
This paper derived fractional derivatives with Atangana-Baleanu, Atangana-Toufik scheme and fractal fractional Atangana-Baleanu sense for the COVID-19 model. These are advanced techniques that provide effective results to analyze the COVID-19 outbreak. Fixed point theory is used to derive the existence and uniqueness of the fractional-order model COVID-19 model. We also proved the property of boundedness and positivity for the fractional-order model. The Atangana-Baleanu technique and Fractal fractional operator are used with the Sumudu transform to find reliable results for fractional order COVID-19 Model. The generalized Mittag-Leffler law is also used to construct the solution with the different fractional operators. Numerical simulations are performed for the developed scheme in the range of fractional order values to explain the effects of COVID-19 at different fractional values and justify the theoretical outcomes, which will be helpful to understand the outbreak of COVID-19 and for control strategies.
Citation: Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel. Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel[J]. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
[1] | Rahat Zarin, Amir Khan, Aurangzeb, Ali Akgül, Esra Karatas Akgül, Usa Wannasingha Humphries . Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator. AIMS Mathematics, 2022, 7(9): 15939-15964. doi: 10.3934/math.2022872 |
[2] | Bahar Acay, Ramazan Ozarslan, Erdal Bas . Fractional physical models based on falling body problem. AIMS Mathematics, 2020, 5(3): 2608-2628. doi: 10.3934/math.2020170 |
[3] | Abdon Atangana, Ali Akgül . Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406 |
[4] | Khaled M. Saad, Manal Alqhtani . Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6(4): 3788-3804. doi: 10.3934/math.2021225 |
[5] | Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116 |
[6] | Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park . A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767 |
[7] | Shao-Wen Yao, Muhammad Farman, Maryam Amin, Mustafa Inc, Ali Akgül, Aqeel Ahmad . Fractional order COVID-19 model with transmission rout infected through environment. AIMS Mathematics, 2022, 7(4): 5156-5174. doi: 10.3934/math.2022288 |
[8] | Abdon Atangana, Seda İğret Araz . Extension of Chaplygin's existence and uniqueness method for fractal-fractional nonlinear differential equations. AIMS Mathematics, 2024, 9(3): 5763-5793. doi: 10.3934/math.2024280 |
[9] | Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries . Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041 |
[10] | Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah . Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels. AIMS Mathematics, 2022, 7(8): 14975-14990. doi: 10.3934/math.2022820 |
This paper derived fractional derivatives with Atangana-Baleanu, Atangana-Toufik scheme and fractal fractional Atangana-Baleanu sense for the COVID-19 model. These are advanced techniques that provide effective results to analyze the COVID-19 outbreak. Fixed point theory is used to derive the existence and uniqueness of the fractional-order model COVID-19 model. We also proved the property of boundedness and positivity for the fractional-order model. The Atangana-Baleanu technique and Fractal fractional operator are used with the Sumudu transform to find reliable results for fractional order COVID-19 Model. The generalized Mittag-Leffler law is also used to construct the solution with the different fractional operators. Numerical simulations are performed for the developed scheme in the range of fractional order values to explain the effects of COVID-19 at different fractional values and justify the theoretical outcomes, which will be helpful to understand the outbreak of COVID-19 and for control strategies.
Coronavirus (COVID-19) is a new phenomenon in recent days, which indulged the whole world in an emergency situation. According to reports, it's originated from Wuhan city of China [1]. In December 2019, the first case of novel coronavirus was reported. The symptoms of coronavirus are dry cough, fever, fatigue, and severe cases of acute respiratory syndrome that appears in 2–10 days and further cause pneumonia, Kidney failure, and even death [2]. Between March and April, coronavirus became a global phenomenon, and the whole globe faced an emergency situation. Initial cases were reported in the wet seafood market in Wuhan, China [3]. That's why some researchers thought that it's transmitted in humans through animals. This virus is transmitted from one person to another through physical contact, droplets during sneezing and coughing [4]. Researchers of the field of epidemiology and other fields of biology are trying hard to develop the cure based on ongoing clinical trials, but different researching companies of different countries have developed the vaccine of COVID-19. If we mention here, then China, the USA, England and Russia have developed the vaccine. In most countries of the globe, people receiving doses of vaccines. According to WHO, at 4:53 pm CET, 18 March 2021, there were 120,915,219 confirmed cases reported globally, including 2,674,078 deaths and a total of 364,184,603 vaccine doses were administered [5]. Developed countries like the USA, UK, Italy, Spain, and many others are affected very badly; most of the global deaths are reported from these countries [6]. Some precautionary measures for COVID-19 are wearing a face mask, maintaining a 6feet distance, coughing and sneezing in the elbow, and washing your hands minimally 30 seconds. Almost all countries' governments have enforced non-medical interventions such as social distancing, self-quarantine, isolation, wearing a face mask, protecting gears for medical staff, and travel restrictions to control the spread of disease. Mathematical modelling is used to understand the dynamics and behaviour of disease and then develop the procedures for the treatment of disease. For this purpose, many researchers developed the COVID-19 models (see [7,8,9,10]). The reproductive number has a notable role in the analysis of mathematical models. Reproductive number explains the behaviour of the simulation of COVID-19.
In Pakistan, 739,818 confirmed cases had been reported, including 15,872 deaths out of over 220 million population to date [11,12]. On 26 February 2020, the first case of COVID-19 was reported in Karachi, Pakistan's economic hub. Nowadays, Pakistan has been facing the third wave of COVID-19, which is at its peak. The government is not in the right of Strick lockdown because most of the people are a daily wager; that's why the government has been implementing smart lockdown. There are many mathematical models provided for more insight into how to control the spread of Covid-19 to health authorities [13,14,15]. In three highly affected countries, the transmission pattern of COVID-19 was studied by Fanelli and Piazza [16]. To explain the simulation of COVID-19 transmission [17,18] are used and explain the natural fact of fractional-order mathematical models in a systematic way as in [19,20]. The fractional-order models are more effective than classical integer models in analyzing the dynamics and behaviour of infectious diseases [21,22]. The fractional-order models give better results to the real data. Some fractional operators are given in [23,24], and applications of these fractional operators are given in [25,26]. The investigations of some other infectious disease mathematical models have been studied in [27,28,29,30,31]. Studied the outcome of an antiviral drug on the system to obstruct the contact between epithelial cells and SARS-CoV-2 to restrict the COVID-19 disease in [37,38]. Results have good accuracy, and the method is valid for the fuzzy system of fractional ODEs COVID-19. Also, the random COVID-19 model described by a system of random differential equations was presented in [39,40,41,42,43], and some application of fractional order for the real-life problem was also given in [44,45,46,47,48].
In this paper, we proposed a fractional-order COVID-19 model with Atangana-Baleanu, Atangan-Tufik scheme and fractal fractional-order derivative. In Section 1, we construct the introduction with the literature review of COVID-19 and fractional calculus. Section 2 has some basic definitions which are helpful for analysis and simulation if the model. In Section 3, the mathematical model of COVID-19 is present with disuses the boundedness and positivity of the model. In Section 4, using fixed point theory and an iterative method, the existence and uniqueness of the system of solutions for the model have been made. In Sections 5 and 6, new numerical scheme and fractal fractional-order derivative construct with Atanga-Tufik method for real data of Wuhan China. In Section 7, we describe the numerical simulation of the proposed scheme with real data and best-fitted parameter substitution. We give the conclusions and perspectives in Section 8.
Definition 2.1. For a function y(t)∈W12(0,1),b>aandΘ∈[0,1], the definition of Atangana-Baleanu derivative in the Caputo sense is given by
ABC0DΘty(t)=AB(Θ)1−Θt∫0ddτy(τ)MΘ[−Θ1−Θ(t−τ)Θ]dτ,n−1<Θ<n | (1) |
where
AB(Θ)=1−Θ+ΘΓ(Θ). |
By using the Sumudu transform (ST) for (1), we obtain
ST[ABC0DΘty(t)](s)=q(Θ)1−Θ{ΘΓ(Θ+1)MΘ(−11−ΘVΘ)}×[ST(y(t))−y(0)]. | (2) |
Definition 2.2. The Laplace transform of the Caputo fractional derivative of a function y(t) of order Θ>0 is defined as
L[0CDΘty(t)]=sΘy(s)−∑n−1Θ=0y(Θ)(0)sΘ−v−1. | (3) |
Definition 2.3. The Laplace transform of the function tΘ1−1EΘ,Θ1(±μtΘ) is defined as
L[tΘ1−1EΘ,Θ1(±μtΘ)]=sΘ−Θ1sΘ∓μ, | (4) |
where EΘ,Θ1 is the two-parameter Mittag-Leffler function with Θ,Θ1>0. Further, the Mittag-Leffler function satisfies the following equation [32].
EΘ,Θ1(f)=fEΘ,Θ+Θ1(f)+1Γ(Θ1). | (5) |
Definition 2.4. Suppose that y(t) is continuous on an open interval (a,b), then the fractal-fractional integral of y(t) of order Θ having Mittag-Leffler type kernel and given by
FFMJΘ,Θ10,t(y(t))=ΘΘ1AB(Θ)Γ(Θ)t∫0sΘ1−1y(s)(t−s)Θds+Θ1(1−Θ)tΘ1−1y(t)AB(Θ). | (6) |
This section considers the novel coronavirus (COVID-19) disease model developed by Yang and Wang [33]. In this model total human population is divided into five classes, namely, susceptible individuals are represented by Sc, Ec represents exposed individuals, who are infected but not infectious as yet, Ic represents infected population, those individuals in which symptoms have shown strongly and can spread infection by contact with susceptible individuals, Rcrepresents the individuals who have no symptoms and they have recovered after receiving treatment and the concentration of virus is represented by Vc.
dScdt=Πc−βEcScEc−βIcScIc−βVcScVc−μcSc, |
dEcdt=βEcScEc+βIcScIc+βVcScVc−(αc+μc)Ec, |
dIcdt=αcEc−(ωc+γc+μc)Ic, | (7) |
dRcdt=γcIc−μcRc, |
dVcdt=ψ1cEc+ψ2cIc−τcVc. |
In the above system parameters are defined as the influx of population is denoted by Πc, µc represents natural death rate, (αc)−1 represents quarantine period of the infected individuals, rate of recovery is denoted by γc, The exposed and infected people which contributing the coronavirus in the surrounding is represented by ψ1c, ψ2c respectively, disease induced death rate is represented by ωc and τc represents removal rate. βEc represents the rate of human to human transmission of virus between exposed and susceptible people, The rate of human to human transmission between infected and susceptible people are represented by βIc and βVc denotes the rate of transmission due to environmental contact to human. We suppose that given all functions βEc,βIcandβVc are non-negative and non-increasing. By applying Atangana-Baleanu fractional derivative (ABC) of order Θ and Θ∈(0,1], then the system (7) becomes
ABC0DΘtSc=Πc−βEcScEc−βIcScIc−βVcScVc−μcSc, |
ABC0DΘtEc=βEcScEc+βIcScIc+βVcScVc−(αc+μc)Ec, |
ABC0DΘtIc=αcEc−(ωc+γc+μc)Ic, | (8) |
ABC0DΘtRc=γcIc−μcRc, |
ABC0DΘtVc=ψ1cEc+ψ2cIc−τcVc. |
Initial conditions are
Sc(0)≥a1,Ec(0)≥a2,Ic(0)≥a3,Rc(0)≥a4andVc(0)≥a5. | (9) |
Equilibrium points
In this section, we will discuss the equilibrium points of the given COVID-19 model (8). Equilibrium points have two types, namely disease-free equilibrium and endemic equilibrium. We obtained these points by putting the Right-hand side of the system (7) is zero. We suppose that E0 represents disease free equilibrium and endemic equilibrium is represented by E∗, we have
E0=(Sc(0),Ec(0),Ic(0),Rc(0),Vc(0))=(Πcμc,0,0,0,0) |
E∗=(S∗c,E∗c,R∗c,I∗c,V∗c),where |
S∗c=1μc(Πc−(αc+μc)E∗c),E∗c=(ωc+γc+μc)I∗cαc,R∗c=γcI∗cμc,V∗c=ψ1c(ωc+γc+μc)+αcψ2cI∗c(d+μ+δ). |
We obtain the basic reproductive number R0 by [34], we have
R0=βEcSc(0)(αc+μc)+αcβIcSc(0)(ωc+γc+μc)(αc+μc)+((ωc+γc+μc)ψ1c+αcψ2c)βVcSc(0)τc(ωc+γc+μc)(αc+μc) |
We consider the following parameters values and initial conditions [34] for our simulations:
Πc=8859.23×104,βEc=6.11×10−8,βIc=2.62×10−8,βVc=3.03×10−8,μc=3.01×10−2,αc=0.143,ωc=0.01,γc=0.67,ψ1c=1.30,ψ2c=0.06,τc=2.0. |
Theorem 3.1. The solution of the proposed fractional-order model (8) along initial conditions (9) is unique and bounded in R5+.
Proof.
The existence and uniqueness of the solution of system (8) on the time interval (0,∞) can be obtained by the process discussed in the work of Lin [36]. Subsequently, we have to explain the non-negative region R5+ is positively invariant region. From model (8), we find
OABCDΘtSc|Sc=0=Πc≥0 |
OABCDΘtEc|Ec=0=βIcScIc+βVcScVc≥0 |
OABCDΘtIc|Ic=0=αcEc≥0 |
OABCDΘtRc|Rc=0=γcIc≥0 |
OABCDΘtVc|Vc=0=ψ1cEc+ψ2cIc≥0. |
If (Sc(0),Ec(0),Ic(0),Rc(0),Vc(0))∈R5+, the solution [Sc(t),Ec(t),Ic(t),Rc(t),Vc(t)] cannot escape from the hyperplanes Sc=0,Ec=0,Ic=0,Rc=0andVc=0. Also, on each hyperplane bounding the non-negative orthant, the vector field points into R5+, i.e., the domain R5+ is a positively invariant set.
In the next theorem, we will show the boundedness of the solution to the proposed model (8).
Theorem 3.2. The region A={(Sc(t),Ec(t),Ic(t),Rc(t),Vc(t))∈R5+|0≤Sc(t)+Ec(t)+Ic(t)+Rc(t)+Vc(t)≤Πcμc} is a positive invariant set for system (8).
Proof. For the proof of the theorem, we have from system (8)
OABCDΘtNc(t)=Πc+ψ1cEc+ψ2cIc−ωcIc−τcVc−μcNc, |
where
Nc=Sc+Ec+Ic+Rc. |
Since ψ1cEc,ψ2cIc,ωcIc,τcVc are positive parameters, then
OABCDΘtNc(t)≤Πc−μcNc. |
Applying the Laplace transform to above equation, we get
sΘNc(s)−sΘ−1Nc(0)≤Πcs−μcNc(s), |
which further gives
Nc(s)≤s−1sΘ+μcΠc+sΘ−1sΘ+μcNc(0). |
From Eqs (3) and (4) we infer that if(Sc0,Ec0,Ic0,Rc0,Vc0)∈R5+, then
Nc(t)≤ΠctΘEΘ,Θ+1(−μctΘ)+EΘ,1(−μctΘ) |
≤(Ω−δ)μc(μctΘEΘ,Θ+1(−dtΘ))+EΘ,1(−dtΘ) |
≤Πcμc1Γ(1)≤Πcμc. |
This shows that the total population N(t), i.e., the subpopulations S(t),H(t),I(t) and Q(t), are bounded. This proves the boundedness of the solution of system (8).
By using the Sumudu transform on the system (8), we get
q(Θ)ΘΓ(Θ+1)1−ΘMΘ(−11−ΘVΘ)ST{Sc(t)−Sc(0)}=ST[Πc−βEcScEc−βIcScIc−βVcScVc−μcSc], |
q(Θ)ΘΓ(Θ+1)1−ΘMΘ(−11−ΘVΘ)ST{Ec(t)−Ec(0)}=ST[βEcScEc+βIcScIc+βVcScVc−(αc+μc)Ec], |
q(Θ)ΘΓ(Θ+1)1−ΘMΘ(−11−ΘVΘ)ST{Ic(t)−Ic(0)}=ST[αcEc−(ωc+γc+μc)Ic], | (10) |
q(Θ)ΘΓ(Θ+1)1−ΘMΘ(−11−ΘVΘ)ST{Rc(t)−Rc(0)}=ST[γcIc−μcRc], |
q(Θ)ΘΓ(Θ+1)1−ΘMΘ(−11−ΘVΘ)ST{Vc(t)−Vc(0)}=ST[ψ1cEc+ψ2cIc−τcVc]. |
Rearranging, we get
ST(Sc(t))=Sc(0)+1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[Πc−βEcScEc−βIcScIc−βVcScVc−μcSc], |
ST(Ec(t))=Ec(0)+1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[βEcScEc+βIcScIc+βVcScVc−(αc+μc)Ec], |
ST(Ic(t))=Ic(0)+1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[αcEc−(ωc+γc+μc)Ic], | (11) |
ST(Rc(t))=Rc(0)+1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[γcIc−μcRc], |
ST(Vc(t))=Vc(0)+1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[ψ1cEc+ψ2cIc−τcVc]. |
By using the inverse Sumudu transform of system (11), we have
Sc(t)=Sc(0)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[Πc−βEcScEc−βIcScIc−βVcScVc−μcSc]], |
Ec(t)=Ec(0)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[βEcScEc+βIcScIc+βVcScVc−(αc+μc)Ec]], |
Ic(t)=Ic(0)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[αcEc−(ωc+γc+μc)Ic]], | (12) |
Rc(t)=Rc(0)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[γcIc−μcRc]], |
Vc(t)=Vc(0)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[ψ1cEc+ψ2cIc−τcVc]]. |
Therefore the following recursive formula is obtained.
Scn+1(t)=Scn(0)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[Πc−βEcScnEcn−βIcScnIcn−βVcScnVcn−μcScn]], |
Ecn+1(t)=Ecn(0)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[βEcScnEcn+βIcScnIcn+βVcScnVcn−(αc+μc)Ecn]], |
Icn(t)=Icn(0)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[αcnEcn−(ωc+γc+μc)Icn]], | (13) |
Rcn+1(t)=Rcn(0)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[γcnIcn−μcnRcn]], |
Vcn+1(t)=Vcn(0)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[ψ1cEcn+ψ2cIcn−τcVcn]]. |
And the solution of (13) is provided by
Sc(t)=limn→∞Scn(t),Ec(t)=limn→∞Ecn(t),Ic(t)=limn→∞Icn(t),Rc(t)=limn→∞Rcn(t), |
Vc(t)=limn→∞Vcn(t). |
Stability analysis of model by using fixed-point theory
Theorem 4.1. Suppose that (Y,|.|) as a Banach space and H a self-map of Y satisfying
‖Hy−Hr‖≤θ‖Y−Hy‖+θ‖y−r‖, |
∀y,r∈Y, and 0≤θ<1. Assume that H is Picard H-Stable. Suppose that from system (10), we have
1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ) | (14) |
Equation (14) is a Lagrange multiplier.
Proof. Suppose K as a self-map is given as
K[Scn+1(t)]=Scn+1(t)=Scn(t)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[Πc−βEcScnEcn−βIcScnIcn−βVcScnVcn−μcScn]], |
K[Ecn+1(t)]=Ecn+1(t)=Ecn(t)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[βEcScnEcn+βIcScnIcn+βVcScnVcn−(αc+μc)Ecn]], |
K[Icn+1(t)]=Icn+1(t)=Icn(t)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[αcnEcn−(ωc+γc+μc)Icn]], | (15) |
K[Rcn+1(t)]=Rcn+1(t)=Rcn(t)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[γcnIcn−μcnRcn]], |
K[Vcn+1(t)]=Vcn+1(t)=Vcn(t)+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST[ψ1cEcn+ψ2cIcn−τcVcn]]. |
By taking the norm and also using the triangular inequality, we obtain
‖K[Scn(t)]−K[Scm(t)]‖≤‖Scn(t)−Scm(t)‖+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST{Πc−βEc‖ScnEcn−ScmEcm‖−βIc‖ScnIcn−ScmIcm‖−βVc‖ScnVcn−ScmVcm‖−μc‖Scn−Scm‖}], |
‖K[Ecn(t)]−K[Ecm(t)]‖≤‖Ecn(t)−Ecm(t)‖+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST{βEc‖ScnEcn−ScmEcm‖+βIc‖ScnIcn−ScmIcm‖+βVc‖ScnVcn−ScmVcm‖−(αc+μc)‖Ecn−Ecm‖}], |
‖K[Icn(t)]−K[Icm(t)]‖≤‖Icn(t)−Icm(t)‖+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST{αcn‖Ecn−Ecm‖−(ωc+γc+μc)‖Icn−Icm‖}], | (16) |
‖K[Rcn(t)]−K[Rcm(t)]‖≤‖Rcn(t)−Rcm(t)‖+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST{γcn‖Icn−Icm‖−μcn‖Rcn−Rcm‖}], |
‖K[Vcn(t)]−K[Vcm(t)]‖≤‖Vcn(t)−Vcm(t)‖+ST−1[1−Θq(Θ)ΘΓ(Θ+1)MΘ(−11−ΘVΘ)×ST{ψ1c‖Ecn−Ecm‖+ψ2c‖Icn−Icm‖−τc‖Vcn−Vcm‖}]. |
Hence K satisfied all the conditions of Theorem (4.1) while
M=(0,0,0,0,0),M={‖Scn(t)−Scm(t)‖×‖−(Scn(t)+Scm(t))‖+Πc−βEc‖ScnEcn−ScmEcm‖−βIc‖ScnIcn−ScmIcm‖−βVc‖ScnVcn−ScmVcm‖−μc‖Scn−Scm‖×‖Ecn(t)−Ecm(t)‖×‖−(Ecn(t)+Ecm(t))‖+βEc‖ScnEcn−ScmEcm‖+βIc‖ScnIcn−ScmIcm‖+βVc‖ScnVcn−ScmVcm‖−(αc+μc)‖Ecn−Ecm‖×‖Icn(t)−Icm(t)‖×‖−(Icn(t)+Icm(t))‖+αcn‖Ecn−Ecm‖−(ωc+γc+μc)‖Icn−Icm‖×‖Rcn(t)−Rcm(t)‖×‖−(Rcn(t)+Rcm(t))‖+γcn‖Icn−Icm‖−μcn‖Rcn−Rcm‖×‖Vcn(t)−Vcm(t)‖×‖−(Vcn(t)+Vcm(t))‖+ψ1c‖Ecn−Ecm‖+ψ2c‖Icn−Icm‖−τc‖Vcn−Vcm‖ |
This shows that K is Picard K-Stable.
Theorem 4.2. Prove that system (8) has special unique solution.
Proof. Let Hilbert space H=L2((a,b)×(0,T)) which is given as
y:(a,b)×(0,T)→R,∬ghdgdh<∞. |
Suppose that
M(0,0,0,0,0),M={Πc−βEcScEc−βIcScIc−βVcScVc−μcSc,βEcScEc+βIcScIc+βVcScVc−(αc+μc)Ec,αcEc−(ωc+γc+μc)Ic,γcIc−μcRc,ψ1cEc+ψ2cIc−τcVc. |
We show that
P((Sc11−Sc12,Ec21−Ec22,Ic31−Ic32,Rc41−Rc42,Vc51−Vc52),(W1,W2,W3,W4,W5)). |
Where (Sc11−Sc12,Ec21−Ec22,Ic31−Ic32,Rc41−Rc42,Vc51−Vc52), represents the special solutions of system. We use the correspondence between norm and the inner product, we write the equation as
{Πc−βEc(Sc11−Sc12)(Ec21−Ec22)−βIc(Sc11−Sc12)(Ic31−Ic32)−βVc(Sc11−Sc12)(Vc51−Vc52)−μc(Sc11−Sc12),W1}≤Πc‖W1‖−βEc‖Sc11−Sc12‖‖Ec21−Ec22‖‖W1‖−βIc‖Sc11−Sc12‖‖Ic31−Ic32‖‖W1‖−βVc‖Sc11−Sc12‖‖Vc51−Vc52‖‖W1‖−μc‖Sc11−Sc12‖‖W1‖ |
{βEc(Sc11−Sc12)(Ec21−Ec22)+βIc(Sc11−Sc12)(Ic31−Ic32)+βVc(Sc11−Sc12)(Vc51−Vc52)−(αc+μc)(Ec21−Ec22),W2}≤βEc‖Sc11−Sc12‖‖Ec21−Ec22‖‖W2‖+βIc‖Sc11−Sc12‖‖Ic31−Ic32‖‖W2‖+βVc‖Sc11−Sc12‖‖Vc51−Vc52‖‖W2‖−(αc+μc)‖Ec21−Ec22‖‖W2‖ |
{αc(Ec21−Ec22)−(ωc+γc+μc)(Ic31−Ic32),W3}≤αc‖Ec21−Ec22‖‖W3‖−(ωc+γc+μc)‖Ic31−Ic32‖‖W3‖ |
{γc(Ic31−Ic32)−μc(Rc41−Rc42),W4}≤γc‖Ic31−Ic32‖‖W4‖−μc‖Rc41−Rc42‖‖W4‖ |
{ψ1c(Ec21−Ec22)+ψ2c(Ic31−Ic32)−τc(Vc51−Vc52),W5}≤ψ1c‖Ec21−Ec22‖‖W5‖+ψ2c‖Ic31−Ic32‖‖W5‖−τc‖Vc51−Vc52‖‖W5‖ |
Due to large number of e1,e2,e3,e4ande5, both solutions converge to the exact solution. Applying the topological idea, we have the very small positive five parameters (χe1,χe2,χe3χe4andχe5).
‖Sc−Sc11‖,‖Sc−Sc12‖≤χe1ϖ,‖Ec−Ec21‖,‖Ec−Ec22‖≤χe2ς, |
‖Ic−Ic31‖,‖Ic−Ic32‖≤χe3υ,‖Rc−Rc41‖,‖Rc−Rc42‖≤χe4κ, |
‖Vc−Vc51‖,‖Vc−Vc52‖≤χe5ζ. |
Where
ϖ=5(Πc−βEc‖Sc11−Sc12‖‖Ec21−Ec22‖−βIc‖Sc11−Sc12‖‖Ic31−Ic32‖−βVc‖Sc11−Sc12‖‖Vc51−Vc52‖−μc‖Sc11−Sc12‖)‖W1‖ |
ς=5(βEc‖Sc11−Sc12‖‖Ec21−Ec22‖+βIc‖Sc11−Sc12‖‖Ic31−Ic32‖+βVc‖Sc11−Sc12‖‖Vc51−Vc52‖−(αc+μc)‖Ec21−Ec22‖)‖W2‖ |
υ=5(αc‖Ec21−Ec22‖−(ωc+γc+μc)‖Ic31−Ic32‖)‖W3‖ |
κ=5(γc‖Ic31−Ic32‖−μc‖Rc41−Rc42‖)‖W4‖ |
ζ=5(ψ1c‖Ec21−Ec22‖+ψ2c‖Ic31−Ic32‖−τc‖Vc51−Vc52‖)‖W5‖ |
But, it is obvious that
(Πc−βEc‖Sc11−Sc12‖‖Ec21−Ec22‖−βIc‖Sc11−Sc12‖‖Ic31−Ic32‖−βVc‖Sc11−Sc12‖‖Vc51−Vc52‖−μc‖Sc11−Sc12‖)≠0 |
(βEc‖Sc11−Sc12‖‖Ec21−Ec22‖+βIc‖Sc11−Sc12‖‖Ic31−Ic32‖+βVc‖Sc11−Sc12‖‖Vc51−Vc52‖−(αc+μc)‖Ec21−Ec22‖)≠0 |
(αc‖Ec21−Ec22‖−(ωc+γc+μc)‖Ic31−Ic32‖)≠0 |
(γc‖Ic31−Ic32‖−μc‖Rc41−Rc42‖)≠0 |
(ψ1c‖Ec21−Ec22‖+ψ2c‖Ic31−Ic32‖−τc‖Vc51−Vc52‖)≠0 |
Where ‖W1‖,‖W2‖,‖W3‖,‖W4‖,‖W5‖≠0
Therefore, we have
‖Sc11−Sc12‖=0,‖Ec21−Ec22‖=0,‖Ic31−Ic32‖=0,‖Rc41−Rc42‖=0, |
‖Vc51−Vc52‖=0, |
which yields that
Sc11=Sc12,Ec21=Ec22,Ic31=Ic32,Rc41=Rc42,Vc51=Vc52. |
This shows that, the special solution is unique.
We define the Atanagana-Tufik proposed scheme for fractional derivative model (8) for the COVID-19 epidemic [35]. For this purpose, we suppose that
{ABC0Dx(t)=g(t,x(t)),x(0)=x0. | (17) |
We express the Eq (17) in the form of fractional integral equation by applying fundamental theorem of fractional calculus.
x(t)−x(0)=(1−Θ)ABC(Θ)g(t,x(t))+ΘΓ(Θ)×ABC(Θ)∫t0g(τ,x(τ))(t−τ)Θ−1dτ. | (18) |
At a given point tn+1,n=0,1,2,3,…, the above equation is reformulated as
x(tn+1)−x(0)=(1−Θ)ABC(Θ)g(tn,x(tn))+ΘΓ(Θ)×ABC(Θ)∫tn+10g(τ,x(τ))(tn+1−τ)Θ−1dτ |
=(1−Θ)ABC(Θ)g(tn,x(tn))+ΘΓ(Θ)×ABC(Θ)∑nj=0∫tj+1tjg(τ,x(τ))(tn+1−τ)Θ−1dτ. | (19) |
Within the interval [tj,tj+1], the function g(τ,x(τ)), using the two-steps Lagrange polynomial interpolation, can be approximate as follows:
Pj(τ)=τ−tj−1tj−tj−1g(tj,x(tj))−τ−tjtj−tj−1g(tj−1,x(tj−1)) |
=g(tj,x(tj))h(τ−tj−1)−g(tj−1,x(tj−1))h(τ−tj) |
≅g(tj,xj)h(τ−tj−1)−g(tj−1,xj−1)h(τ−tj). | (20) |
The above approximation can therefore be included in Eq (19) to produce
xn+1=x0+(1−Θ)ABC(Θ)g(tn,x(tn))+ΘΓ(Θ)×ABC(Θ)∑nj=0(g(tj,xj)h∫tj+1tj(τ−tj−1)(tn+1−τ)Θ−1dτ−g(tj−1,xj−1)h∫tj+1tj(τ−tj)(tn+1−τ)Θ−1dτ). | (21) |
For simplicity, we let
Ya,j,1=∫tj+1tj(τ−tj−1)(tn+1−τ)Θ−1dτ |
and also
Ya,j,2=∫tj+1tj(τ−tj)(tn+1−τ)Θ−1dτ |
Ya,j,1=hΘ+1p1p2−p3p4Θ(Θ+1) | (22) |
Ya,j,2=hΘ+1p5−p3p6Θ(Θ+1), | (23) |
where
p1=(m+1−j)Θp2=(m−j+2+Θ)p3=(m−j)Θ |
p4=(m−j+2+2Θ)p5=(m+1−j)Θ+1p6=(m−j+1+Θ). |
By using Eqs (22) and (23), we obtain
xn+1=x0+(1−Θ)ABC(Θ)g(tn,x(tn))+ΘABC(Θ)∑nj=0(hΘg(tj,xj)Γ(Θ+2)(p1p2−p3p4)−hΘg(tj−1,xj−1)Γ(Θ+2)(p5−p3p6)). |
We obtain the following for model (8).
Scn+1=Sc0+(1−Θ)ABC(Θ)g(tn,Sc(tn))+ΘABC(Θ)∑nj=0(hΘf(tj,Scj)Γ(Θ+2)(p1p2−p3p4)−hΘg(tj−1,Scj−1)Γ(Θ+2)(p5−p3p6)) |
Ecn+1=Ec0+(1−Θ)ABC(Θ)g(tn,Ec(tn))+ΘABC(Θ)∑nj=0(hΘg(tj,Ecj)Γ(Θ+2)(p1p2−p3p4)−hΘg(tj−1,Ecj−1)Γ(Θ+2)(p5−p3p6)) |
Icn+1=Ic0+(1−Θ)ABC(Θ)g(tn,Ic(tn))+ΘABC(Θ)∑nj=0(hΘg(tj,Icj)Γ(Θ+2)(p1p2−p3p4)−hΘg(tj−1,Icj−1)Γ(Θ+2)(p5−p3p6)) | (25) |
Rcn+1=Rc0+(1−Θ)ABC(Θ)g(tn,Rc(tn))+ΘABC(Θ)∑nj=0(hΘg(tj,Rcj)Γ(Θ+2)(p1p2−p3p4)−hΘg(tj−1,Rcj−1)Γ(Θ+2)(p5−p3p6)) |
Vcn+1=Vc0+(1−Θ)ABC(Θ)g(tn,Vc(tn))+ΘABC(Θ)∑nj=0(hΘg(tj,Vcj)Γ(Θ+2)(p1p2−p3p4)−hΘg(tj−1,Vcj−1)Γ(Θ+2)(p5−p3p6)). |
We present the COVID-19 model (7) using fractal-fractional Atangana-Baleanu derivative. We have the following model:
FFDΘ,Θ10,tSc=Πc−βEcScEc−βIcScIc−βVcScVc−μcSc, |
FFDΘ,Θ10,tEc=βEcScEc+βIcScIc+βVcScVc−(αc+μc)Ec, |
FFDΘ,Θ10,tIc=αcEc−(ωc+γc+μc)Ic, | (26) |
FFDΘ,Θ10,tRc=γcIc−μcRc, |
FFDΘ,Θ10,tVc=ψ1cEc+ψ2cIc−τcVc. |
In order to present the numerical algorithm for the fractal-fractional COVID-19 model (26), we first describe the general system and present the steps by considering the Cauchy problem below:
0FFMDΘ,Θ1tx(t)=Φ(t,x(t)). | (27) |
The following is obtained by integrating the above equation:
x(t)−x(0)=(1−Θ)C(Θ)Θ1tΘ1−1Φ(t,x(t))+ΘΘ1C(Θ)Γ(Θ)t∫0τΘ1−1Φ(τ,x(τ))(t−τ)Θ−1dτ, | (30) |
Let k(t,x(t))=Θ1tΘ1−1Φ(t,x(t)), then system (26) becomes
x(t)−x(0)=(1−Θ)C(Θ)k(t,x(t))+ΘC(Θ)Γ(Θ)t∫0k(τ,x(τ))(t−τ)Θ−1dτ, | (28) |
At tn+1=(n+1)∆t, we have
x(tn+1)−x(0)=(1−Θ)C(Θ)k(tn,x(tn))+ΘC(Θ)Γ(Θ)tn+1∫0k(τ,x(τ))(tn+1−τ)Θ−1dτ, | (29) |
Also, we have
x(tn+1)=x(0)+(1−Θ)C(Θ)k(tn,x(tn))+ΘC(Θ)Γ(Θ)∑nj=2tj+1∫tjk(τ,x(τ))(tn+1−τ)Θ−1dτ. | (30) |
Approximating the function k(t,x(t)), using the Newton polynomial, we have
Pn(τ)=k(tn−2,x(tn−2))+k(tn−1,x(tn−1))−k(tn−2,x(tn−2))∆t(τ−tn−2)+k(tn,x(tn))−2k(tn−1,x(tn−1))+k(tn−2,x(tn−2))2(∆t)2(τ−tn−2)(τ−tn−1) | (31) |
Using Eq (31) into system (30), we have
xn+1=x0+(1−Θ)C(Θ)k(tn,x(tn))+ΘC(Θ)Γ(Θ)∑nj=2tj+1∫tj{k(tn−2,x(tn−2))+k(tn−1,x(tn−1))−k(tn−2,x(tn−2))∆t(τ−tn−2)+k(tn,x(tn))−2k(tn−1,x(tn−1))+k(tn−2,x(tn−2))2(∆t)2(τ−tn−2)(τ−tn−1)}(tn+1−τ)Θ−1dτ. | (32) |
Rearranging the above system, we have
xn+1=x0+(1−Θ)C(Θ)k(tn,x(tn))+ΘC(Θ)Γ(Θ)∑nj=2k(tj−2,xj−2)tj+1∫tj(tn+1−τ)Θ−1dτ+ΘC(Θ)Γ(Θ)∑nj=2k(tj−1,xj−1)−k(tj−2,xj−2)∆ttj+1∫tj(τ−tj−2)(tn+1−τ)Θ−1dτ+ΘC(Θ)Γ(Θ)∑nj=2k(tj,xj)−2k(tj−1,xj−1)+k(tj−2,xj−2)2(∆t)2tj+1∫tj(τ−tj−2)(τ−tj−1)(tn+1−τ)Θ−1dτ. | (33) |
Now, calculating the integrals in system (33), we get
tj+1∫tj(tn+1−τ)Θ−1dτ=(∆t)ΘΘ[(m−j+1)Θ−(m−j)Θ], |
tj+1∫tj(τ−tj−2)(tn+1−τ)Θ−1dτ=(∆t)Θ+1Θ(Θ+1)[(m−j+1)Θ(m−j+3+2Θ)−(m−j+1)Θ(m−j+3+3Θ)], |
tj+1∫tj(τ−tj−2)(τ−tj−1)(tn+1−τ)Θ−1dτ=(∆t)Θ+2Θ(Θ+1)(Θ+2)[(m−j+1)Θ{2(m−j)2+(3Θ+10)(m−j)+2Θ2+9Θ+12}−(m−j)Θ{2(m−j)2+(5Θ+10)(m−j)+6Θ2+18Θ+12}]. |
Inserting them into system (33), we get
xn+1=x0+(1−Θ)C(Θ)k(tn,x(tn))+Θ(∆t)ΘC(Θ)Γ(Θ+1)∑nj=2k(tj−2,xj−2)[(m−j+1)Θ−(m−j)Θ]+Θ(∆t)ΘC(Θ)Γ(Θ+2)∑nj=2[k(tj−1,xj−1)−k(tj−2,xj−2)][(m−j+1)Θ(m−j+3+2Θ)−(m−j+1)Θ(m−j+3+3Θ)]+Θ(∆t)ΘC(Θ)Γ(Θ+3)∑nj=2[k(tj,xj)−2k(tj−1,xj−1)+k(tj−2,xj−2)][(m−j+1)Θ{2(m−j)2+(3Θ+10)(m−j)+2Θ2+9Θ+12}−(m−j)Θ{2(m−j)2+(5Θ+10)(m−j)+6Θ2+18Θ+12}]. | (34) |
Finally, we have the following approximation:
xn+1=x0+(1−Θ)C(Θ)Θ1tΘ1−1nΦ(tn,x(tn))+ΘΘ1(∆t)ΘC(Θ)Γ(Θ+1)∑nj=2tΘ1−1j−2Φ(tj−2,xj−2)[(m−j+1)Θ−(m−j)Θ]+ΘΘ1(∆t)ΘC(Θ)Γ(Θ+2)∑nj=2[tΘ1−1j−1Φ(tj−1,xj−1)−tΘ1−1j−2Φ(tj−2,xj−2)][(m−j+1)Θ(m−j+3+2Θ)−(m−j+1)Θ(m−j+3+3Θ)]+ΘΘ1(∆t)ΘC(Θ)Γ(Θ+3)∑nj=2[tΘ1−1jΦ(tj,xj)−2tΘ1−1j−1Φ(tj−1,xj−1)+tΘ1−1j−2Φ(tj−2,xj−2)][(m−j+1)Θ{2(m−j)2+(3Θ+10)(m−j)+2Θ2+9Θ+12}−(m−j)Θ{2(m−j)2+(5Θ+10)(m−j)+6Θ2+18Θ+12}]. | (35) |
We obtain the following for system \left(26\right)
{{S}_{c}}^{n+1} = {{S}_{c}}^{0}+\frac{\left(1-\varTheta \right)}{\mathrm{C}\left(\varTheta \right)}{\varTheta }_{1}{t}_{n}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{n}, {S}_{c}\left({t}_{n}\right)\right)+\frac{\varTheta {\varTheta }_{1}{\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +1\right)}\sum _{j = 2}^{n}{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{S}_{c}}^{j-2}\right)\left[{\left(m-j+1\right)}^{\varTheta }-\\{\left(m-j\right)}^{\varTheta }\right]+\frac{\varTheta {\varTheta }_{1}{\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +2\right)}\sum _{j = 2}^{n}\left[{t}_{j-1}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-1}, {{S}_{c}}^{j-1}\right)-{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{S}_{c}}^{j-2}\right)\right]\left[{\left(m-j+1\right)}^{\varTheta }\left(m-j+\\3+2\varTheta \right)-{\left(m-j+1\right)}^{\varTheta }\left(m-j+3+3\varTheta \right)\right]+ \\ \frac{\varTheta {{\varTheta }_{1}\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +3\right)}\sum _{j = 2}^{n}\left[{t}_{j}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j}, {{S}_{c}}^{j}\right)-2{t}_{j-1}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-1}, {{S}_{c}}^{j-1}\right)+{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{S}_{c}}^{j-2}\right)\right]\\ \left[{\left(m-j+1\right)}^{\varTheta }\left\{2{\left(m-j\right)}^{2}+\left(3\varTheta +10\right)\left(m-j\right)+2{\varTheta }^{2}+9\varTheta +12\right\}-{\left(m-j\right)}^{\varTheta }\left\{2{\left(m-j\right)}^{2}+\left(5\varTheta +10\right)\left(m-\\j\right)+6{\varTheta }^{2}+18\varTheta +12\right\}\right], |
{{E}_{c}}^{n+1} = {{E}_{c}}^{0}+\frac{\left(1-\varTheta \right)}{\mathrm{C}\left(\varTheta \right)}{\varTheta }_{1}{t}_{n}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{n}, {E}_{c}\left({t}_{n}\right)\right)+\frac{\varTheta {\varTheta }_{1}{\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +1\right)}\sum _{j = 2}^{n}{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{E}_{c}}^{j-2}\right)\left[{\left(m-j+1\right)}^{\varTheta }-\\{\left(m-j\right)}^{\varTheta }\right]+\frac{\varTheta {\varTheta }_{1}{\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +2\right)}\sum _{j = 2}^{n}\left[{t}_{j-1}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-1}, {{E}_{c}}^{j-1}\right)-{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{E}_{c}}^{j-2}\right)\right]\left[{\left(m-j+1\right)}^{\varTheta }\left(m-j+\\3+2\varTheta \right)-{\left(m-j+1\right)}^{\varTheta }\left(m-j+3+3\varTheta \right)\right]+ \\ \frac{\varTheta {{\varTheta }_{1}\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +3\right)}\sum _{j = 2}^{n}\left[{t}_{j}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j}, {{E}_{c}}^{j}\right)-2{t}_{j-1}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-1}, {{E}_{c}}^{j-1}\right)+{\mathrm{\Phi }}_{j-2}^{{\varTheta }_{1}-1}g\left({t}_{j-2}, {{E}_{c}}^{j-2}\right)\right]\left[{\left(m-j+1\right)}^{\varTheta } \\ \left\{2{\left(m-j\right)}^{2}+\left(3\varTheta +10\right)\left(m-j\right)+2{\varTheta }^{2}+9\varTheta +12\right\}-{\left(m-j\right)}^{\varTheta }\left\{2{\left(m-j\right)}^{2}\\+\left(5\varTheta +10\right)\left(m-j\right)+6{\varTheta }^{2}+18\varTheta +12\right\}\right], |
{{I}_{c}}^{n+1} = {{I}_{c}}^{0}+\frac{\left(1-\varTheta \right)}{\mathrm{C}\left(\varTheta \right)}{\varTheta }_{1}{t}_{n}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{n}, {I}_{c}\left({t}_{n}\right)\right)+\frac{\varTheta {\varTheta }_{1}{\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +1\right)}\sum _{j = 2}^{n}{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{I}_{c}}^{j-2}\right)\left[{\left(m-j+1\right)}^{\varTheta }-\\{\left(m-j\right)}^{\varTheta }\right]+\frac{\varTheta {\varTheta }_{1}{\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +2\right)}\sum _{j = 2}^{n}\left[{t}_{j-1}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-1}, {{I}_{c}}^{j-1}\right)-{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{I}_{c}}^{j-2}\right)\right]\left[{\left(m-j+1\right)}^{\varTheta }\left(m-j+\\3+2\varTheta \right)-{\left(m-j+1\right)}^{\varTheta }\left(m-j+3+3\varTheta \right)\right]+ \\ \frac{\varTheta {{\varTheta }_{1}\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +3\right)}\sum _{j = 2}^{n}\left[{t}_{j}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j}, {{I}_{c}}^{j}\right)-2{t}_{j-1}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-1}, {{I}_{c}}^{j-1}\right)+{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{I}_{c}}^{j-2}\right)\right]\left[{\left(m-j+1\right)}^{\varTheta }\\ \left\{2{\left(m-j\right)}^{2}+\left(3\varTheta +10\right)\left(m-j\right)+2{\varTheta }^{2}+9\varTheta +12\right\}-{\left(m-j\right)}^{\varTheta }\left\{2{\left(m-j\right)}^{2}+\left(5\varTheta +10\right)\left(m-\\j\right)+6{\varTheta }^{2}+18\varTheta +12\right\}\right], | (36) |
{{R}_{c}}^{n+1} = {{R}_{c}}^{0}+\frac{\left(1-\varTheta \right)}{\mathrm{C}\left(\varTheta \right)}{\varTheta }_{1}{t}_{n}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{n}, {R}_{c}\left({t}_{n}\right)\right)+\frac{\varTheta {\varTheta }_{1}{\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +1\right)}\sum _{j = 2}^{n}{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{R}_{c}}^{j-2}\right)\left[{\left(m-j+1\right)}^{\varTheta }-\\{\left(m-j\right)}^{\varTheta }\right]+\frac{\varTheta {\varTheta }_{1}{\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +2\right)}\sum _{j = 2}^{n}\left[{t}_{j-1}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-1}, {{R}_{c}}^{j-1}\right)-{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{R}_{c}}^{j-2}\right)\right]\left[{\left(m-j+1\right)}^{\varTheta }\left(m-j+\\3+2\varTheta \right)-{\left(m-j+1\right)}^{\varTheta }\left(m-j+3+3\varTheta \right)\right]+ \\ \frac{\varTheta {{\varTheta }_{1}\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +3\right)}\sum _{j = 2}^{n}\left[{t}_{j}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j}, {{R}_{c}}^{j}\right)-2{t}_{j-1}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-1}, {{R}_{c}}^{j-1}\right)+{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{R}_{c}}^{j-2}\right)\right]\left[{\left(m-j+1\right)}^{\varTheta } \\ \left\{2{\left(m-j\right)}^{2}+\left(3\varTheta +10\right)\left(m-j\right)+2{\varTheta }^{2}+9\varTheta +12\right\}-{\left(m-j\right)}^{\varTheta }\left\{2{\left(m-j\right)}^{2}\\+\left(5\varTheta +10\right)\left(m-j\right)+6{\varTheta }^{2}+18\varTheta +12\right\}\right], |
{{V}_{c}}^{n+1} = {{V}_{c}}^{0}+\frac{\left(1-\varTheta \right)}{\mathrm{C}\left(\varTheta \right)}{\varTheta }_{1}{t}_{n}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{n}, {V}_{c}\left({t}_{n}\right)\right)\\ +\frac{\varTheta {\varTheta }_{1}{\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +1\right)}\sum\limits_{j = 2}^{n}{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{V}_{c}}^{j-2}\right)\left[{\left(m-j+1\right)}^{\varTheta }-{\left(m-j\right)}^{\varTheta }\right] \\ +\frac{\varTheta {\varTheta }_{1}{\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +2\right)}\sum\limits_{j = 2}^{n}\left[{t}_{j-1}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-1}, {{V}_{c}}^{j-1}\right)\\-{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{V}_{c}}^{j-2}\right)\right]\left[{\left(m-j+1\right)}^{\varTheta }\left(m-j+3+2\varTheta \right)\\-{\left(m-j+1\right)}^{\varTheta }\left(m-j+3+3\varTheta \right)\right]\\+\frac{\varTheta {{\varTheta }_{1}\left(∆t\right)}^{\varTheta }}{\mathrm{C}\left(\varTheta \right)\mathrm{\Gamma }\left(\varTheta +3\right)}\sum\limits_{j = 2}^{n}\left[{t}_{j}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j}, {{V}_{c}}^{j}\right)-2{t}_{j-1}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-1}, {{V}_{c}}^{j-1}\right)\\+{t}_{j-2}^{{\varTheta }_{1}-1}\mathrm{\Phi }\left({t}_{j-2}, {{V}_{c}}^{j-2}\right)\right]\left[{\left(m-j+1\right)}^{\varTheta }\left\{2{\left(m-j\right)}^{2}+\left(3\varTheta +10\right)\left(m-j\right)+2{\varTheta }^{2}+9\varTheta \\+12\right\}-{\left(m-j\right)}^{\varTheta }\left\{2{\left(m-j\right)}^{2}+\left(5\varTheta +10\right)\left(m-j\right)+6{\varTheta }^{2}+18\varTheta +12\right\}\right]. |
To identify the potential effectiveness of Coronavirus disease transmission in the Community, the COVID-19 fractional-order model in the case of Wuhan, China, is presented to analyze with simulations. That's why; we have used Atangana-Baleanu in Caputo sense with Mittag-Leffler law, new Atangana Toufik scheme and fractal fractional derivative model of the COVID-19 in the case of Wuhan China with the initial conditions are provided. Details of the parameters of real data are Πc = 8859.23 × 104, βEc = 6.11 × 10−8, βIc = 2.62 × 10−8, βVc = 3.03 × 10−8, µc = 3.01 × 10−2, αc = 0.143, ωc = 0.01, γc = 0.67, ψ1c = 0.06, τc = 2.0. The various numerical methods identify the mechanical features of the fractional-order model with the time-fractional parameters. The dynamics of the model has changed, and simulations have been divulged. The results of the nonlinear system memory were also detected with the help of fractional values. Figures 1–5 represents the simulations obtained by ABC method and Figures 6–10 is obtained with fractal fractional derivative. It is easily observed that in Figures 1–5, all compartments starts increasing by decreasing the fractional values which converge to steady state. Similar behavior can be seen in Figures 6–10 but converge rapidly. In Figures 1 and 3, we will see that the concentration of virus and infection rate is directly proportional to each other in Figures 6 and 8. In Figures 1 and 5, we will see that the concentration of the virus and the rate of susceptibility are inversely proportional to each other. It has been shown that physical processes are better explained using the fractional-order derivatives, which are the most notable and reliable component compared to the classical-order case. Existing non-integer-order models are less profitable compared to those operators. The behaviors of the dynamics found in the various fractional orders are shown in the form of numerical results that have been reported.
In this paper, Atangana-Baleanu in Caputo sense, Atangana-Toufik and Fractal fractional Atangana-Baleanu differential equation model for COVID-19 disease in case of Wuhan China has been investigated. The uniqueness and stability results of the COVID-19 model are investigated by applying the fixed point theory and the iterative method. The boundedness and positivity of the given model also have been investigated. The arbitrary derivative of fractional order has been taken in the Atangana-Baleanu Caputo sense and Fractal fractional Atangana-Baleanu with Mittag-Leffler kernel. Non-linear fractional differential equations were raised from the derivative with the help of a non-singular and non-local kernel within the fractional derivative framework. Atangana-Baleanu with Smudu transform, Atangana-Toufik and Fractal fractional Atangana-Baleanu is used to obtain the derived fraction order COVID-19 model results. Comparison has been made between Atangana-Toufik and Fractal fractional Atangana-Baleanu to verify the efficiency of results. Some theoretical results are also discussed for the fractional-order model. Simulations are carried out to check the actual behaviour of COVID-19 in society. We observe that obtained results are effective for the proposed fractional-order model, which will be helpful in future to analyze the COVID-19 and for control strategies. To control the transmission of COVID-19, stay at home and putting COVID-19 positive individuals into quarantine.
The authors are thankful to the Institute of Research and Consulting Studies at King Khalid University for supporting this research through grant number # 35-69-S-2020.
The authors declare no conflict of interest.
[1] |
J. F. W. Chan, K. H. Kok, Z. Zhu, Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg. Micr. Infect., 9 (2020), 221-236. doi: 10.1080/22221751.2020.1719902. doi: 10.1080/22221751.2020.1719902
![]() |
[2] | World Health Organization, 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance. |
[3] |
H. Lu, C. W. Stratton, Y. W. Tang, Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle, J. Med. Virol., 92 (2020), 401-402. doi: 10.1002/jmv.25678. doi: 10.1002/jmv.25678
![]() |
[4] | W. Ji, W. Wang, X. Zhao, Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human, J. Med. Virol., 94 (2020), 433-440. |
[5] | World Health Organization, Coronavirus disease 2019 (COVID-19): Situation Report, 2021. |
[6] |
W. E. Alnaser, M. Abdel-Aty, O. Al-Ubaydli, Mathematical prospective of coronavirus infections in Bahrain, Saudi Arabia and Egypt, Inf. Sci. Lett. B, 9 (2020), 51-64. doi: 10.18576/isl/090201. doi: 10.18576/isl/090201
![]() |
[7] |
W. Ming, J. V. Huang, C. J. P. Zhang, Breaking down of the healthcare system: Mathematical modelling for controlling the novel coronavirus (2019-nCoV) outbreak in Wuhan, China, BioRxiv, 2020. doi: 10.1101/2020.01.27.922443 doi: 10.1101/2020.01.27.922443
![]() |
[8] | I. Nesteruk, Statistics-based predictions of coronavirus epidemic spreading in Mainland China, Innov. Biosyst. Bioeng., 4 (2020), 13-18. |
[9] |
M. Batista, Estimation of the final size of the coronavirus epidemic by SIR model, Research Gate, 2020. doi: 10.1101/2020.03.11.20024901. doi: 10.1101/2020.03.11.20024901
![]() |
[10] | V. A. Okhuese, Mathematical predictions for COVID-19 as a global pendamic, 2020. doi: 10.1101/2020.03.19.20038794. |
[11] | Pakistan population 1950-2020. Available from: https://www.worldometers.info/world-population/pakistan-population/. |
[12] | Government of Pakistan COVID-19 health advisory platform by Ministry of National Health Services Regulations and Coordination, 2021. Available from: https://covid.gov.pk/. |
[13] |
A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: A mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553-558. doi: 10.1101/2020.01.31.20019901. doi: 10.1101/2020.01.31.20019901
![]() |
[14] |
Y. Liu, A. A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J. Travel Med., 27 (2020), 021. doi: 10.1093/jtm/taaa021. doi: 10.1093/jtm/taaa021
![]() |
[15] |
B. Ivorra, M. R. Ferrández, M. Vela-Pérez, A. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Commun. Nonlinear Sci., 88 (2020), 105303. doi: 10.1016/j.cnsns.2020.105303. doi: 10.1016/j.cnsns.2020.105303
![]() |
[16] | D. Fanelli, F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos Soliton. Fract., 134 (2020), 109761. |
[17] |
D. S. Hui, E. I. Azhar, Y. J. Kim, Z. A. Memish, M. D. Oh, A. Zumla, Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission, Lancet Infect. Dis., 18 (2018), 217-227. doi: 10.1016/S1473-3099(18)30127-0. doi: 10.1016/S1473-3099(18)30127-0
![]() |
[18] |
M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCoV) with fractional derivative, Alex. Eng. J., 59 (2020), 2379-2389. doi: 10.1016/j.aej.2020.02.033. doi: 10.1016/j.aej.2020.02.033
![]() |
[19] |
E. A. Kojabad, S. Rezapour, Approximate solutions of a sum-type fractional integro-differential equation by using Chebyshev and Legendre polynomials, Adv. Differ. Equ., 2017 (2017), 351. doi: 10.1186/s13662-017-1404-y. doi: 10.1186/s13662-017-1404-y
![]() |
[20] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. |
[21] | I. Podlubny, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198 (1999), 340. |
[22] | S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives, Gordon & Breach, Switzerland, 1993. |
[23] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: info:doi/10.2298/TSCI160111018A. |
[24] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, Amsterdam, 1998. |
[25] | D. Baleanu, A. Jajarmi, E. Bonyah, M. Hajipour, New aspects of poor nutrition in the life cycle within the fractional calculus, Adv. Differ. Equ., 2018 (2018), 230. |
[26] | A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Soliton. Fract., 89 (2016), 447-454. |
[27] |
S. Jain, Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method, Eur. Phys. J. Plus, 133 (2018), 1-11. doi: 10.1140/epjp/i2018-11854-x. doi: 10.1140/epjp/i2018-11854-x
![]() |
[28] |
A. Atangana, S. Jain, A new numerical approximation of the fractal ordinary differential equation, Eur. Phys. J. Plus, 133 (2018), 1-15. doi: 10.1140/epjp/i2018-11895-1. doi: 10.1140/epjp/i2018-11895-1
![]() |
[29] |
A. Atangana, S. Jain, Models of fluid flowing in non-conventional media: new numerical analysis, Discrete Cont. Dyn-S., 13 (2020), 467. doi: 10.3934/dcdss.2020026. doi: 10.3934/dcdss.2020026
![]() |
[30] |
S. I. Araz, Analysis of a COVID-19 model: Optimal control, stability and simulations, Alex. Eng. J., 60 (2021), 647-658. doi: 10.1016/j.aej.2020.09.058. doi: 10.1016/j.aej.2020.09.058
![]() |
[31] | A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: Theory methods and applications, Adv. Differ. Equ., 2020 (2020), 659 |
[32] |
H. Kheiri, M. Jafari, Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment, J. Comput. Appl. Math., 346 (2019), 323-339. doi: 10.1016/j.cam.2018.06.055. doi: 10.1016/j.cam.2018.06.055
![]() |
[33] |
C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708-2724. doi: 10.3934/mbe.2020148. doi: 10.3934/mbe.2020148
![]() |
[34] |
R. P. Yadav, R. Verma, A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China, Chaos Soliton. Fract., 140 (2020), 110124. doi: 10.1016/j.chaos.2020.110124. doi: 10.1016/j.chaos.2020.110124
![]() |
[35] | M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. |
[36] |
W. Lin, Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl., 332 (2007), 709-726. doi: 10.1140/epjp/i2017-11717-0. doi: 10.1140/epjp/i2017-11717-0
![]() |
[37] | A. N. Chatterjee, B. Ahmad, A fractional-order differential equation model of COVID-19 infection of epithelial cells, Chaos Soliton. Fract., 147 (2021), 110952. |
[38] |
A. N. Chatterjee, F. A. Basir, A. Muqrin, M. Jayanta, I. Khan, SARS-CoV-2 infection with lytic and non-lytic immune responses: A fractional order optimal control theoretical study, Results Phy., 26 (2021), 104260. doi: 10.1016/j.rinp.2021.104260. doi: 10.1016/j.rinp.2021.104260
![]() |
[39] |
A. A. Alderremy, J. F. Gómez-Aguilar, Shaban Aly, Khaled M. Saad, A fuzzy fractional model of coronavirus (COVID-19) and its study with Legendre spectral method, Results Phy., 21 (2020), 103773. doi: 10.1016/j.rinp.2020.103773. doi: 10.1016/j.rinp.2020.103773
![]() |
[40] |
M. Rahman, M. Arfan, K. Shah, J. F. Gómez-Aguilar, Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy Caputo, random and ABC fractional order derivative, Chaos Soliton. Fract., 140 (2020), 110232. doi: 10.1016/j.chaos.2020.110232. doi: 10.1016/j.chaos.2020.110232
![]() |
[41] |
V. S. Panwar, P. S. Sheik Uduman, J. F. Gómez-Aguilar, Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives, Chaos Soliton. Fract., 145 (2021), 110757. doi: 10.1016/j.chaos.2021.110757. doi: 10.1016/j.chaos.2021.110757
![]() |
[42] |
A. H. Chatterjee, F. Al-Basir, A model for SARS-COV-2 infection with treatment, Comput. Math. Method. M., 2020 (2020), Article ID: 1352982. doi: 10.1155/2020/1352982. doi: 10.1155/2020/1352982
![]() |
[43] |
J. Mondal, P. Samui, A. N. Chatterjee, Optimal control strategies of non-pharmaceutical and pharmaceutical interventions for COVID-19 control, J. Interdiscip. Math., 24 (2021), 125-153. doi: 10.1080/09720502.2020.1833459. doi: 10.1080/09720502.2020.1833459
![]() |
[44] |
A. Zeb, E. Alzahrani, V. S. Erturk, G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class, Biomed. Res. Int., (2020), 3452402, doi: 10.1155/2020/3452402 doi: 10.1155/2020/3452402
![]() |
[45] |
Z. Zhang, A. Zeb, S. Hussain, E. Alzahrani, Dynamics of COVID-19 mathematical model with stochastic perturbation, Adv. Differ. Equ., 2020 (2020), 451. doi: 10.1186/s13662-020-02909-1. doi: 10.1186/s13662-020-02909-1
![]() |
[46] |
S. Bushnaq, T. Saeed, D. F. M. Torres, A. Zeb, Control of COVID-19 dynamics through a fractional-order model, Alex. Eng. J., 60 (2021), 3587-3592. doi: 10.1016/j.aej.2021.02.022. doi: 10.1016/j.aej.2021.02.022
![]() |
[47] |
A. Tesfay, T. Saeed, A. Zeb, D. Tesfay, A. Khalaf, Dynamics of a stochastic COVID-19 epidemic model with jump-diffusion, Adv. Differ. Equ., 2021 (2021), 228, doi: 10.1186/s13662-021-03396-8 doi: 10.1186/s13662-021-03396-8
![]() |
[48] |
M. A. Alqudah, T. Abdeljawad, A. Zeb, I. U. Khan, F. Bozkurt, Effect of weather on the spread of COVID-19 using eigenspace decomposition, CMC-Comput. Mater. Con., 69 (2021), 3047-3063. doi: 10.32604/cmc.2021.017752. doi: 10.32604/cmc.2021.017752
![]() |
1. | Sina Etemad, Brahim Tellab, Anwar Zeb, Shabir Ahmad, Akbar Zada, Shahram Rezapour, Hijaz Ahmad, Thongchai Botmart, A mathematical model of transmission cycle of CC-Hemorrhagic fever via fractal–fractional operators and numerical simulations, 2022, 40, 22113797, 105800, 10.1016/j.rinp.2022.105800 | |
2. | A. S. Albahri, Rula A. Hamid, A. A. Zaidan, O. S. Albahri, Early automated prediction model for the diagnosis and detection of children with autism spectrum disorders based on effective sociodemographic and family characteristic features, 2023, 35, 0941-0643, 921, 10.1007/s00521-022-07822-0 | |
3. | Muhammad Farman, Maryam Amin, Ali Akgül, Aqeel Ahmad, Muhammad Bilal Riaz, Sheraz Ahmad, Fractal–fractional operator for COVID-19 (Omicron) variant outbreak with analysis and modeling, 2022, 39, 22113797, 105630, 10.1016/j.rinp.2022.105630 | |
4. | Changjin Xu, Muhammad Farman, Ali Hasan, Ali Akgül, Mohammed Zakarya, Wedad Albalawi, Choonkil Park, Lyapunov stability and wave analysis of Covid-19 omicron variant of real data with fractional operator, 2022, 61, 11100168, 11787, 10.1016/j.aej.2022.05.025 | |
5. | MOHAMMAD PARTOHAGHIGHI, ABDULLAHI YUSUF, YELIZ KARACA, YONG-MIN LI, TAREK F. IBRAHIM, B. A. YOUNIS, BAHAA SALEH, AYMAN A. ALY, A NEW FRACTAL FRACTIONAL MODELING OF THE COMPUTER VIRUSES SYSTEM, 2022, 30, 0218-348X, 10.1142/S0218348X22401843 | |
6. | Shahid Amin, M. A. Rehman, Amir Naseem, Ilyas Khan, Mulugeta Andualem, Haidar Ali, Treatment of COVID-19 Patients Using Some New Topological Indices, 2022, 2022, 2090-9071, 1, 10.1155/2022/7309788 | |
7. | Kaushik Dehingia, Ahmed A. Mohsen, Sana Abdulkream Alharbi, Reima Daher Alsemiry, Shahram Rezapour, Dynamical Behavior of a Fractional Order Model for Within-Host SARS-CoV-2, 2022, 10, 2227-7390, 2344, 10.3390/math10132344 | |
8. | S. Rezapour, S. Etemad, M. Sinan, J. Alzabut, A. Vinodkumar, Youssri Hassan Youssri, A Mathematical Analysis on the New Fractal-Fractional Model of Second-Hand Smokers via the Power Law Type Kernel: Numerical Solutions, Equilibrium Points, and Sensitivity Analysis, 2022, 2022, 2314-8888, 1, 10.1155/2022/3553021 | |
9. | Shahram Rezapour, Sina Etemad, Joshua Kiddy K. Asamoah, Hijaz Ahmad, Kamsing Nonlaopon, A mathematical approach for studying the fractal-fractional hybrid Mittag-Leffler model of malaria under some control factors, 2023, 8, 2473-6988, 3120, 10.3934/math.2023161 | |
10. | Fatma Özköse, Mehmet Yavuz, M. Tamer Şenel, Rafla Habbireeh, Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom, 2022, 157, 09600779, 111954, 10.1016/j.chaos.2022.111954 | |
11. | Muhammad Farman, Hatem Besbes, Kottakkaran Sooppy Nisar, Mohamed Omri, Analysis and dynamical transmission of Covid-19 model by using Caputo-Fabrizio derivative, 2023, 66, 11100168, 597, 10.1016/j.aej.2022.12.026 | |
12. | Fouad Mohammad Salama, Nur Nadiah Abd Hamid, Umair Ali, Norhashidah Hj. Mohd Ali, Fast hybrid explicit group methods for solving 2D fractional advection-diffusion equation, 2022, 7, 2473-6988, 15854, 10.3934/math.2022868 | |
13. | Ali Hasan, Ali Akgül, Muhammad Farman, Faryal Chaudhry, Muhammad Sultan, Manuel De la Sen, Epidemiological Analysis of Symmetry in Transmission of the Ebola Virus with Power Law Kernel, 2023, 15, 2073-8994, 665, 10.3390/sym15030665 | |
14. | Shahid Amin, Haidar Ali, M. A. Rehman, Abd Allah A. Mousa, Mulugeta Andualem, Hanan Alolaiyan, Degree-Based Graph Invariants of some Chemical Structures for the Treatment of Corona Virus, 2022, 2022, 2314-8888, 1, 10.1155/2022/1847588 | |
15. | Qura Tul Ain, Muhammad Nadeem, Shazia Karim, Ali Akgül, Fahd Jarad, Optimal variational iteration method for parametric boundary value problem, 2022, 7, 2473-6988, 16649, 10.3934/math.2022912 | |
16. | Muhammad Sajid Iqbal, Nauman Ahmed, Ali Akgül, Ali Raza, Muhammad Shahzad, Zafar Iqbal, Muhammad Rafiq, Fahd Jarad, Analysis of the fractional diarrhea model with Mittag-Leffler kernel, 2022, 7, 2473-6988, 13000, 10.3934/math.2022720 | |
17. | Dolat Khan, Poom Kumam, Ilyas Khan, Kanokwan Sitthithakerngkiet, Arshad Khan, Gohar Ali, Unsteady rotating MHD flow of a second‐grade hybrid nanofluid in a porous medium: Laplace and Sumudu transforms, 2022, 51, 2688-4534, 8065, 10.1002/htj.22681 | |
18. | Muhammad Farman, Rabia Sarwar, Ali Akgul, Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator, 2023, 170, 09600779, 113373, 10.1016/j.chaos.2023.113373 | |
19. | Muhammad Farman, Rabia Sarwar, Sameh Askar, Hijaz Ahmad, Muhammad Sultan, Muhammad Manan Akram, Fractional order model to study the impact of planting genetically modified trees on the regulation of atmospheric carbon dioxide with analysis and modeling, 2023, 48, 22113797, 106409, 10.1016/j.rinp.2023.106409 | |
20. | T. Tamil Selvan, M. Kumar, Dynamics of a deterministic and a stochastic epidemic model combined with two distinct transmission mechanisms and saturated incidence rate, 2023, 03784371, 128741, 10.1016/j.physa.2023.128741 | |
21. | Muhammad Farman, Cicik Alfiniyah, Aamir Shehzad, Modelling and analysis tuberculosis (TB) model with hybrid fractional operator, 2023, 72, 11100168, 463, 10.1016/j.aej.2023.04.017 | |
22. | Nahaa E. Alsubaie, Fathelrhman EL Guma, Kaouther Boulehmi, Naseam Al-kuleab, Mohamed A. Abdoon, Improving Influenza Epidemiological Models under Caputo Fractional-Order Calculus, 2024, 16, 2073-8994, 929, 10.3390/sym16070929 | |
23. | Tasmia Roshan, Surath Ghosh, Ram P. Chauhan, Sunil Kumar, A robust study on fractional order HIV/AIDS model by using numerical methods, 2023, 40, 0264-4401, 1545, 10.1108/EC-10-2022-0626 | |
24. | Rahat Zarin, Abdur Raouf, Amir khan, Usa Wannasingha Humphries, Modeling hepatitis B infection dynamics with a novel mathematical model incorporating convex incidence rate and real data, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-04642-6 | |
25. | Preety Kumari, Harendra Pal Singh, Swarn Singh, Global stability of novel coronavirus model using fractional derivative, 2023, 42, 2238-3603, 10.1007/s40314-023-02413-8 | |
26. | Rahat Zarin, Usa Wannasingha Humphries, Teerapol Saleewong, Advanced mathematical modeling of hepatitis B transmission dynamics with and without diffusion effect using real data from Thailand, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05154-7 | |
27. | Dolat khan, Application of Laplace and Sumudu transforms to the modeling of unsteady rotating MHD flow in a second-grade tetra hybrid nanofluid in a porous medium, 2024, 16, 1687-8132, 10.1177/16878132241278513 | |
28. | Mohammad Partohaghighi, Abdullahi Yusuf, Ali S. Alshomrani, Tukur Abdulkadir Sulaiman, Dumitru Baleanu, Fractional hyper-chaotic system with complex dynamics and high sensitivity: Applications in engineering, 2024, 38, 0217-9792, 10.1142/S0217979224500127 | |
29. | ZULQURNAIN SABIR, DUMITRU BALEANU, MUHAMMAD ASIF ZAHOOR RAJA, ALI S. ALSHOMRANI, EVREN HINCAL, MEYER WAVELET NEURAL NETWORKS PROCEDURES TO INVESTIGATE THE NUMERICAL PERFORMANCES OF THE COMPUTER VIRUS SPREAD WITH KILL SIGNALS, 2023, 31, 0218-348X, 10.1142/S0218348X2340025X | |
30. | Kottakkaran Sooppy Nisar, Muhammad Farman, Mahmoud Abdel-Aty, Chokalingam Ravichandran, A review of fractional order epidemic models for life sciences problems: Past, present and future, 2024, 95, 11100168, 283, 10.1016/j.aej.2024.03.059 | |
31. | Saba Jamil, Muhammad Farman, Ali Akgül, Muhammad Umer Saleem, Evren Hincal, Sayed M. El Din, Fractional order age dependent Covid-19 model: An equilibria and quantitative analysis with modeling, 2023, 53, 22113797, 106928, 10.1016/j.rinp.2023.106928 | |
32. | Muhammad Farman, Ali Akgül, Muhammad Sultan, Sidra Riaz, Hira Asif, Praveen Agarwal, Murad Khan Hassani, Numerical study and dynamics analysis of diabetes mellitus with co-infection of COVID-19 virus by using fractal fractional operator, 2024, 14, 2045-2322, 10.1038/s41598-024-60168-6 | |
33. | Adesoye Idowu Abioye, Olumuyiwa James Peter, Hammed Abiodun Ogunseye, Festus Abiodun Oguntolu, Tawakalt Abosede Ayoola, Asimiyu Olalekan Oladapo, A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics, 2023, 4, 27724425, 100210, 10.1016/j.health.2023.100210 | |
34. | MUHAMMAD AZEEM, MUHAMMAD FARMAN, MARWAN ABUKHALED, KOTTAKKARAN SOOPPY NISAR, ALI AKGÜL, EPIDEMIOLOGICAL ANALYSIS OF HUMAN LIVER MODEL WITH FRACTIONAL OPERATOR, 2023, 31, 0218-348X, 10.1142/S0218348X23400479 | |
35. | SHAO-WEN YAO, MUHAMMAD FARMAN, ALI AKGÜL, KOTTAKKARAN SOOPPY NISAR, MARYAM AMIN, MUHAMMAD UMER SALEEM, MUSTAFA INC, SIMULATIONS AND ANALYSIS OF COVID-19 AS A FRACTIONAL MODEL WITH DIFFERENT KERNELS, 2023, 31, 0218-348X, 10.1142/S0218348X23400510 | |
36. | Aqeel Ahmad, Safdar Abbas, Mustafa Inc, Abdul Ghaffar, Stability Analysis of SARS‐CoV‐2 with Heart Attack Effected Patients and Bifurcation, 2024, 8, 2701-0198, 10.1002/adbi.202300540 | |
37. | Kottakkaran Sooppy Nisar, Muhammad Farman, Mahmoud Abdel-Aty, Jinde Cao, A review on epidemic models in sight of fractional calculus, 2023, 75, 11100168, 81, 10.1016/j.aej.2023.05.071 | |
38. | Shahram Rezapour, Joshua Kiddy K. Asamoah, Sina Etemad, Ali Akgül, İbrahim Avcı, Sayed M. El Din, On the fractal-fractional Mittag-Leffler model of a COVID-19 and Zika Co-infection, 2023, 55, 22113797, 107118, 10.1016/j.rinp.2023.107118 | |
39. | Yanru Wu, Monireh Nosrati Sahlan, Hojjat Afshari, Maryam Atapour, Ardashir Mohammadzadeh, On the existence, uniqueness, stability, and numerical aspects for a novel mathematical model of HIV/AIDS transmission by a fractal fractional order derivative, 2024, 2024, 1029-242X, 10.1186/s13660-024-03098-1 | |
40. | Parvaiz Ahmad Naik, Anum Zehra, Muhammad Farman, Aamir Shehzad, Sundas Shahzeen, Zhengxin Huang, Forecasting and dynamical modeling of reversible enzymatic reactions with a hybrid proportional fractional derivative, 2024, 11, 2296-424X, 10.3389/fphy.2023.1307307 | |
41. | Muhammad Farman, Maryam Batool, Kottakkaran Sooppy Nisar, Abdul Sattar Ghaffari, Aqeel Ahmad, Controllability and analysis of sustainable approach for cancer treatment with chemotherapy by using the fractional operator, 2023, 51, 22113797, 106630, 10.1016/j.rinp.2023.106630 | |
42. | Rahat Zarin, Usa Wannasingha Humphries, A robust study of dual variants of SARS-CoV-2 using a reaction-diffusion mathematical model with real data from the USA, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-04631-9 | |
43. | Conghui Xu, Yongguang Yu, Ke Guo, Guojian Ren, Zhenzhen Lu, Xinhui Si, Optimal control and global dynamics of a fractional-order infectious disease model incorporating vaccination and generalized incidence rate, 2025, 100, 0031-8949, 025242, 10.1088/1402-4896/ada3f6 | |
44. | Muhammad Farman, Rabia Sarwar, Kottakkaran Sooppy Nisar, Parvaiz Ahmad Naik, Sundus Shahzeen, Aceng Sambas, Global wave analysis of a fractional-order cholera disease model in society, 2025, 14, 2192-6670, 10.1007/s13721-025-00505-5 |