deschrijver, E. E. Kerre, Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: Construction, classification, application, Int. J. Approx. Reason., 35 (2004), 55-95. https://doi.org/10.1016/S0888-613X(03)00072-0 |
[10] | G. Deschrijver, Arithmetic operators in interval-valued fuzzy set theory, Inf. Sci., 177 (2007), 2906-2924. https://doi.org/10.1016/j.ins.2007.02.003 doi: 10.1016/j.ins.2007.02.003 |
[11] | G. Deschrijver, C. Cornelis, Representability in interval-valued fuzzy set theory, Int. J. Uncertain. Fuzz., 15 (2007), 345-361. https://doi.org/10.1142/S0218488507004716 doi: 10.1142/S0218488507004716 |
[12] | S. P. Mondal, Interval valued intuitionistic fuzzy number and its application in differential equation, J. Intell. Fuzzy Syst., 34 (2018), 677-687. https://doi.org/10.3233/JIFS-161898 doi: 10.3233/JIFS-161898 |
[13] | V. L. G. Nayagam, S. Muralikrishnan, G. Sivaraman, Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets, Expert Syst. Appl., 38 (2011), 1464-1467. https://doi.org/10.1016/j.eswa.2010.07.055 doi: 10.1016/j.eswa.2010.07.055 |
[14] | V. L. G. Nayagam, G. Sivaraman, Ranking of interval-valued intuitionistic fuzzy sets, Appl. Soft Comput. J., 11 (2011), 3368-3372. https://doi.org/10.1016/j.asoc.2011.01.008 doi: 10.1016/j.asoc.2011.01.008 |
[15] | G. D. Tre, A. Hallez, A. Bronselaer, Performance optimization of object comparison, Int. J. Intell. Syst., 29 (2014), 495-524. |
[16] | X. Peng, W. Li, Algorithms for interval-valued pythagorean fuzzy sets in emergency decision making based on multiparametric similarity measures and WDBA, IEEE Access, 7 (2019), 7419-7441. https://doi.org/10.1109/ACCESS.2018.2890097 doi: 10.1109/ACCESS.2018.2890097 |
[17] | K. Rahman, S. Abdullah, M. Shakeel, M. S. Ali Khan, M. Ullah, Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem, Cogent Math., 4 (2017), 1338638. https://doi.org/10.1080/23311835.2017.1338638 doi: 10.1080/23311835.2017.1338638 |
[18] | N. Li, H. Garg, L. Wang, Some novel interactive hybridweighted aggregation operators with pythagorean fuzzy numbers and their applications to decision making, Mathematics, 7 (2019), 1-31. https://doi.org/10.3390/MATH7121150 |
[19] | Y. B. Jun, C. S. Kim, J. G. Kang, Cubic q-ideals of BCI-algebras, Ann. Fuzzy Math. Inform., 1 (2011), 25-34. |
[20] | Y. B. Jun, C. S. Kim, K. O. Yang, Cubic sets, Ann. Fuzzy Math. Inform., 4 (2012), 83-98. |
[21] | K. J. Zhu, Y. Jing, D. Y. Chang, A discussion on fuzzy extent analysis method and applications on fuzzy AHP, Eur. J. Oper. Res., 116 (1999), 450-456. https://doi.org/10.1016/S0377-2217(98)00331-2 doi: 10.1016/S0377-2217(98)00331-2 |
[22] | S. Z. Abbas, M. S. Ali Khan, S. Abdullah, H. Sun, F. Hussain, Cubic Pythagorean fuzzy sets and their application to multi-attribute decision making with unknown weight information, J. Intell. Fuzzy Syst., 37 (2019), 1529-1544. https://doi.org/10.3233/JIFS-18382 doi: 10.3233/JIFS-18382 |
[23] | Y. B. Jun, F. Smarandache, C. S. Kim, Neutrosophic cubic sets, New Math. Nat. Comput., 13 (2017), 41-54. https://doi.org/10.1142/S1793005717500041 |
[24] | Y. B. Jun, A novel extension of cubic sets and its applications in BCK/BCI-algebras, Ann. Fuzzy Math. Info., 14 (2017), 475-486. https://doi.org/10.30948/afmi.2017.14.5.475 doi: 10.30948/afmi.2017.14.5.475 |
[25] | M. Gulistan, I. Beg, Neutrosophic-cubic analaytic hierarchy process with applications, Infinite Study, 2020. |
[26] | S. Rashid, M. Gulistan, Y. B. Jun, S. Khan, S. Kadry, N-Cubic sets and aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 5009-5023. https://doi.org/10.3233/JIFS-182595 doi: 10.3233/JIFS-182595 |
[27] | D. Y. Chang, Applications of the extent analysis method on fuzzy AHP, Eur. J. Oper. Res., 95 (1996), 649-655. https://doi.org/10.1016/0377-2217(95)00300-2 doi: 10.1016/0377-2217(95)00300-2 |
[28] | A. Biswas, S. Kumar, Generalization of extent analysis method for solving multicriteria decision making problems involving intuitionistic fuzzy numbers, Opsearch, 56 (2019), 1142-1166. https://doi.org/10.1007/s12597-019-00413-z doi: 10.1007/s12597-019-00413-z |
[29] | A. Fahmi, S. Abdullah, F. Amin, N. Siddiqui, A. Ali, Aggregation operators on triangular cubic fuzzy numbers and its applications to multi-criteria decision making problems, J. Intell. Fuzzy Syst., 33 (2017), 3323-3337. https://doi.org/10.3233/JIFS-162007 doi: 10.3233/JIFS-162007 |
[30] | M. H. Vahidnia, A. A. Alesheikh, A. Alimohammadi, A. Bassiri, Fuzzy analytical hierarchy process in GIS application, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 37 (2008), 593-596. |
[31] | Y. B. Jun, J Kavikumar, K S. So, N-ideals of subtraction algebras, Commun. Korean Math. Soc. Arch., 25 (2010), 173-184. https://doi.org/10.4134/CKMS.2010.25.2.173 doi: 10.4134/CKMS.2010.25.2.173 |
[32] | D. R. P. Williams, A. B. Saeid, Generalized N-ideals of subtraction algebras, J. Uncertain Syst., 9 (2020), 31-48. |
[33] | S. P Wan, Z. Jin, J. Y. Dong, Pythagorean fuzzy mathematical programming method for multi-attribute group decision making with pythagorean fuzzy truth degrees, Knowl. Inform. Syst., 55 (2018), 437-466. https://doi.org/10.1007/s10115-017-1085-6 doi: 10.1007/s10115-017-1085-6 |
[34] | S. P Wan, S. Q. Li, J. Y. Dong, A three-phase method for Pythagorean fuzzy multi-attribute group decision making and application to haze management, Comput. Ind. Eng., 123 (2018), 348-363. https://doi.org/10.1016/j.cie.2018.07.005 doi: 10.1016/j.cie.2018.07.005 |
[35] | S. P Wan, Z. Jin, J. Y. Dong, A new order relation for Pythagorean fuzzy numbers and application to multi-attribute group decision making, Knowl. Inform. Syst., 62 (2020), 751-785. https://doi.org/10.1007/s10115-019-01369-8 doi: 10.1007/s10115-019-01369-8 |
[36] | M. Gulistan, N. Yaqoob, T. Vougiouklis, H. A. Wahab, Extensions of cubic ideals in weak left almost semihypergroups, J. Intell. Fuzzy Syst., 34 (2019), 4161-4172. https://doi.org/10.3233/JIFS-171744 doi: 10.3233/JIFS-171744 |
[37] | N. Yaqoob, M. Gulistan, V. Leoreanu-Fotea, K. Hila, Cubic hyperideals in LA-semihypergroups, J. Intell. Fuzzy Syst., 34 (2018), 2707-2721. https://doi.org/10.3233/JIFS-17850 doi: 10.3233/JIFS-17850 |
[38] | M. Khan, Y. B. Jun, M. Gulistan, N. Yaqoob, The generalized version of Jun's cubic sets in semigroups, J. Intell. Fuzzy Syst., 28 (2015), 947-960. https://doi.org/10.3233/IFS-141377 doi: 10.3233/IFS-141377 |
[39] | M. Gulistan, M. Khan, N. Yaqoob, M. Shahzad, U. Ashraf, Direct product of generalized cubic sets in Hv-LA-semigroups, Sci. Int., 28 (2016), 767-779. |
[40] | M. Gulistan, M. Khan, N. Yaqoob, M. Shahzad, Structural properties of cubic sets in regular LA-semihypergroups, Fuzzy Inform. Eng., 9 (2017), 93-116. https://doi.org/10.1016/j.fiae.2017.03.005 doi: 10.1016/j.fiae.2017.03.005 |
[41] | M. Khan, M. Gulistan, N. Yaqoob, F. Hussain, General cubic hyperideals of LA-semihypergroups, Afrika Mat., 27 (2016), 731-751. https://doi.org/10.1007/s13370-015-0367-y doi: 10.1007/s13370-015-0367-y |
[42] | M. Akram, N. Yaqoob, M. Gulistan, Cubic KU-subalgebras, Int. J. Pure Appl. Math., 89 (2013), 659-665. https://doi.org/10.12732/ijpam.v89i5.2 |
[43] | X. L. Ma, J. Zhan, M. Khan, M. Gulistan, N. Yaqoob, Generalized cubic relations in Hv -LA-semigroups, J. Discret. Math. Sci. C., 21 (2018), 607-630. https://doi.org/10.1080/09720529.2016.1191174 doi: 10.1080/09720529.2016.1191174 |
[44] | S. Rashid, N. Yaqoob, M. Akram, M. Gulistan, Cubic graphs with application, Int. J. Anal. Appl., 16 (2018), 733-750. |
[45] | M Gulistan, N Hassan, A generalized approach towards soft expert sets via neutrosophic cubic sets with applications in games, Symmetry, 11 (2019), 289. https://doi.org/10.3390/sym11020289 |
[46] | M. A. Al Shumrani, M. Gulistan, S. Khan, The neutro-stability analysis of neutrosophic cubic sets with application in decision making problems, J. Math., 2020 (2020). https://doi.org/10.1155/2020/8835019 doi: 10.1155/2020/8835019 |
[47] | J. Zhan, M. Khan, M. Gulistan, A. Ali, Applications of neutrosophic cubic sets in multi-criteria decision-making, Int. J. Uncertain. Quan., 7 (2017), 377-394. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020446 doi: 10.1615/Int.J.UncertaintyQuantification.2017020446 |
[48] | M. Gulistan, A. Elmoasry, N. Yaqoob, N-Version of the neutrosophic cubic set: Application in the negative influences of internet, J. Supercomput., 77 (2021), 11410-11431. https://doi.org/10.1007/s11227-020-03615-1 doi: 10.1007/s11227-020-03615-1 |
[49] | M. Gulistan, S. Rashid, Y. B. Jun, S. Kadery, S. Khan, N-Cubic sets and aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 5009-5023. https://doi.org/10.3233/JIFS-182595 doi: 10.3233/JIFS-182595 |
[50] | W. Q. Duan, M. Gulistan, F. H. Abbasi, A. Kjurshid, M. M. A. Shamiri, q-Rung double hierarchy linguistic term set fuzzy AHP: Applications in the security systems threats features of social media platforms, Int. J. Intell Syst., 2021, 1-34. https://doi.org/10.1002/int.22755 doi: 10.1002/int.22755 |