Research article

Analysis of a derivative with two variable orders

  • Received: 12 August 2021 Revised: 11 January 2022 Accepted: 17 January 2022 Published: 10 February 2022
  • MSC : 26A33, 33F05

  • In this paper, we investigate a derivative with the two variable orders. The first one shows the variable order fractal dimension and the second one presents the fractional order. We consider these derivatives with the power law kernel, exponential decay kernel and Mittag-Leffler kernel. We give the theory of this derivative in details. We also present the numerical approximation. The results we obtained in this work are very useful for researchers to improve many things for fractal fractional derivative with two variable orders.

    Citation: Abdon Atangana, Ali Akgül. Analysis of a derivative with two variable orders[J]. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406

    Related Papers:

  • In this paper, we investigate a derivative with the two variable orders. The first one shows the variable order fractal dimension and the second one presents the fractional order. We consider these derivatives with the power law kernel, exponential decay kernel and Mittag-Leffler kernel. We give the theory of this derivative in details. We also present the numerical approximation. The results we obtained in this work are very useful for researchers to improve many things for fractal fractional derivative with two variable orders.



    加载中


    [1] A. Atangana, A. Shafiq, Differential and integral operators with constant fractional order and variable fractional dimension, Chaos Soliton. Fract., 127 (2019), 226–243. https://doi.org/10.1016/j.chaos.2019.06.014 doi: 10.1016/j.chaos.2019.06.014
    [2] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A, 505 (2018), 688–706. https://doi.org/10.1016/j.physa.2018.03.056 doi: 10.1016/j.physa.2018.03.056
    [3] A. Atangana, J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. https://doi.org/10.1140/epjp/i2018-12021-3 doi: 10.1140/epjp/i2018-12021-3
    [4] O. A. Arqub, M. Al-Smadi, Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in hilbert space, Chaos Soliton. Fract., 117 (2018), 161–167. https://doi.org/10.1016/j.chaos.2018.10.013 doi: 10.1016/j.chaos.2018.10.013
    [5] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Soliton. Fract. 114 (2018), 478–482. https://doi.org/10.1016/j.chaos.2018.07.032
    [6] E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108. https://doi.org/10.1063/1.5084035 doi: 10.1063/1.5084035
    [7] N. A. Asif, Z. Hammouch, M. B. Riaz, H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 272. https://doi.org/10.1140/epjp/i2018-12098-6 doi: 10.1140/epjp/i2018-12098-6
    [8] K. M. Owolabi, Z. Hammouch, Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative, Physica A, 523 (2019), 1072–1090. https://doi.org/10.1016/j.physa.2019.04.017 doi: 10.1016/j.physa.2019.04.017
    [9] K. M. Owolabi, Z. Hammouch, Mathematical modeling and analysis of two-variable system with noninteger-order derivative, Chaos, 29 (2019), 013145. https://doi.org/10.1063/1.5086909 doi: 10.1063/1.5086909
    [10] S. Kumar, A. Kumar, J. J. Nieto, B. Sharma, AtanganaBaleanu Derivative with Fractional Order Applied to the Gas Dpnamics Equations, In: Fractional Derivatives with Mittag-Leffler Kernel, Springer, Cham. 2019,235–251. https://doi.org/10.1007/978-3-030-11662-0_14
    [11] J. Morais, H. M. Zayed, R. Srivastava, Third-order differential subordinations for multivalent functions in the theory of source-sink dynamics, Math. Meth. Appl. Sci. 44 (2021), 11269–11287. https://doi.org/10.1002/mma.7486
    [12] J. Morais, H. M. Zayed, Applications of differential subordination and superordination theorems to fluid mechanics involving a fractional higher-order integral operator, Alex. Eng. J., 60 (2021), 3901–3914. https://doi.org/10.1016/j.aej.2021.02.037 doi: 10.1016/j.aej.2021.02.037
    [13] A. O. Mostafa, M. K. Aouf, H. M. Zayed, T. Bulboaca, Multivalent functions associated with Srivastava-Saigo-Owa fractional differintegral operator, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 112 (2018), 1409–1429. https://doi.org/10.1007/s13398-017-0436-1 doi: 10.1007/s13398-017-0436-1
    [14] M. K. Aouf, A. O. Mostafa, H. M. Zayed, On certain subclasses of multivalent functions defined by a generalized fractional differintegral operator. Afr Mat., 28 (2017), 99–107. https://doi.org/10.1007/s13370-016-0433-0
    [15] F. Özköse, S. Yılmaz, M. Yavuz, I. Öztürk, M. T. Şenel, B. S. Bağcı, et al., A fractional modeling of tumor–immune system interaction related to Lung cancer with real data, Eur. Phys. J. Plus, 137 (2022), 1–28. https://doi.org/10.1140/epjp/s13360-021-02254-6 doi: 10.1140/epjp/s13360-021-02254-6
    [16] P. Veeresha, M. Yavuz, C. Baishya, A computational approach for shallow water forced Korteweg–De Vries equation on critical flow over a hole with three fractional operators, An International Journal of Optimization and Control: Theories and Applications (IJOCTA), 11 (2021), 52–67. https://doi.org/10.11121/ijocta.2021.1177 doi: 10.11121/ijocta.2021.1177
    [17] M. Partohaghighi, M. Inc, M. Bayram, D. Baleanu, On numerical solution of the time fractional advection-diffusion equation involving Atangana-Baleanu-Caputo derivative, Open Phys., 17 (2019), 816–822. https://doi.org/10.1515/phys-2019-0085 doi: 10.1515/phys-2019-0085
    [18] A. S. Hendy, M. A. Zaky, M. Abbaszadeh, Long time behavior of Robin boundary sub-diffusion equation with fractional partial derivatives of Caputo type in differential and difference settings, Math. Comput. Simulat., 190 (2021), 1370–1378. https://doi.org/10.1016/j.matcom.2021.07.006 doi: 10.1016/j.matcom.2021.07.006
    [19] H. M. Zayed, S. A. Mohammadein, M. K. Aouf, Sandwich results of p-valent functions defined by a generalized fractional derivative operator with application to vortex motion, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 113 (2019), 1499–1514. https://doi.org/10.1007/s13398-018-0559-z doi: 10.1007/s13398-018-0559-z
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1546) PDF downloads(148) Cited by(2)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog