Research article Special Issues

Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels

  • Received: 27 April 2022 Revised: 28 May 2022 Accepted: 06 June 2022 Published: 14 June 2022
  • MSC : 26A33, 35Cxx, 35Qxx, 35R11, 41Axx

  • In this article, we study the nonlinear sine-Gordon equation (sGE) under Mittag-Leffler and exponential decay type kernels in a fractal fractional sense. The Laplace Adomian decomposition method (LADM) is applied to investigate the sGE under the above-mentioned operators. The convergence analysis is provided for the proposed method. The results are validated by considering numerical examples with different initial conditions for both kernels and confirm the competence of the proposed technique. It is revealed that the obtained series solutions of the model with fractal fractional operators converge to the exact solutions. The numerical results converge to the particular exact solutions, proving the significance of LADM for nonlinear systems under fractal fractional derivatives. The absolute error analysis between the exact and obtained series solutions with both operators is shown in the tabulated form. The physical interpretations of the attained results with different fractal and fractional parameters are discussed in detail.

    Citation: Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah. Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels[J]. AIMS Mathematics, 2022, 7(8): 14975-14990. doi: 10.3934/math.2022820

    Related Papers:

  • In this article, we study the nonlinear sine-Gordon equation (sGE) under Mittag-Leffler and exponential decay type kernels in a fractal fractional sense. The Laplace Adomian decomposition method (LADM) is applied to investigate the sGE under the above-mentioned operators. The convergence analysis is provided for the proposed method. The results are validated by considering numerical examples with different initial conditions for both kernels and confirm the competence of the proposed technique. It is revealed that the obtained series solutions of the model with fractal fractional operators converge to the exact solutions. The numerical results converge to the particular exact solutions, proving the significance of LADM for nonlinear systems under fractal fractional derivatives. The absolute error analysis between the exact and obtained series solutions with both operators is shown in the tabulated form. The physical interpretations of the attained results with different fractal and fractional parameters are discussed in detail.



    加载中


    [1] K. B. Oldham, J. Spanier, The fractional calculus, New York: Academic Press, 1974.
    [2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley and Sons Inc, 1993.
    [3] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [4] R. Hilfer, Foundations of fractional dynamics, Fractals, 3 (1995), 549–556.
    [5] R. Hilfer, Fractional diffusion based on Riemman–Liouville fractional derivatives, J. Phys. Chem. B, 104 (2000), 3914–3917. https://doi.org/10.1021/jp9936289 doi: 10.1021/jp9936289
    [6] R. E. Gutierrez, J. M. Rosario, J. T. Machado, Fractional order calculus: Basic concepts and engineering applications, Math. Probl. Eng., 2010 (2010), 375858. https://doi.org/10.1155/2010/375858 doi: 10.1155/2010/375858
    [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [8] A. Yusuf, S. Qureshi, M. Inc, A. I. Aliyu, D. Baleanu, A. A. Shaikh, Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel, Chaos, 28 (2018), 123121. https://doi.org/10.1063/1.5074084 doi: 10.1063/1.5074084
    [9] M. Awadalla, Y. Y. Yameni, Modeling exponential growth and exponential decay real phenomena by $\Psi$-Caputo fractional derivative, JAMCS, 28 (2018), 1–13. https://doi.org/10.9734/JAMCS/2018/43054 doi: 10.9734/JAMCS/2018/43054
    [10] F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
    [11] S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Mathematics, 5 (2020), 7041–7054. https://doi.org/10.3934/math.2020451 doi: 10.3934/math.2020451
    [12] A. Atangana, Fractional operators with constant and variable order with application to geo-hydrology, Academic Press, 2018.
    [13] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [14] A. Akgül, I. Siddique, Novel applications of the magnetohydrodynamics couple stress fluid flows between two plates with fractal-fractional derivatives, Numer. Method. Part. Differ. Equ., 37 (2021), 2178–2189. https://doi.org/10.1002/num.22673 doi: 10.1002/num.22673
    [15] H. Esmonde, Fractal and fractional derivative modelling of material phase change, Fractal Fract., 4 (2020), 46. https://doi.org/10.3390/fractalfract4030046 doi: 10.3390/fractalfract4030046
    [16] A. Akgul, Analysis and new applications of fractal fractional diferential equations with power law kernel, DCDS-S, 14 (2021), 3401–3417. https://doi.org/10.3934/dcdss.2020423 doi: 10.3934/dcdss.2020423
    [17] Z. Ali, F. Rabiei, K. Shah, Z. A. Majid, Dynamics of SIR mathematical model for COVID-19 outbreak in Pakistan under Fractal-fractional derivative, Fractals, 29 (2021), 2150120. https://doi.org/10.1142/S0218348X21501206 doi: 10.1142/S0218348X21501206
    [18] A. Akgül, I. Siddique, Novel applications of the magneto hydrodynamics couple stress fuid fows between two plates with fractal fractional derivatives, Numer. Method. Part. Differ. Equ., 37 (2021), 2178–2189. https://doi.org/10.1002/num.22673 doi: 10.1002/num.22673
    [19] D. Mathale, E. F. D. Goufo, M. Khumalo, Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel, Chaos Soliton. Fract., 139 (2020), 110021. https://doi.org/10.1016/j.chaos.2020.110021 doi: 10.1016/j.chaos.2020.110021
    [20] E. F. D. Goufo, Mathematical analysis of peculiar behavior by chaotic, fractional and strange multiwing attractors, Int. J. Bifurcat. Chaos, 28 (2018), 1850125. https://doi.org/10.1142/S0218127418501250 doi: 10.1142/S0218127418501250
    [21] K. Abboui, Y. Cherruault, New ideas for proving convergence of decomposition methods, Comput. Appl. Math., 29 (1995), 103–108. https://doi.org/10.1016/0898-1221(95)00022-Q doi: 10.1016/0898-1221(95)00022-Q
    [22] G. Adomian, Solving frontier problems of physics: The decomposition method, Springer Dordrecht, 1994. https://doi.org/10.1007/978-94-015-8289-6
    [23] H. Jafari, V. Daftardar-Gejji, Solving system of nonlinear fractional differential equations using Adomian decomposition, J. Comput. Appl. Math., 196 (2006), 644–651. https://doi.org/10.1016/j.cam.2005.10.017 doi: 10.1016/j.cam.2005.10.017
    [24] H. Jafari, V. Daftardar-Gejji, Solving linear and non–linear fractional diffusion and wave equations by Adomian decomposition, Appl. Math. Comput., 180 (2006), 488–497. https://doi.org/10.1016/j.amc.2005.12.031 doi: 10.1016/j.amc.2005.12.031
    [25] Z. Gul, A. Ali, Localized modes in a variety of driven long Josephson junctions with phase shifts, Nonlinear Dyn., 94 (2018), 229–247. https://doi.org/10.1007/s11071-018-4355-2 doi: 10.1007/s11071-018-4355-2
    [26] A. Ali, H. Susanto, J. A. D. Wattis, Decay of bound states in a sine-Gordon equation with doublewell potentials. J. Math. Phys., 56 (2015), 051502. https://doi.org/10.1063/1.4917284 doi: 10.1063/1.4917284
    [27] Z. Gul, A. Ali, A. Ullah, Localized modes in parametrically driven long Josephson junctions with a double-well potential, J. Phys. A: Math. Theor., 52 (2019), 015203.
    [28] Z. Gul, A. Ali, I. Ahmad, Dynamics of ac-driven sine-Gordon equation for long Josephson junctions with fast varying perturbation, Chaos Soliton. Fract., 107 (2018), 103–110. https://doi.org/10.1016/j.chaos.2017.12.025 doi: 10.1016/j.chaos.2017.12.025
    [29] A. Ali, H. Susanto, J. A. D. Wattis, Rapidly oscillating ac-driven long Josephson junctions with phase-shifts, Physica D, 246 (2013), 15–22. https://doi.org/10.1016/j.physd.2012.12.002 doi: 10.1016/j.physd.2012.12.002
    [30] W. A. Khan, A. Ali, Z. Gul, S. Ahmad, A. Ullah, Localized modes in $\mathscr{PT}$-symmetric sine-Gordon couplers with phase shift, Chaos Soliton. Fract., 139 (2020), 110290. https://doi.org/10.1016/j.chaos.2020.110290 doi: 10.1016/j.chaos.2020.110290
    [31] A. Ali, H. Susanto, J. A. D. Wattis, Breathing modes of long Josephson junctions with phase-shifts, SIAM J. Appl. Math., 71 (2011), 242–269.
    [32] I. A. Garagash, Microdeformation of the prestress discrete geophysicalmedia (in Russian), Dokl Akad Nauk, 347 (1996), 95–98.
    [33] A. Ali, Z. Gul, W. A. Khan, S. Ahmad, S. Zeb, Investigation of fractional order sine-Gordon equation using Laplace Adomian decomposition method, Fractals, 29 (2021), 2150121. https://doi.org/10.1142/S0218348X21501218 doi: 10.1142/S0218348X21501218
    [34] M. Caputo, M. Fabrizio, A new definitionof Fractional Derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [35] A. Atangana, B. Dumitru, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [36] A. Atangana, S. $\dot{I}$. Araz. New numerical approximation for Chua attractor with fractional and fractal-fractional operators, Alex. Eng. J., 59 (2020), 3275–3296. https://doi.org/10.1016/j.aej.2020.01.004 doi: 10.1016/j.aej.2020.01.004
    [37] N. D. Bellman, G. Adomian Partial differential equations: New methods for their treatment and solution, Springer, 1985.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1560) PDF downloads(64) Cited by(5)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog