Research article

On the linearized system of elasticity in the half-space

  • Received: 19 March 2022 Revised: 30 May 2022 Accepted: 06 June 2022 Published: 14 June 2022
  • MSC : 35E20, 35Q30, 76D07

  • The purpose of this paper is twofold. The first goal is to provide a simple and constructive proof of Korn inequalities in half-space with weighted norms. The proof leads to explicit values of the constants. The second objective is to use these inequalities to show that the linear elasticity system in half-space admits a coercive variational formulation. This formulation corresponds to the physical case in which the solution is evanescent at infinity.

    Citation: Nabil Kerdid. On the linearized system of elasticity in the half-space[J]. AIMS Mathematics, 2022, 7(8): 14991-15001. doi: 10.3934/math.2022821

    Related Papers:

  • The purpose of this paper is twofold. The first goal is to provide a simple and constructive proof of Korn inequalities in half-space with weighted norms. The proof leads to explicit values of the constants. The second objective is to use these inequalities to show that the linear elasticity system in half-space admits a coercive variational formulation. This formulation corresponds to the physical case in which the solution is evanescent at infinity.



    加载中


    [1] P. G. Ciarlet, Mathematical elasticity: Studies in mathematics and its applications, Amsterdam: North-Holland Publishing Co., 1988.
    [2] G. Fichera, Existence theorems in elasticity, Berlin: Springer-Verlag, 1974.
    [3] G. Duvaut, J. L. Lions, Les inéquations en mécanique et en physique, Paris: Duvaut, 1972.
    [4] V. A. Kondratiev, O. A. Oleinik, Hardy and Korn inequalities for a class of unbounded domains and their applications in elasticity theory, Dokl. Math., 41 (1990), 527–531.
    [5] V. A. Kondratiev, O. A. Oleinik, Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities, Russian Math. Surv., 43 (1998), 65–119. https://doi.org/10.1070/RM1988v043n05ABEH001945 doi: 10.1070/RM1988v043n05ABEH001945
    [6] V. A. Kondratiev, O. A. Oleinik, Hardy's and Korn's inequality and their application, Rend. Mat. Appl. Ser. VII, 10 (1990), 641–666.
    [7] O. A. Matevosyan, On solutions of boundary value problems for a system in the theory of elasticity and for the biharmonic equation in a half-space, Differ. Equations, 34 (1998), 803–808.
    [8] O. A. Matevosyan, Solutions of exterior boundary-value problems for the elasticity system in weighted spaces, Sb. Math., 192 (2001), 1763–1798. https://doi.org/10.1070/SM2001v192n12ABEH000615 doi: 10.1070/SM2001v192n12ABEH000615
    [9] H. A. Matevossian, On solutions of mixed boundary-value problems for the elasticity system in unbounded domains, Izvestiya Math., 67 (2003), 895–929. https://doi.org/10.1070/IM2003v067n05ABEH000451 doi: 10.1070/IM2003v067n05ABEH000451
    [10] H. A. Matevossian, On the biharmonic Steklov problem in weighted spaces, Russ. J. Math. Phys., 24 (2017), 134–138. https://doi.org/10.1134/S1061920817010125 doi: 10.1134/S1061920817010125
    [11] H. A. Matevossian, On the polyharmonic Neumann problem in weighted spaces, Complex Var. Elliptic, 64 (2019), 1–7. https://doi.org/10.1080/17476933.2017.1409740 doi: 10.1080/17476933.2017.1409740
    [12] H. A. Matevossian, Asymptotics and uniqueness of solutions of the elasticity system with the mixed Dirichlet–Robin boundary conditions, MDPI Math., 8 (2020), 2241. https://doi.org/10.3390/math8122241 doi: 10.3390/math8122241
    [13] J. Giroire, Etude de quelques problèmes aux limites extérieurs et résolution par équations intégrales, Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris, 1987.
    [14] T. Z. Boulmezaoud, Espaces de Sobolev avec poids pour l'équation de Laplace dans le demi-espace, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 221–226.
    [15] T. Z. Boulmezaoud, On the Stokes system and on the biharmonic equation in the half-space: An approach via weighted Sobolev spaces, Math. Method. Appl. Sci., 25 (2002), 373–398. https://doi.org/10.1002/mma.296 doi: 10.1002/mma.296
    [16] T. Z. Boulmezaoud, On the Laplace operator and on the vector potential problems in the half-space: An approach using weighted spaces, Math. Method. Appl. Sci., 26 (2003), 633–669. https://doi.org/10.1002/mma.369 doi: 10.1002/mma.369
    [17] T. Z. Boulmezaoud, Vorticity-vector potential formulations of the Stokes equations in the half-space, Math. Method. Appl. Sci., 28 (2005), 903–915. https://doi.org/10.1002/mma.596 doi: 10.1002/mma.596
    [18] N. Kerdid, A mixed formulation of the Stokes equations with slip conditions in exterior domains and the half-space, Hiroshima Math. J., 48 (2018), 119–131. https://doi.org/10.32917/hmj/1533088823 doi: 10.32917/hmj/1533088823
    [19] V. Girault, J. Giroire, A. Sequeira, Formulation variationnelle en fonction courant-tourbillon du problème de Stokes extérieur dans des espaces de Sobolev à poids, C. R. Acad. Sci. Paris Sér. I. Math., 313 (1991), 499–502.
    [20] V. Girault, A. Sequeira, A well-posed problem for the exterior Stokes equations in two and three dimensions, Arch. Ration. Mech. An., 313 (1991), 499–502. https://doi.org/10.1007/BF00376137 doi: 10.1007/BF00376137
    [21] V. Girault, The divergence, curl and Stokes operators in exterior domains of $R^ 3$, Pitman Res. Notes Math. Ser., 291 (1993), 34–77.
    [22] V. Girault, The Stokes problem and vector potential operator in three-dimensional exterior domains: An approach in weighted Sobolev spaces, Differ. Integral Equ., 7 (1994), 535–570.
    [23] B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace, Rend. Semin. Mat. Univ. Pad., 46 (1971), 227–272.
    [24] F. Alliot, Etude des équations stationnaires de Stokes et Navier-Stokes dans des domaines extérieurs, PhD. Thesis, Ecole Nationale des Ponts et Chaussées, France, 1998.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1430) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog