The purpose of this paper is twofold. The first goal is to provide a simple and constructive proof of Korn inequalities in half-space with weighted norms. The proof leads to explicit values of the constants. The second objective is to use these inequalities to show that the linear elasticity system in half-space admits a coercive variational formulation. This formulation corresponds to the physical case in which the solution is evanescent at infinity.
Citation: Nabil Kerdid. On the linearized system of elasticity in the half-space[J]. AIMS Mathematics, 2022, 7(8): 14991-15001. doi: 10.3934/math.2022821
The purpose of this paper is twofold. The first goal is to provide a simple and constructive proof of Korn inequalities in half-space with weighted norms. The proof leads to explicit values of the constants. The second objective is to use these inequalities to show that the linear elasticity system in half-space admits a coercive variational formulation. This formulation corresponds to the physical case in which the solution is evanescent at infinity.
[1] | P. G. Ciarlet, Mathematical elasticity: Studies in mathematics and its applications, Amsterdam: North-Holland Publishing Co., 1988. |
[2] | G. Fichera, Existence theorems in elasticity, Berlin: Springer-Verlag, 1974. |
[3] | G. Duvaut, J. L. Lions, Les inéquations en mécanique et en physique, Paris: Duvaut, 1972. |
[4] | V. A. Kondratiev, O. A. Oleinik, Hardy and Korn inequalities for a class of unbounded domains and their applications in elasticity theory, Dokl. Math., 41 (1990), 527–531. |
[5] | V. A. Kondratiev, O. A. Oleinik, Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities, Russian Math. Surv., 43 (1998), 65–119. https://doi.org/10.1070/RM1988v043n05ABEH001945 doi: 10.1070/RM1988v043n05ABEH001945 |
[6] | V. A. Kondratiev, O. A. Oleinik, Hardy's and Korn's inequality and their application, Rend. Mat. Appl. Ser. VII, 10 (1990), 641–666. |
[7] | O. A. Matevosyan, On solutions of boundary value problems for a system in the theory of elasticity and for the biharmonic equation in a half-space, Differ. Equations, 34 (1998), 803–808. |
[8] | O. A. Matevosyan, Solutions of exterior boundary-value problems for the elasticity system in weighted spaces, Sb. Math., 192 (2001), 1763–1798. https://doi.org/10.1070/SM2001v192n12ABEH000615 doi: 10.1070/SM2001v192n12ABEH000615 |
[9] | H. A. Matevossian, On solutions of mixed boundary-value problems for the elasticity system in unbounded domains, Izvestiya Math., 67 (2003), 895–929. https://doi.org/10.1070/IM2003v067n05ABEH000451 doi: 10.1070/IM2003v067n05ABEH000451 |
[10] | H. A. Matevossian, On the biharmonic Steklov problem in weighted spaces, Russ. J. Math. Phys., 24 (2017), 134–138. https://doi.org/10.1134/S1061920817010125 doi: 10.1134/S1061920817010125 |
[11] | H. A. Matevossian, On the polyharmonic Neumann problem in weighted spaces, Complex Var. Elliptic, 64 (2019), 1–7. https://doi.org/10.1080/17476933.2017.1409740 doi: 10.1080/17476933.2017.1409740 |
[12] | H. A. Matevossian, Asymptotics and uniqueness of solutions of the elasticity system with the mixed Dirichlet–Robin boundary conditions, MDPI Math., 8 (2020), 2241. https://doi.org/10.3390/math8122241 doi: 10.3390/math8122241 |
[13] | J. Giroire, Etude de quelques problèmes aux limites extérieurs et résolution par équations intégrales, Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris, 1987. |
[14] | T. Z. Boulmezaoud, Espaces de Sobolev avec poids pour l'équation de Laplace dans le demi-espace, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 221–226. |
[15] | T. Z. Boulmezaoud, On the Stokes system and on the biharmonic equation in the half-space: An approach via weighted Sobolev spaces, Math. Method. Appl. Sci., 25 (2002), 373–398. https://doi.org/10.1002/mma.296 doi: 10.1002/mma.296 |
[16] | T. Z. Boulmezaoud, On the Laplace operator and on the vector potential problems in the half-space: An approach using weighted spaces, Math. Method. Appl. Sci., 26 (2003), 633–669. https://doi.org/10.1002/mma.369 doi: 10.1002/mma.369 |
[17] | T. Z. Boulmezaoud, Vorticity-vector potential formulations of the Stokes equations in the half-space, Math. Method. Appl. Sci., 28 (2005), 903–915. https://doi.org/10.1002/mma.596 doi: 10.1002/mma.596 |
[18] | N. Kerdid, A mixed formulation of the Stokes equations with slip conditions in exterior domains and the half-space, Hiroshima Math. J., 48 (2018), 119–131. https://doi.org/10.32917/hmj/1533088823 doi: 10.32917/hmj/1533088823 |
[19] | V. Girault, J. Giroire, A. Sequeira, Formulation variationnelle en fonction courant-tourbillon du problème de Stokes extérieur dans des espaces de Sobolev à poids, C. R. Acad. Sci. Paris Sér. I. Math., 313 (1991), 499–502. |
[20] | V. Girault, A. Sequeira, A well-posed problem for the exterior Stokes equations in two and three dimensions, Arch. Ration. Mech. An., 313 (1991), 499–502. https://doi.org/10.1007/BF00376137 doi: 10.1007/BF00376137 |
[21] | V. Girault, The divergence, curl and Stokes operators in exterior domains of $R^ 3$, Pitman Res. Notes Math. Ser., 291 (1993), 34–77. |
[22] | V. Girault, The Stokes problem and vector potential operator in three-dimensional exterior domains: An approach in weighted Sobolev spaces, Differ. Integral Equ., 7 (1994), 535–570. |
[23] | B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace, Rend. Semin. Mat. Univ. Pad., 46 (1971), 227–272. |
[24] | F. Alliot, Etude des équations stationnaires de Stokes et Navier-Stokes dans des domaines extérieurs, PhD. Thesis, Ecole Nationale des Ponts et Chaussées, France, 1998. |