This manuscript is concerned for introducing novel concepts of ξ-chainable neutrosophic metric space and generalized neutrosophic cone metric spaces. We use four self-mappings to establish common fixed point theorem in the sense of ξ-chainable neutrosophic metric space and three self-mappings to establish common fixed point results in the sense of generalized neutrosophic metric spaces. Certain properties of ξ-chainable neutrosophic metric space and generalized neutrosophic metric spaces are defined and their examples are presented. An application to fuzzy Fredholm integral equation of second kind is developed to verify the validity of proposed results. These results boost the approaches of existing literature of fuzzy metric spaces and fuzzy fixed theory.
Citation: Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin. Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application[J]. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811
This manuscript is concerned for introducing novel concepts of ξ-chainable neutrosophic metric space and generalized neutrosophic cone metric spaces. We use four self-mappings to establish common fixed point theorem in the sense of ξ-chainable neutrosophic metric space and three self-mappings to establish common fixed point results in the sense of generalized neutrosophic metric spaces. Certain properties of ξ-chainable neutrosophic metric space and generalized neutrosophic metric spaces are defined and their examples are presented. An application to fuzzy Fredholm integral equation of second kind is developed to verify the validity of proposed results. These results boost the approaches of existing literature of fuzzy metric spaces and fuzzy fixed theory.
[1] | L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[2] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[3] | I. Kramosil, J. Michlek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[4] | M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4 |
[5] | J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Soliton. Fract., 22 (2004), 1039–1046. https://doi.org/10.1016/j.chaos.2004.02.051 doi: 10.1016/j.chaos.2004.02.051 |
[6] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3 |
[7] | N. Simsek, M. Kirişci, fixed point theorems in Neutrosophic metric spaces, Sigma J. Eng. Nat. Sci., 10 (2019), 221–230. |
[8] | F. Smarandache, Neutrosophic set, a generalization of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math., 24 (2005), 287–297. |
[9] | S. Sowndrarajan, M. Jeyarama, F. Smarandache, Fixed point results for contraction theorems in neutrosophic metric spaces, Neutrosophic Sets Sy., 36 (2020), 1–11. |
[10] | M. Kirişci, N. Simsek, Neutrosophic metric spaces, Math. Sci., 14 (2020), 241–248. https://doi.org/10.1007/s40096-020-00335-8 doi: 10.1007/s40096-020-00335-8 |
[11] | T. Oner, M. B. Kandemir, B. Tanay, Fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 610–616. https://doi.org/10.22436/jnsa.008.05.13 doi: 10.22436/jnsa.008.05.13 |
[12] | M. Ali, R. Kanna, Intuitionistic fuzzy cone metric spaces and fixed point theorems, Int. J. Math. Appl., 5 (2017), 25–36. |
[13] | M. Jeyaraman, M. Suganthi, W. Shatanawi, Common fixed point theorems in intuitionistic generalized fuzzy cone metric spaces, Mathematics, 8 (2020), 1–13. https://doi.org/10.3390/math8081212 doi: 10.3390/math8081212 |
[14] | S. S. Ali, J. Jain, P. L. Sanodia, S. Jain, A fixed point theorem of ϵ-chainable intuitionistic fuzzy metric space, Int. J. Eng. Bus. Enterp. Appl., 2015, 1–7. |
[15] | F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, American Research Press, Rehoboth, 1998. |
[16] | B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 314–334. https://doi.org/10.2140/pjm.1960.10.313 doi: 10.2140/pjm.1960.10.313 |
[17] | S. Sharma, B. Desphande, On Compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J. Math., 33 (2002), 245–252. https://doi.org/10.5556/j.tkjm.33.2002.245-252 doi: 10.5556/j.tkjm.33.2002.245-252 |
[18] | M. Riaz, M. R. Hashmi, Fixed points of fuzzy neutrosophic soft mapping with decision-making, Fixed Point Theory A., 7(2018), 1–10. https://doi.org/10.1186/s13663-018-0632-5 doi: 10.1186/s13663-018-0632-5 |
[19] | M. Riaz, M. R. Hashmi, A. Farooq, Fuzzy parameterized fuzzy soft metric spaces, J. Math. Anal., 9 (2018), 25–36. |
[20] | W. Congxin, M. Ming, On embedding problem of fuzzy number spaces, Fuzzy Set. Syst., 44 (1991), 33–38. https://doi.org/10.1016/0165-0114(91)90030-T doi: 10.1016/0165-0114(91)90030-T |
[21] | W. F. Al-Omeri, S. Jafari, F. Smarandache, Neutrosophic fixed point theorems and cone metric spaces, Neutrosophic Sets Syst., 31 (2020), 1–17. https://doi.org/10.1155/2020/9216805 doi: 10.1155/2020/9216805 |
[22] | J. S. Sowndrara, M. Jeyaraman, F. Smarandache, Fixed point results for contraction theorems in neutrosophic metric spaces, Neutrosophic Sets Syst., 36 (2020), 1–12. |
[23] | Q. Mahmood, A. Shoaib, T. Rasham, M. Arshad, Fixed point results for the family of multivalued F-contractive mappings on closed ball in complete dislocated b-metric spaces, Mathematics, 7 (2019), 1–11. https://doi.org/10.3390/math7010056 doi: 10.3390/math7010056 |
[24] | T. Rasham, A. Shoaib, N. Hussain, B. A. S. Alamri, M. Arshad, Multivalued fixed point results in dislocated b-metric spaces with application to the system of nonlinear integral equations, Symmetry, 11(2019), 1–16. https://doi.org/10.3390/sym11010040 doi: 10.3390/sym11010040 |
[25] | T. Rasham, Q. Mahmood, A. Shahzad, A. Shoaib, A. Azam, Some fixed point results for two families of fuzzy A-dominated contractive mappings on closed ball, J. Intell. Fuzzy Syst., 36 (2019), 3413–3422. https://doi.org/10.3233/JIFS-181153 doi: 10.3233/JIFS-181153 |
[26] | T. Rasham, A. Shoaib, N. Hussain, M. Arshad, S. U. Khan, Common fixed point results for new Ciric-type rational multivalued F-contraction with an application, Fixed Point Theory A., 20 (2018). https://doi.org/10.1007/s11784-018-0525-6 |
[27] | T. Rasham, G. Marino, A. Shahzad, C. Park, A. Shoaib, Fixed point results for a pair of fuzzy mappings and related applications in b-metric like spaces, Adv. Differ. Equ., 1 (2021), 1–18. https://doi.org/10.1186/s13662-021-03418-5 doi: 10.1186/s13662-021-03418-5 |
[28] | T. Rasham, A. Shoaib, C. Park, R. P. Agarwal, H. Aydi, On a pair of fuzzy mappings in modular-like metric spaces with applications, Adv. Differ. Equ., 1 (2021), 1–17. https://doi.org/10.1186/s13662-021-03398-6 doi: 10.1186/s13662-021-03398-6 |
[29] | M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550 |
[30] | M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, Comput. Model. Eng. Sci., 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699 |
[31] | M. Sitara, M. Akram and M. Riaz, Decision-making analysis based on q-rung picture fuzzy graph structures, J. Appl. Math. Comput., 67 (2021), 1–38. https://doi.org/10.1007/s12190-020-01471-z doi: 10.1007/s12190-020-01471-z |
[32] | M. Akram, A. Khan, J. C. R. Alcantud, G. Santos-Garcia, A hybrid decision-making framework under complex spherical fuzzy prioritized weighted aggregation operators, Expert Syst., 2021, 1–24. https://doi.org/10.1111/exsy.12712 |
[33] | S. Ashraf, S. Abdullah, Spherical aggregation operators and their application in multi-attribute group decision-making, Int. J. Intell. Syst., 34 (2019), 493–523. https://doi.org/10.1111/exsy.12712 doi: 10.1111/exsy.12712 |
[34] | P. Liu, Z. Ali, T. Mahmood, Some cosine similarity measures and distance measures between complex q-rung orthopair fuzzy sets and their applications, Int. J. Comput. Intell. Syst., 14 (2021), 1653–1671. https://doi.org/10.2991/ijcis.d.210528.002 doi: 10.2991/ijcis.d.210528.002 |
[35] | M. Riaz, H. Garg, H. M. A. Farid, R. Chinram, Multi-criteria decision making based on bipolar picture fuzzy operators and new distance measures, Comput. Model. Eng. Sci., 127 (2021), 771–800. https://doi.org/10.32604/cmes.2021.014174 doi: 10.32604/cmes.2021.014174 |
[36] | W. F. Al-Omeri, S. Jafari, F. Smarandache, (Φ, Ψ)-Weak contractions in neutrosophic cone metric spaces via fixed point theorems, Math. Probl. Eng., 2020 (2020), 1–8. https://doi.org/10.1155/2020/9216805 |
[37] | U. Ishtiaq, K. Javed, F. Uddin, M. Sen, K. Ahmed, M. U. Ali, Fixed point results in orthogonal neutrosophic metric spaces, Complexity, 2021 (2021), 1–18. https://doi.org/10.1155/2021/2809657 doi: 10.1155/2021/2809657 |
[38] | P. Debnath, N. Konwar, S. Radenovic, Metric fixed point theory: Applications in science, Springer Nature Singapore, Singapore, 2021. https://doi.org/10.1007/978-981-16-4896-0 |
[39] | Y. J. Cho, T. M. Rassias, R. Saadati, Fuzzy operator theory in mathematical analysis, Springer Cham, 2018. |
[40] | D. Rakić, A. Mukheimer, T. Dosenovic, Z. D. Mitrovic, S. Radenovic, Some new fixed point results in b-fuzzy metric spaces, J. Inequal. Appl., 99 (2020), 1–14. https://doi.org/10.1186/s13660-020-02371-3 doi: 10.1186/s13660-020-02371-3 |
[41] | D. Rakić, T. Došenović, Z. D. Mitrović, M. Sen, S. Radenović, Some fixed point theorems of Ćirić type in fuzzy metric spaces, Mathematics, 8 (2020), 1–15. https://doi.org/10.3390/math8020297 |
[42] | S. Aleksi, Z. Kadelburg, Z. D. Mitrovic, S. Radenovic, A new survey: Cone metric spaces, J. Int. Math.Virtual Inst., 9 (2019), 93–121. |