Citation: Muhammad Kamran Jamil, Muhammad Imran, Aisha Javed, Roslan Hasni. On the first general Zagreb eccentricity index[J]. AIMS Mathematics, 2021, 6(1): 532-542. doi: 10.3934/math.2021032
[1] | J. R. Bondy, U. S. R. Murty, Graph theory, Springer, 2008. |
[2] | I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π- electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538. |
[3] | X. Li, J. Zheng, A unified approach to the extremal trees for different indices, Math. Commun. Math. Comput. Chem., 54 (2005), 195-208. |
[4] | M. Liu, B. Liu, Some properties of the first general Zagreb index, Australasian J. Comb., 47 (2010), 285-294. |
[5] | J. B. Liu, S. Javed, M. Javaid, K. Shabbir, Computing first general Zagreb index of operations on graphs, IEEE access, 2019 DOI10.1109/ACCESS.2019.2909822. |
[6] | L. Bedratyuk, O. Savenko, The star sequence and the general first Zagreb index, Math Comunn. Math. Comput. Chem., 79 (2018), 407-414. |
[7] | N. De, General Zagreb index of some cactus chains, Open J. Discret. Appl. Math., 2 (2019), 24-31. doi: 10.30538/psrp-odam2019.0008 |
[8] | R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. In: Novel Molecular Structure Descriptors Theory and Applications I; Gutman, I., Furtula, B., Eds.; University Kragujevac: Kragujevac, Serbia, (2010), 72—100. |
[9] | T. Vetrík, S. Balachandran, General multiplicative Zagreb indices of trees, Disc. App. Math., 247 (2018), 341-351. doi: 10.1016/j.dam.2018.03.084 |
[10] | T. Vetrík, S. Balachandran, General multiplicative Zagreb indices of graphs with given clique number, Opuscula Math., 39 (2019), 433-446. doi: 10.7494/OpMath.2019.39.3.433 |
[11] | M. R. Alfuraidan, T. Vetrík, S. Balachandran, General multiplicative Zagreb indices of graphs with a small number of cycles, Symmetry, 12 (2020), Available from: https://doi.org/10.3390/sym12040514. |