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1. Introduction

In the field of fixed point theory, the notion of metric spaces (MS) and the Banach contraction
principle play crucial roles. The axiomatic clarity of MS attracts many researchers. There have been
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a lot of generalizations to the MS so far. This demonstrates the allurement and scope of the definition
of the MS. The notion of cone metric space (CMS) was proposed by Haung and Zhang [1] and to
investigate some fixed point results for contractive mappings. The classical techniques cannot deal
with uncertain analysis problems. To deal with such problems, Zadeh [2] introduced the notion of
fuzzy sets (FSs). This concept succeeded in shifting a lot of mathematical structures from crisp set
theory to fuzzy set theory. In this connectedness, Kramosil and Michalek [3] introduced the notion of
fuzzy metric spaces (FMS), in which they used the idea of continuous triangular norms (CTN) and
Garbiec [4] gave the fuzzy interpretation of Banach contraction principle in FMS. It deals with
membership function only in the case of FMS. To generalize the idea of FMS, the notion of
intuitionistic fuzzy metric spaces (IFMS) by using the idea of CTN and continuous triangular conorm
(CTCN) was initiated by Park [5] that deals with membership and non-membership functions. The
concept of intuitionistic fuzzy sets is initiated by Atanassov [6]. Recently, Kirisci [7] generalized the
concept of IFMS by using the idea of neutrosophic sets (NSs), which was given by Smarandache [8]
and coined the notion of neutrosophic metric space (NMS), in which we deal with membership
(truthiness), indeterminacy (naturalness) and non-membership (falsity) functions. Riaz and Hashmi [18]
gave fixed points of fuzzy neutrosophic soft mapping with decision-making.

Combining the idea of CMS and FSs, Oner [11] coined the notion of fuzzy cone metric space
and proved fuzzy cone Banach contraction principle. Ali [12] proposed the notion of intuitionistic
fuzzy cone metric space. Recently, Jeyaraman [13] tossed the notion of intuitionistic generalized
fuzzy cone metric space (IGFCMS) and proved some common fixed point results and Ali [14]
introduced the idea of e-chainable intuitionistic fuzzy metric spaces. Congxin [20] investigates the
fuzzy Fredholm integral equation of second kind. For further interesting notions of fuzzy fixed point
theory, see [9,10,15-17,19,23-28]. Al-Omeri et al. [21] introduced neutrosophic fixed point theorems
and cone metric spaces. Sowndrara et al. [22] proposed fixed point results for contraction theorems
in neutrosophic metric spaces.

Rasham et al. [23-28] introduced several interesting results for fixed point theory using several
mappings. Riaz et al. [29,30] introduced the novel concepts of linear Diophantine fuzzy sets and
spherical linear Diophantine fuzzy sets. Sitara et al. [31] established decision-making analysis based
on g-rung picture fuzzy graph structures. Akram et al. [32] proposed new decision-making approach
under complex spherical fuzzy prioritized weighted aggregation operators. Ashraf and Abdullah [33]
introduced spherical aggregation operators and their application in multi-attribute group
decision-making. Liu et al. [34] introduced cosine similarity measures and distance measures
between complex g-rung orthopair fuzzy sets. Riaz et al. [34] introduced multi-criteria decision
making based on bipolar picture fuzzy operators and new distance measures. Al-Omeri et al. [35]
proved several interesting fixed point results in generalization of neutrosophic metric spaces. Ishtiaq
et al. [36] introduced the notion of orthogonal neutrosophic metric spaces and established some fixed
point results. Also, we refer [38-42] for more detail.

Main objectives of the manuscript are as follows:

1) To introduce novel concepts of &-chainable neutrosophic metric space and generalized
neutrosophic cone metric spaces.

2) To prove fixed point theorem for four self-mappings in the sense of ¢-chainable neutrosophic
metric space.

3) To prove fixed point results for three self-mappings in the sense of generalized neutrosophic
metric spaces.
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4) Application to fuzzy Fredholm integral equation of second kind is given to verify the validity
of proposed fixed point results.
5) To enhance existing literature of fuzzy metric spaces and fuzzy fixed theory.

This manuscript is organized as follows. In Section 2, some rudimentary concepts of CTN,
CTCN, cone, cone metric space, NSs, IFMS, and IFGCMS are presented. In Section 3, the notion of
GNCMS s introduced and some fixed point theorems are established using three self-mappings in
the sense of GNCMS and non-trivial examples also are presented. In Section 4, the notion of ¢-
chainable NMS is introduced and fixed point theorems are established by using four self-mappings.
Lastly, the conclusion is given in Section 5.

2. Preliminaries

In this section, we review some elementary concepts including, CTN, CTCN, cone, cone metric
space, NSs, IFMS, and IFGCMS. These concepts are essential for the analysis in the whole manuscript.
Definition 2.1. [5] A binary operation : [0, 1] x [0, 1] — [0, 1] is called a continuous triangular
norm (CTN) if:

A. mxp=pxmforall,m,pue€[01];

B. * is continuous;

C. m+1=m,forall,m € [0,1];

D. (m*w) *xp=mx(u=*p)forall,mpp€[0,1];

E. If t<p and u<a, with m,u,p,0 €[0,1], then T*p < p * 0.
Example 2.2. [5,16] Some fundamental examples of continuous triangular norms (CTNSs) are:
T* W=7 W+ W=min{m, p} and w* u = max{wr + p—1,0}.
Definition 2.3. [5] A binary operation © : [0, 1] x [0, 1] — [0, 1] is called a continuous triangular
conorm (CTCN) if it meets the below assertions:

a. mopu=upom, forall, m,ne01];

b. o iscontinuous;

c. to0 =0, forall,w € [0,1];

d. (mopwop=mo(uop),forall,mpp€[0,1];

e. If t<p and p<o, with 7,u,p,0 €[0,1], then topu<poo.
Example 2.4. [5] 7 © u = max{m, u} and 7 © p = min{mr + y, 1} are examples of CTCNSs.
Definition 2.5. [1] Let a real Banach space X and a subset P of X, P is named to be cone if and
only if

cl)P +# @,P + {0},and P is closed,

c2)a,b €R,a,b=>0,9,{ € P,ad + b{ €P,

c3)9 € Pand — 9 € P implies 9 = 0.
Definition 2.6. [1] Leta set X + @ and assume that a mapping &: X x X - Y (Y is a Banach space)
fulfills:

1) §(9,{) > 0forall¥,{ € Xand §(9,¢) = 0ifand only if9 = {;

2) 6(9,0) =6((,9)foralld,{ €X;

3) 5, <MW, A+ foralld, A€ X.
Then & is called a cone metric on X,and (X, ) is called a cone metric space.
Definition 2.7. [15] Letaset X # @ and 9 € X. Aneutrosophic set (NS) G in X is categorized by
three components:
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(i) truth-membership function M;(9),
(ii) indeterminacy-membership function N (1),
(iii) falsity-membership function 0;(9).
Functions M;(9), N;(9) and Og;(9) are real standard or non-standard subsets of ]0~, 17|,
that is, M;(9): X -»]07,1%[, N;(¥9): X -»]07,1*[ and 0;(9): X —=]0~, 17| such that
0~ < supM;(I9) + sup N;(9) + sup 0;(9) < 3*.
Definition 2.8. [5] Take X += @. Let * be a CTN, o be a CTCN,and F,V be FSs on X X X X
(0, +0). If (X,F,V,x,0) verifies the following for all 9, € X and s,t > 0:
. F®,t)+V(®,{t) <1;
. F®,{t)>0;
.  F®,{t)=1if and only if 9 = (;
IV. F@®,{t)=F(9,t);
V. F@,ALt+s)=F®,{t)*F({,A5s);
VI. F®,{, -):(0,+0) — [0,1] is continuous and lim;_,,,F(9,{,t) =1 forallt > 0;
VII. V(®,t)>0;
VIII. V(@®,,t)=0 if and only if 9 = (;
IX. V@®,{t)=V(9,t);
X, V@,At+s)<V®,{t)oN((,A,5s);
Xl V(®,{, *):(0,+0) — [0,1] iscontinuous and lim;,,,V(9,{,t) =0 forallt > 0;
then (X, F,V,* o) isan intuitionistic fuzzy metric space (IFMS).
Definition 2.9. [13] An intuitionistic generalized fuzzy cone metric space (IGFCMS) is a 6-tuple
(X,D,U,*,0,C) where X is a arbitrary set, = is a CTN ois a CTCN, C is a closed cone and
Dand U are NSsin X3 x int (C) fulfilling the following circumstances:
forall 9,{,4,u € Xand ¢, ¢’ € int(C),
F1. D@, A ¢) + UM, A,¢) <1,
F2. D, {, A, ¢) >0,
F3. D(Y,{,A,c) =1lifandonlyifd = = 4,
F4. D(9,{,A,¢) = D(p{Y, {, A}, c) where p is a permutation function,
F5. D@, A c+¢c) =D, ,uc)*DW,AAc),
F6. D(Y,,A,):int(C) — [0, 1]is continuous,
F7. UM, {, Ac) <1,
F8. UMW, {,A,c) =1ifandonlyifd = = 4,
FO. UMW, {, A, ¢c) = U(p{Y,{, 1}, c) where p is a permutation function,
F10. UW, L c+c)<U®,{uc) oUW, A1),
F11. U(9,, A,"):int(C) — [0, 1]is continuous.
The triplet (D, U, 0) is called an IGFCMS on X.
Definition 2.10. [7] Let X # @ and = is a CTN and o be a CTCN. L,W and Q are NSs on
X XXX (0,+) is named neutrosophic metric on X, if for all 9,(,A € X, the below
circumstances fulfil:
i LM, +W®, t)+Q@,{ t) <3forallt € RT;
ii. LM, t)>0forallt> 0;
iii. L(9,¢,t) =1forallt > 0,ifand onlyifd = {;
iv. L(9,¢,t) = L({,9,t) forallt > 0;
v. L, A t+s)=L1,¢t)=*L((As)forallt,s> 0;
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vi. L(9,{, *):(0,4o) — [0,1] is continuous and lim;_,L(9,{,t) =1 forallt > 0;

vil. W(9,{,t) < 1forallt > 0;

viii. W(9,,t) = 0forallt > 0,if and only if 9 = ;

ix. W@©,¢,t) =W(,9,t) forallt > 0;

Xx. WO, ALt+s)<W@®,{,t)o W((,A,s)forallt,s > 0;

xi. W(@,¢, *):(0,400) — [0,1] is continuous and lim,_, W ,{,t) =0 forallt > 0;

xii. Q(9, ¢, t) < 1forallt > 0;

xiii. Q(9,¢,t) = 0forallt > 0,ifand only if 9 = (;

xiv.Q(¥9,{,t) = Q({,9,t) forallt > 0;

xv. Q, L, t+s) <Q,{,t)o Q({,A,s) forallt,s > 0;

xvi.Q(¥, ¢, *):(0,4+00) — [0,1] is continuous and lim;_;,Q(9,{,t) = 0 forallt > 0.
Then (X,L,W,Q,0) is called a neutrosophic metric space (NMS).

3. Generalized neutrosophic cone metric space (GNCMS)

In this section, the notion of GNCMS is given, some fixed point theorems are proved in the
sense of GNCMS and non-trivial examples are also imparted.

Definition 3.1. A GNCMS is a 7-tuple (X,M,N,0,%,0,C) where X is an arbitrary non-empty set,
"x" isa CTN, "o" is a CTCN, C is a closed cone and M,N and O are NSs in X3 x int (C)
fulfilling the following circumstances:
Forall 9,{,4,u € Xand ¢, c’ € int(C),

(NC1) M®,{,Ac)+N®,{Ac)+0,{,Ac) <3,

(NC2) M@, ,A,¢c) >0,

(NC3) M(@9,(,A,c) =1ifandonlyifd = = 4,

(NC4) M@, A,c) = M(p{Y,{, 1}, c) where p is a permutation function,

(NC5) M@®,0,Ac+c')=M®,{,u,c)*M®,A1,c"),

(NC6) M(9,,A,):int(C) - [0,1]is continuous,

(NC7) N@®,{Ac) <1,

(NC8) N@,{,A,¢c) =1ifandonlyifd = = 4,

(NC9) N@,{, A,c) = Np{9,{, A}, c) where p is a permutation function,

(NC10) N(W,{,A,c+c")<N®,{,u,c)oN®@,AA,c"),

(NC11) N(9,q,A,):int(C) — [0, 1]is continuous,

(NC12) 0(9,{,A,¢) <1,

(NC13) 0(9,¢,A,c) =1ifandonlyifd =7 = 4,

(NC14) 09, ,4,¢) = 0(p{9,, A}, c) where p is a permutation function,

(NC15) 09,0, A,c+c')<0(,,u,c)o 0,4 4,c"),

(NC16) 0(9,, A,):int(C) — [0, 1]is continuous.

The triplet (M, N, 0) is known as GNCM on X. The functions M(9,,4,¢), N(¥,{, 4,c), and
0(Y,q, A, ¢c) indicate respectively, the degree of nearness, the degree of non-nearness and neutral
functions between 9, and A with respect to c.

Example 3.2. Consider the metric space X = [0,+) with metricd. Let C = R*, define = by
m*p=m-yu and o by mop = max{m,p}. Define M,N,0 : X3 x (0, +o0) - [0,1] by
Cc

M@,¢,40) = — (d(®,0) +d((, ) + d(A,9))
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(d®,0) +d(, 1) +d(1,9))
c+(d®, ) +d D) +d@R,9)

0,000 = GO+ d((c,z) +d(,9))

forall 9,{,A € X and c € int(C). Then, itisclearthat (X,M,N,0,x,0,C)isa GNCMS.
Definition 3.3. Let (X,M,N, 0,%,0,C) be a GNCM. Then the radius r € (0,1) and c € int(C)
the open ball B(9,r,c) with centre 9 and is defined by
B@,r,c) ={(,AeX:M®,{,A,c)>1—r,N®,{,A,c) <r,0,{,Ac) <r}
Definition 3.4. Let (X,M,N, 0,%,0,C) be a GNCM. Then the radius r € (0,1) and c € int(C)
the closed ball B(9,7,c) with centre 9 and is defined by
BW,r,c)={(AeX:M®,{,A,c)=21—1r,NW,{,A,c) <1,00,{,A,¢c) <1}
Definition 3.5. Let (X, M, N,0,%,0,C) be a GNCM. Define t={Ac X: 9 € A if and only if
there exist r € (0,1) and ¢ € int(C) such that B(9,r,c) € A}. Then t is called a topology
on X.
Proof. The proof of Definition 3.5 is easy to examine on the line as in [12].
Remark 3.6. A GNCMS is symmetric.
Definition 3.7. Let (X,M,N,0,%,0,C) be an GNCMS. A self mapping T:X — X is said to be
k — Neutrosopic cone contraction (k — NCC) if there exists k € (0,1) such that

N®,{, A ¢c) =

e~ s )
M(T@©),T(S), T(A),c) M(®,¢,2,¢)
N(T(9),T({),T(A),c) <kN(,{ 4,c),
O(T(), T({), T(A),c) <k0(®,{,Arc)
forall 9,{,4 € Xand ¢ € int (C).
Definition 3.8. InGNCMS (X,M, N, 0,%,0,C), the triplet (M, N, 0) is named to be triangular if,
forall 9,{,A4,u € Xandc € int (C),

1 1 1
i) rten ) s )
(M(ﬁ, ) Mo uo )T \Mamizo
N®,{,A,c) <N®,{,u,c)+N(u,4,4,c),
0,,A,¢c) <0®,,u,c)+0(uAAic).
Definition 3.9. Let (X,M,N,0,x0,C) be aGNCMS, 9' € X and {9,,} be a sequence in X,
then
Al) {9,} issaid to be a convergentto 9' € X if, forall ¢ € int (C),
: 1 : Car N
A, (M(ﬁnn?’,ﬁ’, o) 1) =0 lm N 9.9,c)=0
and liIP 0(9,,9',9',¢) =0
n—->+oo
It is represented by lim9, =9’ ord, » 9" asn - +oo.

n—+oo
A2) {9,} issaid to be a Cauchy sequence if, for all ¢ € int (C) and m € N,
: 1 :
nll)rlloo <M(l9n+m: 1977,; 1971; C) a 1) B 0, nl_l’r‘Poo N(ﬁn+m’ 197’1! 197’11 C) =0
and
lirP N pqm> Oy Opc) =0
n—-+oo
A3) (X,M,N,0,+0,C) issaid to be a complete GNCMS if every Cauchy sequence in X
converges.

Definition 3.10. Let (X,M,N,0,x,0,C) be a GNCMS. A sequence {9,} in X is k-neutrosophic
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cone contractive (k-NCC) if their exists k € (0,1) such that

( ! ~1) <k - - 1),
M(ﬁni 19n+1i 19n+1' C) M(ﬁn—li 1971) ﬁn' C)

N(ﬁn: 19n+11 19n+1: C) < kN(ﬂn—ll 1971' 79n: C):

0(79711 19n+11 19n+1: C) < kO (1971—11 1971' 79nr C)

forall ¢ € int (C).
From the help of [12], we have the following Theorem.
Theorem 3.11. Let (X,M,N,0,x,0,C) be a complete GNCMS in which k-NCC sequences are
Cauchy. Let T: X — X bea k-NCC mapping. Then, T has a unique fixed point.
Remark 3.12. The proof of Theorem 3.11 follows from Theorem 3.13when T = Q and k, = k3 =
k, = 0.
Next, let us prove some common fixed point theorems for two self-mappings satisfying generalized
contractive conditions in a complete GNCMS.
Theorem 3.13. Let (X,M,N,0,%,0,C) be a complete GNCMS where (M,N,0O) be triangular. If
T,Q:X — X satisfy the following: forall 9,{,A € X and ¢ € int (C),

1 1
( 1 B ) < ky (M(ﬁ,z,a,c) B 1) ke (M(ﬁ,{,QA,c) B 1) (1)
M(T9,0¢,QA,¢) = 1 _ 1 _ ’
ths (M(ﬁ,Q(,A,c) 1) +hky (M(Tﬁ,(,z,c) 1)
k:N®,{,A,¢c) + k,N(@®,7,0Q4,¢) }
<
N(T9,Q¢,Q4¢) < {+k3N(19, Q(,A,¢) + kyN(T9,{,A,¢c) 2)
k,009,{,4,¢) + k,0(9,,QA1,¢) }
<
0(T9,Q¢,Q4,¢) < {+k30(19, Qf, A, ¢)+ k,0(TY,7,A,0)) )

where k; € [0,1),i=1,..,4 and k; +2(k, +k3) +k, <1. Then, TandQ have a unique
common point.
Proof. Let 9, € X be arandom. Let {9,} bea k — NCC sequence defined by

U3n+1 = TO3p,
V3n+2 = QU3p41,forn = 0.

From (1), we have

1 1
-1)=( -1)
<M(193n+1; U3n+2, 93042, C) M (T35, Q93n+1, QU3n+1,€)

[ 1 ~ 1)+ : -1)
<{ ! M (931, 93041, 93041, €) 2 M (935, 93n+1, QU3n+1,C) }

+
Y AT )
k 3 M (935, QO3n+1, Y3041, €) * M (T30, 93n+1, Y3041, C) J

[k ( ! - 1) +k ( ! - 1) )
_ { ! M (931, 93n+1, Y3n+1,C) 2 M (931, 93041, 93n+2,€)
1)

i S

M(I3n+1, Y3041, 93041, C)

1
+k ( -
k 3 M (931, 93042, 93n+1,C)

AIMS Mathematics Volume 7, Issue 8, 14756-14784.
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( — ) \

_ { M (931, 93041, Y3n+1,€) B }

1 1
+k ( —1)+k ( —1)
k 2 M (931, 93041, Y3n+2,C) 3 M (931, 93n+2, Y3041, C) )

( 1 )
f -1)
M (931, 93041, 93041, €)

"

1 1
<+ -1)+( -1)
g M (931, 93n+1, Y3n41,€) M (O3n+1, 93n+2) I3ns2, €)

1 1
e |( -1)+( -1)
S M (931, 93n+1, Y3041, €) M (9341, 93n+2) 93042, C) J

1
_ {((kl etk (M(ﬁgnﬂ,ﬂgnﬂ,ﬁgnﬂ, ) 1)\}
1 .
|+t (i~ Y )
Therefore,
( 1 _1)<k1+k2+k3( 1 _1>.
M (I3n+1, 93042, 93042, €) 1= (kg + k3) \M(35, Y3041, O3n41, €)
Similarly,
( 1 _1)<k1+k2+k3< 1 _1>
M (342, 93043, O3n43,C) T 1= (ky + k3) \M(93n41, 93042, 93042, C) ’

( 1 1)<k1+k2+k3< 1 1)
M (93143, V3n+4, U344, C) T 1= (ky + k3) \M(I3n42, 93043, 93043, C) '

Put M, = ( ! 1) and

M (O, 9n+1,9n+1,C) B
kg kg + kg
1= (ky +k3)

Then we get the inequalities:
Mspni1 < kM3p,
M3n+2 < kM3n+1;

M3pi3 < kMzp o

These imply that
M, ., < kM, forn=0,12,..., (4)

From (2), we have

N(P3n+1, 93n+2, U3n+2,€) < N(T934, Q93p41, QU3141,C)

{ ki N (O3, 93n41, 93041, €) + kaN (O30, 93041, QU3n41,€) }
+k3N I3y, Q93n41, 93041, €) + k4N (T3, 93141, 9341, C)

_ { kyN (930, Y3n41, 93041, €) + kaN (O30, 93041, V3042, C) }
+k3N (930, 93042, O3n+1,€) + kaN (O3n41, 93041, 93041, C)

IA
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_ { k1N (931, 93n+1, V3n+41, €) }
+kyN(O3p, 93041, 9342, €) + k3N (U3, V3n42, 93041, C)

kyN (93, Y3n+1, 93041, C)
<+ N30, 93041, V3n41,€) + N30, 93042, V3n42,€)]
+k3[N (O30, U3n+1, V3n+1,€) + N30, 93042, V3042, €)]

_ {(k1 + ky + k3)N (93, Y3n41, 93041, C)

+(ky + k3)N(3p, 93n42, 93042, C) }
Therefore,

(ki + kp + k3)
N(Psn+1,93n+2,I3n+2,€) < 1— (ky + k) N3, Y341, 9341, €)-

Similarly,

(ki + kp + k3)
NOsn, 93n43, 9343, €) < 1— (ky + k3) N(Osn, U3n+2, 9342, €),

(ki + kp + k3)
N3, U3n44, 344, €) < 1— (ky + k3) N(Gsn, U3n43, I3n43, €).

Putting N,, = N(9, 9n+1,9n+1,€), We have the following inequalities:
For n=20,1,2,..,
N3pi1 < kN3zp,
N3n+2 < kN3n+1:

N3n+3 < kN3n+2-
These imply that

Npyq < kN, forn=20,12,.., (5)
From (3), we have

0(193n+1' U3n+2, V3n+2) c) < O(Tﬁ3n: QU3n+1, Q93041 c)

{ k10 (931, 9341, 93041, €) + k20 (030, 93041, QU3041,C) }
+k30 (930, Q93141, 93n+1,€) + ka0 (T3, 93111, 9341, C)

{ k10930, 93n+1,93n+1,€) + k203, V341, 9342, C) }
+k30 (93, V3n+2, U3n+1,€) + ka0 (03141, 93041, V3041, C)
_ { k10 (93n, I3n+1, 3n+1,€) }
+k30 (O30, 93041, 93042, €) + k30 (O30, Y3042, 93041, C)
k1093, 93n4+1, V3041, C)
< < +k2[0(3n, 93041, 3041, €) + 093, 31142, F3n 42, C)]
+k3[0 (31, 93n41, 93041, €) + 0931, 31142, V342, C)]

_ {(k1 + k; + k3)0(193n'193n+1; U341, C)}
+ (k3 + k3)0 (931, 93142, I3 42, C)

IA
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Therefore,

(ky + ky + k3)
0(I3n+1,Y3n42 V3n42,€) < 1—(k, + k) 0 (93, Y3n+1, 93041, €)-

Similarly,
ki+k,+k
C) S( 1 2 3)
1= (ky + k3)

(k1 + Kk + k3)
c) <
1—(ky +k3)

0 (79311’ V3143, 3043, 0(193711 U3n+2, 3n+2) c),

0 (79311’ U3n+4) V3n4as 0(193711 V3143, 3043, c).

Putting 0,, = 0(9,, 9n+1,9n+1,¢) We have the following inequalities:
For n=20,1,2, ..,

03n+1 S kOBn;
03n+2 < k03n+1;
O3n4+3 < kO3pqs.
These imply that
O0n41 < kO, forn=20,1,2, .., (6)

The inequalities (4)—(6) make {9,} a k-NCC sequence.
Now (M, N, 0) is triangular and the space (X,M,N, O,*,o,C ) is symmetric. Therefore, we have

( ! - )
( 1 1) < { (M(ﬁn, Ipt1, Ons1, C) 1) }

M (O, Oy, Oy €)

1 1
+( — 1) - 1)
k M(ﬁn+1'l9n+2il9n+2i C) M(ﬁm—liﬁm' l9mi C) )
=My + My + -+ My
S anO + kn+1M0 + + km_lMO

n

<
1-k

My —» 0asn — +oo,

N(ﬁn,ﬁn’ﬁm, C) S { N(ﬁn;ﬁn.l_l,ﬁn_l_l, C) }

+N(79n+11 19n+1'19n+2r C) + -+ N(ﬁm—llﬁm'ﬁm: C)
=Np+ Npyg+ -+ Ny
S anO + kn+1N0 + + km_lNO

n

<
1-k

Ny —» 0asn — +oo.
and

0(7971' 1971' ﬁm’ C) < { 0(197“ 1971+1' 19n+1: C) }

+0(19n+1:19n+1: 19n+2: C) +- + O(ﬁm—l'ﬁml 19m: C)
=0y, +0p41+ -+ 0m
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S knOO + kn+100 + + km_100

n
1-k
Therefore, a sequence {9,} is Cauchy. As X is complete, there exists ¥ € X such that

<

0p » 0asn — +oo,

1
iy (e
n=+90 \M(9,,9,9,0)

1) =0, lim N(89,9,c)=0and lim 0(8,9,9,c) =0 ()
From (5)—(7), we deduce that
M, ., = k™M,, Np,1 =k"™N,y, 0,44 =k™0, forn=0,1,2,..,
lim, ,,c M, =0, lim,,,,N,=0 and lim,_,,,0, =0 (8)

Since (M, N, 0) is triangular,

1 1 1
(M(ﬁ,ﬁ,Tﬁ,c) - 1) = (M(ﬁ,ﬁ,193n+2,c) - 1) + (M(ﬁ3n+2,T19,Tz9,c) N 1)' ©)
N@®@,9,TY9,c) < N(9,9,93n42,¢) + N(93442,TY9, TV, C), (20)
0(9,9,T9,¢) < 0(9,9,93n12) ¢) + 0(Iansz TI, TI, ). (11)

From (1), we have

1 1
—1)< -1
(M(193M2,T19,T19, ) ) = (M(Qﬂ3n+1, T9,T9, c) )

- {( & <M(z93n:, 9,9,¢) 1) Kz <M(193n+1,19, T9,¢) 1) \}
) ke (

k+k3

-1) -1)
(M(193n+1, T9,9,0) MQOsan0,0.0) /)

{( ey (M(193n:, 9,9,¢) 1) +ka (M(193n+j19, TO,c) 1) \}

1
\Fhs (M(193n+1, TY,9,¢) 1) + ka (M(193n+2,19, 9,¢) 1))

1
- (k, + k3) <—M(19 5.T9.0) — 1>asn - 400,
Therefore,
. 1 1
hmn_,+oo sup (m - 1) < (kz + k3) (m - 1) (12)

From (2), we have
N(U342, TY,TY,¢) < N(QI341,T9, T, )

<{ kyN(O3n41,9,9, ) + kyN(Oan41,9, T, ) }
= kN Oans1, TO, 9, ) + ko N(QO3p41, 9,9, C)

_ { kyN(O3n41,9,9, ) + kyN(Oan41,9, T, ) }
~ \+ksNOsns1, TO, 9, €) + koN Osnsa, 9,9, C)
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- (ky+ k3) N@W,9,T9,c) asn - +oo.

Therefore,

lim,,_ 400 SUP N(F3142, T9,TY, ¢) < (ky + k3) NI, 9, T9, c).

From (3), we have

0 (D342, T9, TY, ¢) < 0(QV341, TY, T, )

<{ Ky 0 (93141, 9,9, €) + kyO(Osns1,9, T, C) }
= l+ks0(O3p41, T, 9, €) + ky0(QO3141,9,9,€)

_ { k10 (D341, 9,9, ¢) + kyO(O3n41,9, T, ) }
~ k303141, TO, 9, ¢) + ky0(O3n42,9,9,C)

- (k, + k3) 0(9,9,T9,c) asn - +oo,

Therefore,

lim,, 400 SUP O (O39042, T, TY, ¢) < (ky + k3) 0(9,9,TY, ¢).

From (9) to (14), we obtain that

1 1

YTy 7] o m——)

(M(ﬁ,ﬁ,Tﬁ,c) ) (kz + kes) M@,9,TY, c)
N@,9,T9,c) < (ky, + k3) N®,9,T9, ),
0(9,9,TY,c) < (ky, + k) 0(9,9,TY, c).

Since k, + k3 < 1, we have

1
(m — 1) =0,N®,9,TY,c)=0,009,9,TI,c) =0.

Therefore T9 = 9.

In a similar way, we can examine that Q9 =4. Then, T9 = Q9 = 9.

Suppose Tu = Qu = wu.

From (1), we have

(W B 1) = (M(Tﬁ, Qlu, Qu,c) 1)

B kl(m‘l)”‘z(m*)l
) )

e (mramas ~ ) imaas !

[ o)l )

e (s~ ) (s~ V)

:(k1+k2+k3+k4)(m—1).

(13)

(14)

AIMS Mathematics Volume 7, Issue 8, 14756-14784.



14768

This is,
( . 1><(k +ky +k +k)( 1)
M®,u,u,c) I A VYT RTRTIS A
Therefore,
1 .
(M(ﬁ,u,u,c) - 1) = O; since kl + kz + k3 + k4 < 1

Hence, ‘9’ is the unique common fixed point of T and Q.

Corollary 3.14. Let (X,M,N,0,x,0,C) be a complete GNCMS where (M,N,0) be triangular. If
T:X - X forall 9,{,1 € X and c € int(C),

< 1 ~ 1) - { ey (M(ﬁ, 2 Ac) 1) * ke (M(ﬁ, (1,T,1, o) 1) }
— 1 1 )
Mo T2, s <M(19, T¢, hc) 1) + ks (M(Tﬁ, $Ac) 1)

kyN®,(,A,¢c) + k,NI,{,TA,c) }
+ksN(9, T, A, ¢) + kyN(T9,{,A,¢c))

k09,3, 4,¢) + k,0(9,7,TA, ¢) }
+k30(9,TE, A, ) + kyO(TI, ¢, A, ¢)

where k; €[0,1),i =1,...,4 and k; + 2(k, + k3) + k4, < 1. Then, T has a unique fixed point.
Proof. Easy to prove on the lines of Theorem 3.13.

Example 3.15. Consider the metric space X = [0, +o0) with metric d given by d(9,{) = |9 — (|
for all 9, € X. Let C = R*, define * by m*u=m-y, and o by m oy = max{m, u}. Define
M,N,0 : X3 x (0,40) = [0,1] by

N(T9,T{,TA,c) < {

O(T9, T, TA,¢) < {

c

M@,{,A,c) =C+(|19_(|+|(—A|+|/1—19|),
L A e Il V]

NGO = =+t =1+ Aol
000.¢.1.¢) = |9 =31+ 1{ =2+ A9

c

for all 9,{,A € X and c € int(C). Then, it is clear that (X, M, N, 0,*,0) is a complete GNCMS
and that (M, N, 0) is triangular. Assume the self mappings T, Q: X — X are given by

1

T19 — Zﬁr .'9 € [0r 2);
0, 0 € [2,+00),
1
Zﬁ, 9 € [0,2),
QY =194
51 19 € [21 +OO)’
Here, T and Q together satisfy the conditions (1)-(3) with k; = %,kz = %,kg, = i,k4 = i.

Therefore, T and Q have a unique common fixed point and itis 9 = 0.
Theorem 3.16. Let (X,M,N,0,%0,C) be a complete GNCMS where (M,N,0) is triangular.
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Assume that T,Q,R: X — X satisfy the following

(M(T19,Ql€,RA,c) - 1) =k (91(191,(,/1) - 1)’ (15)
N(T9,Q{,RA) < kQ,(9,{, 1), (16)
0(TY,Qf,RA) < kQ3(9,{, 1), a7

forall 9,{,A € X and c € int (C) where k € (0,1) and
09,2, 1) = min{M @, QZ,RA, ¢), M(T9,{,RA, c), M(T9,QZ, A, c)},
Q,(9,¢,A) = min{N(,Q{,RA,c),N(T9,{,RA,c),N(T9,Q{,A,c)},
Q3(9,¢,2) = min{0(, Q{, RA, ), 0(TY,{,RA, c),0(T9,QZ, A, ¢c)}.
Then, T,Q and R have a unique common fixed point.
Proof. Let 9, € X be arbitrary. Define the sequence {9,,} asin Theorem 3.10. Then, from (15)-(17)
forn=0,1,2,..,

1 k 1
-1 < -1,
(M(193n+1 V3nt2,93n42,C) > 1-k <M(193n,193n+1r U3n41,C) >

1 1
-1 < —1],
(M(193n+2 V3n43, 93043, C) > 1-k <M(193n+1 U3n+2:93n42,C) >

1 k 1
—-1]< -1,
<M(793n+3 V3nta V3440 c) ) 1-k (M(ﬁ3n+z V3n+3, V3043, c) )

k
N(ﬂ3n+1 U3n+2, V3n+2 C) < 1—k N(ﬁsn U3n+1, V3n+1s C):
k
N(ﬁ3n+2 V3043, 93n43 C) < mN(193n+1 V3n+2)Usnt2, C);
k
N(ﬂ3n+3 U3n+4V3n+4) C) = 1—k N(793n+2 U3n+3, V3043, C):
k
0(193n+1 VY3n+2:U3n42, C) < 1—k 0(193n Y3n+1 U3nt1, C);
k
0(193n+2 U3n+3, V3043, C) = 1—k 0(793n+1 U3n+2,V3n+2) C)’

k
0(193n+3 U3n+a V3n+as C) = 11—k 0(193n+2 U3n+3, V3043, C)-

Therefore, we have

1 k 1
—-1]< -1),
(M(ﬁn+1 ,l9n+2; Un+2) C) > 1-k (M(ﬁn ,19n+1; Un+1s C) >
k
N(ﬁn+1 ,1971+2: Un+2, C) < mN(ﬂn ,79n+1' Un+1s C):
k
O(ﬁn+1 ,19n+2; Un+2, C) < m 0(1971 ,l9n+1' Un+1s C)-
Using these inequalities repeatedly, we obtain that
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M.
MOn+1,9n+2)9n+2,€) T 1=k \M@ 91,91, ¢) ,

n

1-k

N(ﬁn+1,79n+2'19n+2'c) < N(ﬁo,ﬁpﬁb C)’

n

k
T k0(190 91,94, ¢).

Therefore, {9,,} is k-FCC and Cauchy and hence we can find an element 9 € X such that

0(1971+1 On+2 Un+2) C) =

1

lim,, 4o (m — 1) =0, nlierN(ﬁo,ﬁl,ﬁl,c) =0, nEerO(ﬁO 9y,9;,¢)  (18)

Since (M, N, 0) istriangular,

1 1 1
<M(19;9,T19,c) B 1) = (M(ﬁ,ﬁ,193n+2,c) B 1) + (M(ﬁ3n+2 TOTIC) 1)’ (19)
N@®,9,T9,¢) < N®,9,93n42,¢) + N(93n12,T9, TY, ), (20)
0(9,9,T9,¢) < 0(9,9,93142,¢) + 003142, T, TY, ). (21)

From (15)-(17), we obtain

. 1 1
limy,., ;.o SUP (M(193n+2,T19,T19,C) N 1) <k (M(z’?,ﬁ,Tﬁ,c) - 1)' (22)
lim,,_, 400 SUP N (93142, T9,TO,¢) < kN(9,9,T9, c), (23)
lim,,_, ;0o SUP O (93142, TY, TY, c) < kO(9,9,TY, ¢). (24)

From (19) to (24), we obtain that

1
- < -
<M(19, 9,TY,c) 1) <k <M(19, 9,TY,c) 1)’
N(99,TY,c) < kN(,9,TY,c),
0(9,9,TY,c) < k0(,9,TY,c).

As k < 1, we obtain

1
<m— 1) =0,N®,9,TY,c)=0,009,9,T9,c) =0.

Therefore, TY = 9. In asimilar way, we can bring that Q9 = 9 and RY = 9. Suppose
Tu =Qu = Ru = u.

From (15), we have that

m B 1) - (M(Tﬁ, Qlu, Ru,c) 1) =k (m Bl 1)'
(
where,

Q,(9,,4) = min{M (9, Qu, Ru, ¢), M(T9, u, Ru, c), M(TY, Qu,u, c)},
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=min{M©®,u,u,c), M9, u,u,c), M9, u,u,c)} = M9, u,u,c).
From (16), we have
N@,u,u,c) = N(T9 Qu,Ru,c) < kQ,(9,{,1)
where,
Q,(9,¢, 1) = min{N(, Qu, Ru, c), N(T9,u, Ru, c), N(T9, Qu,u,c)}
= min{N®, u,u,c), N9, u,u,c), NO,u,u,c)} = NO,u,u,c).
From (17), we have

0(9 wu,c) = 0(TY, Qu, Ry, ¢) < kQ, (9,3, 1)

where,
Q,(9,{,A4) = min{0(9, Qu, Ru,c),0(TI,u, Ru,c), 0(TY, Qu,u,c)}
= min{0(,u,u,c),09,u,u,c), 09, u,u,c)} =0,u,u,c).

Therefore,

1 1

(M(ﬁ,u, u,c) B 1) sk (M(ﬁ, wu,c) 1)’

N®,u,u,c) < kN@®,u,u,c),

0, u,u,c) <kOW,u,u,c).
Hence,

(;— 1) =0,N®,u,u,c) =0,00,u,u,c) =0.
M@, u,u,c)

Therefore, 9 = u and we can conclude that T, Q and R have a unique common fixed point.
Example 3.17. Consider X = [0, +c0) with for all 9,{ € X. Let C = R*. Define * by m*p =
m-u and © by 7 o pu = max{m, u}. Define M,N,0 : X3 x (0,+0) - [0,1] by

1, if9 = ¢

M(ﬁ:aﬂ-;c)z{ ¢ 1 1
¢ + (max{¥9, {} + max{{, 1} + max{A,9})’ if othewise,

0, if9 =¢
N®,{,Ac) = max{¥, {} + max{{, A} + max{A, 9} if otherwise
¢ + (max{¥9, ¢} + max{{, 1} + max{A,9})’ '
0, if9 =¢
0(9,{,A,¢c) =<{max{¥d, {} + max{{, A} + max{4, I} _ _
c , if othewise

forall 9,{,4 € X and c € int(C). Then, it is clear that (X,M,N,0,*,0,C) be a complete GNCMS
and that (M, N, 0) is triangular. Define self-mappings T, Q and R from X to X by

ly_1 9 € [0,1)

_ 2 4' ) )
T9 = 1 3

519 +§, 9 € [1, +00),
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1 1
(507 9 €0,1),
QY = < 5
\519 + 1, Y €e [1,+00),
(1 1
=7 9€[0,1),
RY =« 1
39+2 9 € [1,+).

Then,

(e )~ et )= e
M(T9 Q¢,RA,c) 2\M(9.4,4,¢) ~4\0,(9,2) ’
1 1
N(T9,Q(,RA,c) = EN(Q(, Ac)= ZQZ(’?'{’ 2)
1 1
0(T9 Q{,RA,c) = 50(’9'{' Ac)= an(ﬁ,{, 2)
for all 9,{,A € X. Thus, T,Q and R together satisfy the conditions (15)—(17) with k=2,

4
Therefore, T, Q and R have a unique common fixed point, and itis 9 = 3.

Corollary 3.18. Let (X,M,N,0,+,0,C) be a complete GNCMS where (M,N,0) be triangular. If
T:X — X satisfy the following

1 1
(M(Tﬁ, T, TA,c) 1) <k (Ql(ﬂ, 7,2) 1)’
N(T9,T{,TA) < kQ, (9,4, 1),
0(T9,T{, TA) < kQ3(9,,2)
forall 9,{,A € X and c € int (C) where k € (0,1) and
Q0,040 =min{M (9, T{,TA,c),M(T9,{,TA,c), M(TI,T{,A,c)},
Q,(9,,2) = min{N®, T, TA,¢), N(T9,{,TA,c),N(T9,T{, 1, ¢)},
Q3(9,0,4A) =min{0(I,T{,TA,¢c),0(TI,{,TA,c),0(TY,T{,A,c)}.
Then, T has a unique fixed point.

Application to fuzzy Fredholm integral equation

Let X = C([e, g],R) be the set of all real valued continuous functions defined on [e, g] and
C = R*.
Now, we consider the fuzzy Fredholm integral equation:
() = f() +6 [ F(1)9(Ddj forall 1,j € [e, g] (25)

where § > 0, f(j) is afuzzy function of j € [e,g] and F € X. Define M,N and O by

c
MO EDAD. O = S0, T80 — <1+ KO — 20T+ TAD — 90D

forall 9,{,A € X and c € int(C),

) ) - (D] + 18Q) = AD] + IAQD) — 9|
NED DAL, = sup s — T+ Q) = AT+ A — 8 D]

forall 9,{,A€ X and c € int(C), and
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0D, D AD, ) = sup 2O =EDI+IED ~ D1+ 12D ~ 9D

le[e,g] c

for all 9,{,A€X and ce€ int(C), with CTN and CTCN respectively. Define
m*pu=mpandw © u = max{m,u}. Then (X,M,N,0,%0,C) is a complete GNCMS and
(M, N, 0) istriangular. Assume that
IFALDIWD) —FANSDI < 9D -¢DI ,  IFAHIWMD - FALHADI < ¢ —AD] , and
|F(L,HAWD) — F(HoD)| < [AA) =9, forI,{,A€ X, 0<k <1 and foralll,j € [e, g]. Also
consider Sfeg dj < k < 1. Then the fuzzy integral equation (25) has a unique solution.
Proof. Define T: X —» X by
T9D) = f() + 6 [ FAj)oWdj forall L,j € [e, g]

Scrutinize that survival of a fixed point of the operator T is come from the survival of solution of
fuzzy integral equation.

Now for all 9,, 1 € X, we obtain

1
(M(Tﬁ(z),Tq(z),m(z), 5l 1)

teleg] \ — [To() — TCD + 1T¢) = TAD] + [TAQD) =TI

Now,

g g
ITﬁ(l)—TZ(l)I=|(f(i)+6 f F(l,jw(z)dj)— (f(i)+ 5 j F(l,j>c<z>dj>|

g g g
=‘5 f FALNOW — 6 f F(l,j)z<l)dj|=|F(l,j)ﬁ(l)— F(l,j)can(a f dj)
< IFLNOW) — FALHIWD] < 180 - DI, (26)
g g
ITZ(l)—T/l(l)I=‘<f(i)+5 f F(z,j)z(wdf)— (fo'>+ 5 f F(l,j>z<z)dj)|

g g g
=|6 j FULHID) — 8 f F(l,j)aa>dj|=|F(l,j>c(l)— F(l,jn(m(a f dj)
< KIFL)ID — FANAD] < 50 - AD. (27)
g g
|m(z>—m(z)|=|<fo'>+a f F(l,ma)df)— (f(j)+ 5 f F(l,j)ﬁ(l)dj>|

g g g
=‘5 f FAULNAD ] — 8 f F(l,jw(l)dj|=|F(l,j)z(l)— F(l,i)ﬁ(l)|<5 f dj)

< k|F(LHAWD) = F(L)HID] < 2D = 9D (28)

Hence,
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1
(M(Tﬁ(z),Tq(z),m(z), 5l 1)

1
<k sup -1

Cc
S\ O+ RO — 20T+ A0 — 90D

=k ! 1
B (M(ﬂ(zxc(l),z(l),c)‘ )
Now,

) IT9() — TS| + 1T — TAD)| + [TAQ) — T
N(TOW, T, TAD, ) = SUP 78D — T (O] + TS — TAD] + [TAQ) — To(D)]

By using (26)—(28), we can examine that

() = (D1 +18Q) = AD] + IAQD) — 9|
NTHW,T¢WD, TAD, ) <k sup 0B — DT+ 12D — 2D + 1A — 8D

=N@D,{D), A1), 0),

and

09D, TED,TAD,) = sup 79D — T¢I +1T¢W) - TAD| + ITAW) — TS|
lele,g

By using (26)—(28), we can examine that

NS, TZD, TAWD, ) < k Sglp]lﬁ(l)—f(l)l + IZ(l):A(l)I +14() = 9(D|
lele,g

= 0D, {1, AD), o).

Therefore, all the circumstances of Corollary 3.14 are fulfilled. Hence operator T has a unique
fixed point. This implies that fuzzy integral equation (25) has a unique solution.

4. ¢&-chainable neutrosophic metric space

In this section, we introduce the notion of ¢-chainable NMS and prove a fixed point theorem by
using four self-maps.
Definition 4.1. Let (X,E,H,Z,x,0) be an NMS and T,S:X — X are mappings. A point ¥ € X is
called coincident point of T and S if and only if TY = S9.
Definition 4.2. A self-mapping pair (T,S) of an NMS is said to be weakly compatible if they
commute at the coincident points i.e., T9 = SV for some 9 € X, then TS9 = ST9.

In [7] definitions of convergent sequence, Cauchy sequence and completeness in the sense of
NMS are defined as follows.
Definition 4.3. A sequence {9,,} inan NMS (X,E, H, Z,*,0) is said to be convergentto 9 € X, if

lirP E(9,,9,t) =1, forallt >0,
n—-+oo

liIIl H(9,,9,t) =0, forallt >0,
n—-+oo
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lim Z(9,,9,t) =0, forallt > 0.

n—-+oo

Definition 4.4. A sequence {9,} in an NMS (X,E, H,Z,*,0) is said to be Cauchy if there exists
n € N such that
lim E(9p,On4p ) = 1,

n—-+oo
lim H(9, 9p4p t) =0,
lim T(9n, Onap,t) =0,

forall t>0,p>1.

Definition 4.5. An NMS (X,E,H,Z,x0) is said to complete if every Cauchy sequence is
convergent in X.

Definition 4.6. Let (X,E,H,Z,+°) be an NMS. A finite sequence 9 = 9y,91,9,,,9, = { is
called &-chain from 9 to ¢ if there exists a positive integer ¢ > 0 such that E(¥9;,9;_4,t) > 1§,
H@;,9;-1,t) <1—-¢& and Z(9;,9;_1,t) <1—-¢& forall t >0andi =1,2,3,...,n.

An NMS (X,E,H,Z,x°0) is called &é-chainable if for any ¥9,{ € X, there exists an é-chain from
Y to (.

Lemma 4.7. Let (X,E,H,Z,*0) be an NMS, if E(,{,kt) = E(®,{,t),H®,{,kt) < H{®,{,t)
and Z(9,(,kt) < Z(9,{,t) foranumber k € (0,1) and forall 9,{ € X,t > 0, then ¥ = (.
Proof. Since E(9,{,kt) = E(,{,t),H®,{,kt) < H(,{,t) and Z(9,{, kt) < Z(9,{,t), by using
results in [17], we obtain

t t t
E@,6,0 2 E(8,¢,7) H®,8,0 < H(8,¢,7) and 2(8,6,0) < Z(8,4,7).
By repeating application of above inequalities, we deduce

t t t t
EW®,{,t) = E (19,{,;) > E(ﬁ,(,k—z) > E(ﬁ,(,ﬁ> > > E(ﬁ,(,k—n> > ...
H®,{,t) < H(ﬁ,(,%) < H(ﬁ,i,%) < H(ﬁ,(,%) <. < H(ﬁ,(,kin) < -

2(9,4,t) < Z(ﬁ,(,%) < Z(ﬁ,(,%) < Z(ﬁ,{,%) << z(a,g,kin) <.

for n €N, by proceeding limit as n — +oc, we obtain E®,{,t) =1,H®,{,t) =0 and
Z(9,¢,t) =0 forall t > 0 and by using definition of an NMS we have 9 = (.

Lemma 4.8. Let (X,E,H,Z,*0) be an NMS. For a number k € (0,1) and a sequence {{,} such
that

E({n+2' Zn+1i kt) = E(Zn+1' Zn' t)) (29)
H({n+2i {n+1' kt) < H({n+1i {ni t) (30)
Z({n+2i {n+1' kt) < Z({n+1i {ni t) (31)

forall t >0andn €N, {¢,} isa Cauchy sequence.
Proof. By using induction with (29)—(31), we obtain forall ¢t > 0andn = 0,1,2, -,

E(Gnsn sz ) 2 E (01,00 (32)
it Cnvar ) < H (31,00 ) (33)
21, nezr ) < Z (G0, Gz, (34)
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Thus by using (32)—(34) and definition of NMS, for any p € N, we get

t p—times t
EGuCun ) 2 E (Gobarns)  #E (Gups urp)

t p—times t
= E (fplem) ¥k E ((p(zlm):

t p—times t
H(an Zn+pr t) <H <{n; {n+1' 5) ©.-OH <Zn+p—1' Zn+p, 5)
t )p—times

<H(q, o

t
P o..oH ((1,ZZ,W>,

t p—times t
2@ urn ) S Z(Gluny) 00 Z(Gurpet Guenr )

)p—times

t t
<Z ((1: QIW ©.-0Z ((p(pw)

Therefore, by using the definition of NMS, we obtain

lim E(fn; Cntps t) > qp-times y 1 =1,

n—+oo
: < p-times 5 ...0 0 =
nl—l>I-Poo H(Zn' Zn+p' t) —_ O 0 0'
: < p—times 5 ...0 0 = )
nl—l>I-Poo H(Zn' Zn+p' t) —_ O 0 0

Hence, {¢,} is a Cauchy sequence in X.
Theorem 4.9. Assume A,B,SandT are self mappings of a G-complete ¢-chainable NMS
(X,E,H,Z*0) with CTN = and CTCN o defined by a*xa>a and (1—-a)o(1—a) <
(1 —a) forall a € [0,1] fulfilling the below circumstances:

1) A(X) € T(X)and B(X) < S(X),

2) Aand S are continuous.

3) The pairs (4,5) and (B,T) are W-compatible.

4) There exists g € (0,1) such that

E(A9,B{,qt) > {5(519, T{,t) * E(S9, A9, t) % [E(S9,T{,t) + E(A9,T{, )]

x % [E(A9, B{,t) + E(S9,BE, )] * E(B{, T{, t) * E(A9,T¢, ¢) * E(S9, B, t)},

H(AY, BZ, qt) < {H(Sﬁ, T{,t) 0 H(SY, A9,t) o % [H(S9,T¢, t) + H(AY, T, t)]

o % [H(AY,B{,t) + H(SY9,B{,t)] c H(B{,T{,t) c H(AY,T{,t) o H(SY, B{, t)},

Z(A9,B{, qt) < {2(519, T{,t) 0 Z(S9,A9,t) 0 % [Z(S9,T{,t) + Z(A9, T, )]
o % [Z(A9, B, t) + Z(S9, B, t)] © Z(B{, T, t) © Z(A9, T, t) © Z(SY, B, t)}

forall 9, € Xandt > 0. Then 4,B,S and T have a common unique fixed point.

AIMS Mathematics Volume 7, Issue 8, 14756-14784.



14777

Proof. As A(X) € T(X), for any point 9, € X there exists ¥; € X such that A9, = TY,. Since
B(X) € S(X), for 9,, we can pick 9, € X such that BY; = S9,. By induction, we obtain a
sequence {(,} in X as follows:

(on—1 = T9y_1 = A9y,,_, and {,,, = §Y,,, = BY,,, forn € N.
We can easily examine that {¢,,} is a sequence in X and by the completeness of (X,E,H,Z,*,0),
the sequence {(,} convergesto z € X. Hence, the sequences {T9,,,_1}, {A95,_,}, {S9,,} and
{BY,,} are also convergentto z € X.
Since X is &-chainable there exists é-chain from 9, to 9,4, thatis,

19n = Zl) 52'53' ---;{l = 19‘n+1
such that
E(i,Giv1,t) > 1 =& H((, {41, t) <1 =& and Z(;, {i41,t) <1-¢
forall t >0andi =1,2,3,---,1. Thus

E@ i) 2 B (6060 7) # B (GG g) 2o B (G0 60s) > A= 0+ 1= x s (1= §)
> (1-9),

H 0e0,0) < H (80,627) 0 H (G o) 00 H (40 u)
<(1-§o(d-8o-o(l-8 <19

20000 < 2(6.67) 02 (G 807) 00 2 (Gndug) < A=) 0 (1= 00 (1= )
<@1-9.

Form > n,

E@On O, t) 2 E <79n'19n+1'm t_ n) * E <79n+1ﬂ9n+2;ﬁ) A <l9m—1»19m'%>
>A-9*(A=xx(1-821-9),

t t t
H(ﬁnrﬁm; t)<H (ﬁnrﬁn+1im — Tl) OH <19n+1r19n+2;m — Tl) 0--OH <l9m—1' U m)

<A-9H*x1-8§o0(1-H<A-9,

25 8) < Z (90, Onss ) 0 Z (s, Bnses ) 0 -0 Z (91, B ——)
<A-9:-Horo-H<1-9),

Therefore {9,} is a Cauchy sequence in X, hence there exists 9 € X such that {9,,} converges 9.
By using (2) AY,,_, = AY,59,, - SYasn - +oo. From the uniqueness of limits, we get
A9 = z = §9. Since the pair (4,S) is W-compatible, ASY9 = SAY and so Az = Sz. By using (2)
we have ASY9,, — ASY and therefore, ASY,, - Sz. By the continuity of S, we have S$$9,, —
Sz. By using (4), we obtain
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E(ASY2n, BOp-1,qt)
> {E(SSﬁZn, T, 1, ) * E(SSOy, ASOy, )

1
* 5 [E(SS920, TO2n—1,t) + E(ASOyp, TO29—1,t)]

1
* 5 [E(ASO24, BY2p_1,t) + E(8S92, BOsp_1,t)] ¥ E(BY2p_1, T92_1,t)

< E(AS85, T2 1,8) * E(SS8n, BOn1,0)},

H(ASY92,, BY3y_1,qt) <

1
{H(SSﬁzn, TO2n1,6) O H(SS03, ASV20,6) © 5 [H(SS030, TOom-1,6) + H(ASOom, T2 1, )]
1
% 5 [H(ASO24, BY2p_1,t) + H(SS92, BU2p_1,t)] © H(BY3p_1, T34, t)

0 H(AS93m, TO3n-1,t) © H(SSO3n, BOyn_1r, t)},

Z(ASY2p, BOyn_1, qt)
< {Z(SSﬁZn, TOy,_1,t) © Z(SS05y, ASOyp, t)

o % [Z(SSO30 TO2n-1,1) + Z(ASOzn, TOgpn_1, )]
S ! [Z(ASOop, BOon_1,t) + Z(SSU2n, BO2p_1, )] © Z(BO2n_1, TO2n_1,t)
© Z(ASOn, T2 1,) © Z(SSDm, BOon 1,00}
Taking the limitas n — +oo0, we deduce
E(Sz,z,qt) = {E(SZ, z,t) * E(Sz,5z,t) * % [E(Sz,z,t) + E(Sz,2,t)] * % [E(Sz,z,t) + E(Sz,z,t)]

x E(z,z,t) * E(Sz,2z,t) * E(Sz, z, t)},

1
H(Sz,7,qt) < {H(Sz, 2,) 0 H(S7,57,6) 0 S [H(S2,2,0) + H(S2,2,0)]

1
0 =[H(S2,2,0) + H(S7,2,0] © H(2,2,0) © H(Sz,2,6) 0 H(S7,7, t)},

1 1
Z(8z,2,qt) < {Z(SZ, z,t) 0 Z(Sz,5z,t) o 5 [Z(Sz,z,t) + Z(Sz,z,t)] © 5 [Z(Sz,z,t) + Z(Sz,z,t)]

0Z(z,z,t)0Z(Sz,zt)0Z(Szz, t)}.
By Lemma 4.7, we obtain Sz = z,hence Az = Sz = z. Since A(X) € T(X), there exists v € X
such that Tv = Az = z. By using (4), we get

AIMS Mathematics Volume 7, Issue 8, 14756-14784.



14779

E(AY,,, B, qt)

1
2 E(Sl92n, TU, t) * E(Sl92n, A'l92n, t) * E [E(S7.92n, TU, t) + E(A792n, TU, t)]

= —_—

* > [E(AD,,, Bv, t) + E(S9,,, Bv,t)] * E(Bv, Ty, t) * E(AY,,, Tv,t)
* E (595, By, t)},
H(AY,,, Bv, qt)
1
< {H(SﬁZn, T0,6) © (033, AB33,6) © > [H(S020, T0, ) + H(AD1, T, 0]
1
o 5 [H(AY,,, Bv, t) + H(S9,,, Bv,t)] © H(Bv,Tv,t) © H(AY,,, Tv, t)
o H(S9,,, By, t)},
Z(AY,,, Bv, qt)
1
< {2(5192n, T0,6) © Z(S83m, A8y, 8) © 5 (25850, T0,0) + Z(A83, T, )]
1
© > [Z(A9,,, Bv,t) + Z(59,,, Bv,t)] © Z(Bv, Tv,t) © Z(A9,,, Tv,t)
0 Z(859,,, By, t)}.
Taking the limit n —» +oo0, we obtain
1 1
E(z,Bv,qt) = {E(z, Tv,t) x E(z,z,t) * 5 [E(z, Tv,t) + E(z,Tv,t)] * > [E(z,Bv,t) + E(z,Bv,t)]
x E(Bv,Tv,t) * E(z,Tv, t) * E(z, By, t)}
1
* > [E(z,Bv,t) + E(z,Bv,t)] * E(Bv, z,t)
v E(z,2,t) * E(z, By, t)} > E(Bv,2,0),

= {E(z, 2,0) « E(z,2,0) * % (E(z,2,) + E(z,2,0)]

1
H(z, Bv, qt) < {H(z, Tv,6)0 H(z,2,0) 05 [H(z Tv,6) + H(z Tv,0)]

1
0 ~[H(z,Bv,0) + H(z Bv,0)] © H(Bv, Tv, 1)  H(z,Tv,0) © H(z, By, t)}
1 1
= {H(Z,Z, t)oH(z,zt)o 5 [H(z,z,t) + H(z,z,t)] © 5 [H(z,Bv,t) + H(z,Bv,t)] © H(Bv, z,t)

0 H(z,zt) o H(z, By, t)} < H(Bv, z,t),

1 1
Z(z,Bv,qt) < {Z(Z, Tv,t) 0Z(z,z,t)© > [Z(z,Tv,t) + Z(z,Tv,t)] © 5 [Z(z,Bv,t) + Z(z, Bv, t)]

o Z(Bv,Tv,t) 0 Z(z,Tv,t) © Z(z, Bv, t)}

= {Z(Z,Z, t)oZ(z,z,t) O%[Z(Z,Z, t)+7Z(zz1t)] O%[Z(Z,Bv, t)+ Z(z,Bv,t)] 0 Z(Bv, z,t)

0 Z(z,2,t) 0 Z(z Bv, t)} < 7(Bv,z,0).
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By Lemma 4.7, we get Bv =2z and therefore, we obtain Tv = Bv =2z Since (B,T) is
W-compatible, TBv = BTv and hence Tz = Bz. By using (4), we deduce

E(AY,,, Bz, qt)
1
> {E(Sﬁm, T2,) % E(S9yn, Ay, ) * 5 [E(S950, T7,6) + E(AB, T7,0)]
1
* > [E(AY,,,Bz,t) + E(59,,,Bz,t)] * E(Bz,Tz,t) « E(A9,,,Tz,t)

* E(59,,, Bz, t)},

H(AY,,, Bz, qt)

1
< {H(Sﬁan Tz, t) © H(SﬁZn; AﬁZn; t) © E [H (519211; Tz, t) + H(AﬁZn: Tz, t)]
1
o > [H(AY,,, Bz, t) + H(S9,,,Bz,t)] o H(Bz,Tz,t) © H(AY,,,Tz,t)
o H(SO,,, Bz, t)},

Z(A9,,, Bz, qt)
1
< {Z(Sﬁan Tz, t) © Z(SﬁZn; AﬁZn; t) © E [Z(SﬁZn; Tz, t) + Z(AﬁZn: Tz, t)]

1
o > [Z(A9,,,Bz,t) + Z(59,,,Bz,t)] © Z(Bz,Tz,t) © Z(AY95,,Tz,t)

0 Z(89,,, Bz, t)}.
Taking the limit n — 400, we obtain

1 1
E(z, Bz qt) = {E(z, Tz, t) *E(z,z,t) * > [E(z,Tz,t) + E(z,Tz,t)] * > [E(z,Bz,t) + E(z,Bz,t)]

x E(Bz,Tz,t) * E(z,Tz,t) * E(z,Bz, t)}
1 1
= {E(Z, z,t) *E(z,2z,t) * > [E(z,z,t) + E(z,z,t)] = 5 [E(z,Bz,t) + E(z,Bz,t)] * E(Bz,z,t)
xE(z,2,t) *E(z, Bz, t)} > E(Bz,z,t),

1 1
H(z,Bz, qt) < {H(z, Tz, t) OH(z,zt)© > [H(z,Tz,t) + H(z,Tzt)] © 5 [H(z,Bz,t) + H(z,Bz,t)]

o H(Bz,Tz,t)0cH(z,Tzt) ©c H(z, Bz, t)}

= {H(z, z,t) OH(z, z,t) O%[H(z, z,t) + H(z, z,t)] O%[H(z, Bz,t) + H(z,Bz,t)] ©c H(Bz, z,t)

0 H(z,zt)oH(z, Bz, t)} < H(Bzz,t),
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Z(z,Bz,qt) < {Z(z, Tz,t)0Z(z,zt)© % [Z(z,Tz,t) + Z(z,Tz,t)] © % [Z(z,Bz,t) + Z(z,Bz,t)]
0Z(Bz,Tzt) 0 Z(z,Tzt) 0 Z(z, Bz, t)}
= {Z(Z, z,t) 0Z(z,z,t) 0 % [Z(z,2z,t) + Z(z,2t)] © % [Z(z,Bz,t) + Z(z,Bz,t)]
0Z(Bz,z,t) 0 Z(z,zt) 0 Z(z, Bz, t)} <Z(Bz, z,t).

The above inequalities imply that Bz =z. Therefore, Az =Sz =Bz =Tz =z Hence
A,B,S and T have a common fixed pointin X.
Now we are going to examine the uniqueness. For this, let w be another common fixed point of
A,B,S and T. By using (4), we obtain

E(z,w,qt) = E(Az, Bw, qt)
1
> {E(SZ, Tw,t) * E(Sz,Az,t) 3 [E(Sz,Tw,t) + E(Az, Tw, t)]

1
<> [E(Az, Bw,0) + E(S7, Bw, )] « E(Bw, Tw, ) * E(Az Tw, ) » E(Sz, Bw, t)}
2 E(Zl w, t)l

H(z,w,qt) = H(Az, Bw, qt)
1
< {H (52,Tw,0) © H(S7,42,6) © > [H(S7,Tw, t) + H(Az Tw, 1)

o % [H(Az, Bw,t) + H(Sz, Bw,t)] c H(Bw,Tw, t) ©c H(Az,Tw,t) © H(Sz, Bw, t)}
< H(z,w,t),

Z(z,w,qt) = Z(Az, Bw, qt)
<{zs2.1w,0) 0 2(57,47,0) 0 % [2(S2,Tw, ©) + Z(Az, Tw, ©)]

1
0 =124z, Bw, ) + Z(2, Bw, 0)] © Z(Bw, Tw,t) © Z(Az, Tw,t) © Z(57, Bw, t)}
<Z(z,w,t).

By Lemma 4.7, we obtain that z = w. Hence A, B, S and T have a unique common fixed point in X.
5. Conclusions

We introduced the novel concepts of generalized neutrosophic cone metric space and
&-chainable neutrosophic metric space. We investigated common fixed point results for two and three
self-mappings in the sense of generalized neutrosophic cone metric space and common fixed point
results for four self mappings in the sense of &-chainable neutrosophic metric space. The uniqueness
of solution is investigated by using fuzzy Fredholm integral equation of second kind. This new
setting has many applications in fuzzy analysis and it will open new doors to generalize common
fixed point results. Also this work can be extended to other self-mappings.
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