Research article

Attractors for a quasilinear viscoelastic equation with nonlinear damping and memory

  • Received: 24 August 2020 Accepted: 11 October 2020 Published: 21 October 2020
  • MSC : 35L72, 35B41, 35B35

  • In this paper, the long time behavior of a quasilinear viscoelastic equation with nonlinear damping is considered. Under suitable assumptions, the existence of global attractors is established.

    Citation: Xiaoming Peng, Yadong Shang. Attractors for a quasilinear viscoelastic equation with nonlinear damping and memory[J]. AIMS Mathematics, 2021, 6(1): 543-563. doi: 10.3934/math.2021033

    Related Papers:

  • In this paper, the long time behavior of a quasilinear viscoelastic equation with nonlinear damping is considered. Under suitable assumptions, the existence of global attractors is established.


    加载中


    [1] A. E. H. Love, A treatise on the mathematical theory of elasticity, New York: Dover, 1944.
    [2] M. Fabrizio, A. Morro, Mathematical problems in linear viscoelasticity, Philadelphia: SIAM, 1992.
    [3] J. E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 628-648.
    [4] J. E. Muñoz Rivera, E. C. Lapa, R. Barreto, Decay rates for viscoelastic plates with memory, J. Elasticity, 44 (1996), 61-87. doi: 10.1007/BF00042192
    [5] M. Aassila, M. M. Cavalcanti, J. A. Soriano, Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain, SIAM J. Control Optim., 38 (2000), 1581-1602. doi: 10.1137/S0363012998344981
    [6] M. M. Cavalcanti, V. N. D. Cavalcanti, T. F. Ma, J. A. Soriano, Global existence and asymptotic stability for viscoelastic problems, Differential Integral Equations, 15 (2002), 731-748.
    [7] M. M. Cavalcanti, H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 (2003), 1310-1324. doi: 10.1137/S0363012902408010
    [8] A. Guesmia, S. A. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories, Nonlinear Anal. Real World Appl., 13 (2012), 476-485. doi: 10.1016/j.nonrwa.2011.08.004
    [9] S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457-1467. doi: 10.1016/j.jmaa.2007.11.048
    [10] S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58-66. doi: 10.1002/mana.200310104
    [11] S. A. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., 320 (2006), 902-915. doi: 10.1016/j.jmaa.2005.07.022
    [12] J. Y. Park, J. R. Kang, Global attractor for hyperbolic equation with nonlinear damping and linear memory, Sci. China Math., 53 (2010), 1531-1539. doi: 10.1007/s11425-010-3110-z
    [13] M. M. Cavalcanti, V. N. D. Cavalcanti, J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043-1053. doi: 10.1002/mma.250
    [14] S. A. Messaoudi, N. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation, Nonlinear Anal., 68 (2008), 785-793. doi: 10.1016/j.na.2006.11.036
    [15] S. A. Messaoudi, N. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665-680. doi: 10.1002/mma.804
    [16] S. A. Messaoudi, N. Tatar, Exponential decay for a quasilinear viscoelastic equation, Math. Nachr., 282 (2009), 1443-1450. doi: 10.1002/mana.200610800
    [17] W. J. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source, Nonlinear Anal., 73 (2010), 1890-1904. doi: 10.1016/j.na.2010.05.023
    [18] X. S. Han, M. X. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Anal., 70 (2009), 3090-3098. doi: 10.1016/j.na.2008.04.011
    [19] X. S. Han, M. X. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci., 32 (2009), 346-358. doi: 10.1002/mma.1041
    [20] J. Y. Park, S. H. Park, General decay for quasiliear viscoelastic equations with nonlinear weak damping, J. Math. Phys., 50 (2009), 083505. doi: 10.1063/1.3187780
    [21] R. O. Araújo, T. F. Ma, Y. M. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differ. Equations, 254 (2013), 4066-4087. doi: 10.1016/j.jde.2013.02.010
    [22] Y. M. Qin, B. W. Feng, M. Zhang, Uniform attractors for a non-autonomous viscoelastic equation with a past history, Nonlinear Anal., 101 (2014), 1-15. doi: 10.1016/j.na.2014.01.006
    [23] Y. M. Qin, J. P. Zhang, L. L. Sun, Upper semicontinuity of pullback attractors for a nonautonomous viscoelastic equation, Appl. Math. Comput., 223 (2013), 362-376.
    [24] M. Conti, E. M. Marchini, V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216. doi: 10.1016/j.na.2013.08.015
    [25] M. Conti, E. M. Marchini, V. Pata, Global attractors for nonlinear viscoelastic equations with memory, Commun. Pure Appl. Anal., 15 (2016), 1893-1913. doi: 10.3934/cpaa.2016021
    [26] M. Conti, T. F. Ma, E. M. Marchini, P. N. Seminario Huertas, Asymptotics of viscoelastic materials with nonlinear density and memory effects, J. Differ. Equations, 264 (2018), 4235-4259.
    [27] Y. R. S. Leuyacc, J. L. C. Parejas, Upper semicontinuity of global attractors for a viscoelastic equations with nonlinear density and memory effects, Math. Methods Appl. Sci., 42 (2019), 871-882. doi: 10.1002/mma.5389
    [28] F. S. Li, Z. Q. Jia, Global existence and stability of a class of nonlinear evolution equations with hereditary memory and variable density, Bound. Value Probl., 2019 (2019), 37. doi: 10.1186/s13661-019-1152-x
    [29] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308. doi: 10.1007/BF00251609
    [30] C. Giorgi, J. E. Muñoz Rivera, V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99. doi: 10.1006/jmaa.2001.7437
    [31] V. Pata, A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.
    [32] I. Chueshov, I. Lasiecka, Von Karman evolution equations, New York: Springer-Verlag, 2010.
    [33] I. Chueshov, Dynamics of quasi-stable dissipative systems, New York: Springer, 2015.
    [34] I. Chueshov, I. Lasiecka, Long-time behavior of second oreder evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 912 (2008), 912.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3452) PDF downloads(173) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog