Loading [MathJax]/extensions/TeX/boldsymbol.js
Research article Special Issues

Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study

  • In this work, we consider a viscoelastic wave equation with boundary damping and variable exponents source term. The damping terms and variable exponents are localized on a portion of the boundary. We first, prove the existence of global solutions and then we establish optimal and general decay estimates depending on the relaxation function and the nature of the variable exponent nonlinearity. Finally, we run two numerical tests to demonstrate our theoretical decay results. This study generalizes and enhances existing literature results, and the acquired results are thus of significant importance when compared to previous literature results with constant or variable exponents in the domain.

    Citation: Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri. Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study[J]. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842

    Related Papers:

    [1] Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammad Kafini . Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities. AIMS Mathematics, 2021, 6(9): 10105-10129. doi: 10.3934/math.2021587
    [2] Qian Li . General and optimal decay rates for a viscoelastic wave equation with strong damping. AIMS Mathematics, 2022, 7(10): 18282-18296. doi: 10.3934/math.20221006
    [3] Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta . A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400
    [4] Adel M. Al-Mahdi . The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type. AIMS Mathematics, 2023, 8(11): 27439-27459. doi: 10.3934/math.20231404
    [5] Zayd Hajjej, Sun-Hye Park . Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay. AIMS Mathematics, 2023, 8(10): 24087-24115. doi: 10.3934/math.20231228
    [6] Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi . Existence and stability results of nonlinear swelling equations with logarithmic source terms. AIMS Mathematics, 2024, 9(5): 12825-12851. doi: 10.3934/math.2024627
    [7] Qian Li, Yanyuan Xing . General and optimal decay rates for a system of wave equations with damping and a coupled source term. AIMS Mathematics, 2024, 9(10): 29404-29424. doi: 10.3934/math.20241425
    [8] Khaled Kefi, Abdeljabbar Ghanmi, Abdelhakim Sahbani, Mohammed M. Al-Shomrani . Infinitely many solutions for a critical p(x)-Kirchhoff equation with Steklov boundary value. AIMS Mathematics, 2024, 9(10): 28361-28378. doi: 10.3934/math.20241376
    [9] Soh E. Mukiawa, Tijani A. Apalara, Salim A. Messaoudi . Stability rate of a thermoelastic laminated beam: Case of equal-wave speed and nonequal-wave speed of propagation. AIMS Mathematics, 2021, 6(1): 333-361. doi: 10.3934/math.2021021
    [10] Keltoum Bouhali, Sulima Ahmed Zubair, Wiem Abedelmonem Salah Ben Khalifa, Najla ELzein AbuKaswi Osman, Khaled Zennir . A new strict decay rate for systems of longitudinal m-nonlinear viscoelastic wave equations. AIMS Mathematics, 2023, 8(1): 962-976. doi: 10.3934/math.2023046
  • In this work, we consider a viscoelastic wave equation with boundary damping and variable exponents source term. The damping terms and variable exponents are localized on a portion of the boundary. We first, prove the existence of global solutions and then we establish optimal and general decay estimates depending on the relaxation function and the nature of the variable exponent nonlinearity. Finally, we run two numerical tests to demonstrate our theoretical decay results. This study generalizes and enhances existing literature results, and the acquired results are thus of significant importance when compared to previous literature results with constant or variable exponents in the domain.



    The importance of partial differential equations in comprehending and explaining physical interpretation of problems that arise in numerous fields and engineering motivates many researchers to analyze and investigate the existence and stability of their solutions. Hyperbolic partial differential equations are the most interesting kind of partial differential equations, since they are utilized to simulate a wide and important collection of phenomena, such as aerodynamic flows, fluid and contaminant flows through porous media, atmospheric flows, and so on. Of the higher order hyperbolic equations, the wave equation is the most obvious. Klein-Gordon, Telegraph, sine-Gordon, Van der Pol, dissipative nonlinear wave and others are well-known hyperbolic equations that are important in the fields of wave propagation [1], random walk theory [2], signal analysis [3], relativistic quantum mechanics, dislocations in crystals and field theory [4], quantum field theory, solid-state physics, nonlinear optics [5], mathematical physics [6], solitons and condensed matter physics [7], interaction of solitons in collision-less plasma [8], fluxions propagation in Josephson junctions between two superconductors [9], motion of a rigid pendulum coupled to a stretched wire [10], material sciences [11] and non-uniform transmission lines [12] are some of the topics covered. For more related results, we refer to [13,14,15]. There is a vast range of publications for numerical solutions of hyperbolic partial differential equations, such as the one in [16,17,18,19,20,21]. In recent years, great efforts have been devoted to study problems with nonlinear dampings and source terms, and several existence, decay and blow up results have been established. Georgiev and Todorova [22] considered the following nonlinear problem

    {uttΔu+h(ut)=F(u),onΩ×(0,T)u=0,onΩ×(0,T)u(x,0)=u0(x),ut(x,0)=u1(x),onΩ, (1.1)

    where the damping term h(ut)=|ut|m2ut and the source term F(u)=|u|q2u are localized on the domain and established global existence when qm and a blow up result when q>m. This work was improved by Levine and Serrin [23] to the case of negative energy and m>1. For problems with boundary damping and source terms, we mention the work of Vitillaro [24] who considered the following problem

    {uttΔu=0,onΩ×(0,T)un+h(ut)=F(u),onΓ1×(0,T)u=0,onΓ0×(0,T)u(x,0)=u0(x),ut(x,0)=u1(x),onΩ. (1.2)

    where the damping term h(ut)=|ut|m2ut and the source term F(u)=|u|q2u are localized on a part of the boundary. The author established local existence and global existence of the solutions under some suitable conditions on the initial data and the exponents. In the presence of the viscoelastic term, Cavalcanti et al. [25] discussed the following problem

    {uttΔu+t0g(ts)Δu(s)ds=0,onΩ×(0,T)unt0g(ts)unds+h(ut)=0,onΓ1×(0,T)u=0,onΓ0×(0,T)u(x,0)=u0(x),ut(x,0)=u1(x),onΩ, (1.3)

    In this work, a global existence result for strong and weak solutions was established and some uniform decay rates were proved under some assumptions on g and h. Al-Gharabli et al. [26] established general and optimal decay result for the same problem (1.3) considered in [25] where the relaxation g satisfies more general conditions than the one in [25]. For more results in this direction, we refer to [27,28,29,30,31]. In particular, Liu and Yu [31] investigated the following problem

    {uttΔu+t0g(ts)Δu(s)ds=0,onΩ×(0,T)unt0g(ts)unds+h(ut)=F(u),onΓ1×(0,T)u=0,onΓ0×(0,T)u(x,0)=u0(x),ut(x,0)=u1(x),onΩ, (1.4)

    where the damping term h(ut)=|ut|m2ut and the source term F(u)=|u|q2u are localized on a part of the boundary, and established several decay and blow up results under some suitable conditions on the initial data, the relaxation function and the exponents. Notice here that both the damping and source terms in [31] are localized on a part of the boundary, although, they are of constant nonlinearity. Moreover, the relaxation function g satisfies the condition

    g(t)ξ(t)g(t),t0, (1.5)

    where ξ is a positive differentiable function. In fact, Liu and Yu [31] used the Multiplier method for stability and the potential well technique to prove the existence of the global solution. Moreover, the authors established a general decay when m2 and an exponential decay m=2.

    Many new real-world problems, such as electro-rheological fluid flows, fluids with temperature-dependent viscosity, filtration processes through porous media, image processing, hemorheological fluids, and others, came as a result of advances in science and technology, such as those problems which required modeling with non-standard mathematical functional spaces. The Lebesgue and Sobolev spaces with variable exponents [32,33,34,35] have shown to be very important and user-friendly tools to tackle such models. PDEs with variable exponents have recently attracted a lot of attention from researchers and academics. However, the majority of the findings for hyperbolic issues with variable exponents dealt with blow-up and non-global existence. On the stability of nonlinear damped wave equations with variable exponent nonlinearities, we only have a few results. It is worth mentioning the work of Messaoudi et al. [36], who explored the stability of the following equation

    uttdiv(|u|r()2u)+|ut|m()2ut=0,

    where m()r()2. The authors in their work showed that the solution energy decays exponentially if m2 and when m2=esssupxΩm(x)>2, they obtained a polynomial decay at the rate of t2/(m22). Also, Ghegal et al. [37] established a stability result similar to that of [36] for the equation

    uttΔu+|ut|m()2ut=|u|q()2u,

    and proved under appropriate conditions on m(),q(), and the initial data, a global existence result. Messaoudi et al. [38] recently looked at the following problem

    uttΔu+t0g(ts)Δu(s)ds+a|ut|m()2ut=|u|q()2u,

    and used the well-depth approach to verify global existence and provide explicit and general decay results under a very general relaxation function assumption.

    In our present work, we are concerned with the following problem

    {uttΔu+t0g(ts)Δu(s)ds=0,onΩ×(0,T)unt0g(ts)unds+|ut|m(x)2ut=|u|q(x)2u,onΓ1×(0,T)u=0,onΓ0×(0,T)u(x,0)=u0(x),ut(x,0)=u1(x),onΩ, (1.6)

    on a bounded domain ΩRn with a smooth boundary Ω=Γ0Γ1 where Γ0 and Γ1 are closed and disjoint and meas.(Γ0)>0. The vector n is the unit outer normal to Ω. The function g is a relaxation function and u0 and u1 are given data. The functions m() and q() are the variable exponents. System 1.6 describes the spread of strain waves in a viscoelastic configuration. We first prove a global existence result for the solutions of problem (1.6) by using the potential well theory. Then we establish explicit and general decay results of problem (1.6) for a larger class of relaxation functions (see Assumption A1 below). To back up our theoretical decay results, we provide two numerical tests. Our decay results extend and improve some earlier results such as the one of Cavalcanti et al. [25], Al-Gharabli et al. [26], Liu and Yu [31] and the one of Messaoudi et al. [39]. In our work, we apply the energy approach (Multiplier Method), combined with various differential and integral inequalities equipped with the Lebesgue and Sobolev spaces with variable exponents. The multiplier method relies mostly on the construction of an appropriate Lyapunov functional L equivalent to the energy of the solution E. By equivalence LE, we mean

    α1E(t)L(t)α2E(t),tR+, (1.7)

    for two positive constants α1 and α2. To prove the exponential stability, we show that L satisfies

    L(t)c1L(t),tR+, (1.8)

    for some c1>0. A simple integration of (1.8) over (0,t) together with (1.7) gives the desired exponential stability result. In the case of a general decay result, we prove that L satisfies a differential inequality that combines the relaxation function and the other terms coming from the nonlinearites. Then we use some properties of the convex functions and other mathematical arguments to obtain general decay estimates depending on the relaxation function and the nature of the variable exponent nonlinearity. In fact, the Multiplier Method proved to be efficient in tackling such problems with dissipative terms either on the domain or in a part of the boundary. In the present paper, some properties of the convex functions are exploited. We also use the well-depth method to establish the global existence of the solutions. We show that the methods and tools used in this paper are sufficient to handle our problem and are less complicated than other methods which guide us to our target.

    Related results to our problem

    ● Cavalcanti et al. [25] and Al-Gharabli et al. [26] investigated the same problem. However, in [25] and [26], the nonlinear damping term is h(ut) which satisfies some specific conditions. In our case h(ut)=|ut|m()2ut where m() is a function of x where x is in a part of the boundary which makes our problem more complicated especially in the numerical computations. Additionally, in [25] the class of the relaxation function is a special case of the one in our paper. The decay results in both [25] and [26] were without numerical tests and without nonlinear source term.

    ● Liu and Yu [31] investigated the same problem where the exponents m and q are of constant nonlinearity and the relaxation function g satisfies the condition g(t)ξ(t)g(t). In our paper, we extend the work of Liu and Yu [31] in which the exponents m() and q() are functions of x where x is in a part of the boundary. Moreover, we use a wider class of relaxation functions; that is g(t)ξ(t)H(g(t)) so that the class of the relaxation function in [31] is a special case. In addition, we provide some numerical experiments to illustrate our decay theories.

    ● Messaoudi et al. [38] investigated a similar problem. However, the nonlinear damping terms are in the domain. In our case the nonlinear damping and source terms are localized in the boundary, which makes the computations are more difficult. Also, [38] did not provide numerical computation.

    The remainder of this work is arranged in the following manner: In Section 2, we write some of the assumptions and materials that are needed for our work. In Section 3, we establish and prove the global existence result. In Section 4, we present our main decay result as well as some examples. Section 5 presents and proves some technical lemmas. In Section 6, we prove the main decay results. Finally, in Section 7, we show numerical simulations to support our theoretical findings.

    In this section, we present some background information on the Lebesgue and Sobolev spaces with variable exponents (see [40,41]) as well as some assumptions for the main result proofs. We will use the letter c to denote a generic positive constant.

    Definition 2.1.

    1. The space H1Γ0(Ω)={uH1(Ω):u|Γ0=0} is a Hilbert space endowed with the equivalent norm u22.

    2. Let β:Γ1[1,] be a measurable function, where Ω is a domain of Rn, then:

    a. the Lebesgue space with a variable exponent β() is defined by

    Lβ()(Γ1):={v:Γ1R;measurable inΩ:ϱβ()(αv)<,for someα>0},

    where ϱβ()(v)=Ω1β(x)|v(x)|β(x)dx is a modular.

    b. the variable-exponent Sobolev space W1,β()(Γ1) is:

    W1,β()(Γ1)={vLβ()(Γ1)such thatvexistsand|v|Lβ()(Γ1)}.

    3. W1,β()0(Γ1) is the closure of C0(Γ1) in W1,β()(Γ1).

    Remark 2.2. [42]

    1. Lβ()(Γ1) is a Banach space equipped with the following norm

    vβ():=inf{λ>0:Ω|v(x)α|β(x)dx1},

    2. W1,β()(Γ1) is a Banach space with respect to the norm

    vW1,β()(Ω)=vβ()+vβ().

    We define

    β1:=essinfxΩβ(x),β2:=esssupxΩβ(x).

    Lemma 2.3. [42] If β:Γ1[1,) is a measurable functionwith β2<, then C0(Γ1) is dense in Lβ()(Γ1).

    Lemma 2.4. [42] If 1<β1β(x)β2< holds, then

    min{wβ1β(),wβ2β()}ϱβ()(w)max{wβ1β(),wβ2β()},

    for any wLβ()(Γ1).

    Lemma 2.5 (Hölder's Inequality). [42] Let α,β,γ1 be measurable functions defined on Ω such that

    1γ(y)=1α(y)+1β(y),for a.e.yΩ.

    If fLα()(Ω) and gLβ()(Ω), then fgLγ()(Ω) and

    fgγ()2fα()gβ().

    Lemma 2.6. [42] [Poincaré's Inequality]Let Ω be a bounded domain of Rn and p() satisfies (2.4), then, there exists cρ, such that

    vp()cρvp(),for allvW1,p()0(Ω).

    Lemma 2.7. [42] [Embedding Property] Let Ω be a bounded domain in Rn with a smoothboundary Ω. Assume that p,kC(¯Ω) such that

    1<p1p(x)p2<+,1<k1k(x)k2<+,x¯Ω,

    and k(x)<p(x) in ¯Ω with

    p(x)={np(x)np(x),if p2<n;+,if p2n,

    then we have continuous and compact embedding W1,p(.)(Ω)Lk(.)(Ω). So, thereexists ce>0 such that

    vkcevW1,p(.),vW1,p(.)(Ω). (2.1)

    Assumptions

    The following assumptions are essential in the proofs of the main results in this work.

    (A1) The relaxation function g:R+R+ is a C1 nonincreasing function satisfying

    g(0)>0,10g(s)ds=>0, (2.2)

    and there exists a C1 function Ψ:(0,)(0,) which is linear or it is strictly increasing and strictly convex C2 function on (0,r] for some 0<rg(0), with Ψ(0)=Ψ(0)=0, lims+Ψ(s)=+, ssΨ(s) and ss(Ψ)1(s) are convex on (0,r] and there exists a a C1 nonincreasing function ϑ such that

    g(t)ϑ(t)Ψ(g(t)),t0. (2.3)

    (A2) m:¯Γ1[1,) is a continuous function such that

    m1:=essinfxΓ1m(x),m2:=esssupxΓ1m(x).

    and 1<m1<m(x)m2, where

    {m2<,n=1,2;m22nn2,n3.

    (A3) q:¯Ω[1,) is a continuous function such that 2<q1<q(x)<q2, where

    {q2<,n=1,2;q22nn2,n3.

    (A4) The variable exponents m and q are given continuous functions on ¯Γ1 satisfying the log-Hölder continuity condition:

    |β(x)β(y)|clog|xy|,for allx,yΩ,with|xy|<δ, (2.4)

    where c>0 and 0<δ<1.

    Remark 2.8. [43] Using (A1), one can prove that, for any t[0,t0],

    g(t)ϑ(t)Ψ(g(t))aϑ(t)=ag(0)ϑ(t)g(0)ag(0)ϑ(t)g(t)

    and, hence,

    ϑ(t)g(t)g(0)ag(t),t[0,t0]. (2.5)

    Moreover, we can define ˉΨ, for any t>r, by

    ˉΨ(t):=Ψ(r)2t2+(Ψ(r)Ψ(r)r)t+(Ψ(r)+Ψ(r)2r2Ψ(r)r).

    where ˉΨ:[0,+)[0,+), is a strictly convex and strictly increasing \boldsymbol{C}^2 function on (0, \infty) , is an extension of \Psi and \Psi is defined in (A1) .

    We introduce the "modified energy" associated to our problem

    \begin{equation} E(t) = \frac{1}{2}\Big[\|u_t\|^2_2+(g\circ \nabla u)(t)+\Big(1-\int_{0}^{t}g(s)ds\Big)\|\nabla u\|^2_2-\int_{\Gamma_1}\frac{1}{q(x)} \vert u \vert^{q(x)}dx\Big], \end{equation} (2.6)

    where for v\in L^{2}_{loc}(\mathbb{R}^+; L^2(\Omega)),

    (g\circ v)(t): = \int_{0}^{t}g(t-s)\|v(t)-v(s)\|_2^2ds.

    A direct differentiation, using (2.6), leads to

    \begin{equation} E'(t) = -\frac{1}{2}g(t)\|\nabla u\|^2_2-\int_{\Gamma_1}|u_t|^{m(x)}dx+\frac{1}{2}(g'\circ \nabla u)(t)\le 0. \end{equation} (2.7)

    Lemma 2.9. [43] Under the assumptions in (A1) , we have, for any t \ge t_0,

    \begin{equation*} \vartheta(t)\int_{0}^{t_0}g(s)\|\nabla u(t)-\nabla u(t-s)\|_2^2ds\le -c E^{\prime}(t). \end{equation*}

    The local existence theorem is stated in this section, and its proof can be demonstrated by combining the arguments of [44,45,46]. We also state and show a global existence result on the initial data under smallness conditions on (u_0, u_1) .

    Theorem 3.1 (Local Existence). Given (u_0, u_1)\in H^1_{\Gamma_0}(\Omega)\times L^2(\Omega) andassume that (A1)- (A4) hold. Then, there exists T > 0 , suchthat problem (1.6) has a weak solution

    u\in C((0, T), H^1_{\Gamma_0}(\Omega))\cap C^1((0, T), L^2(\Omega)), \quad u_t \in L^{m(.)}(\Gamma_1 \times (0, T)).

    We will now go over the following functionals:

    \begin{equation} J(t) = \frac{1}{2}\left((g\circ \nabla u)(t)+\left(1-\int_{0}^{t}g(s)ds\right)\|\nabla u\|_2^2\right)-\frac{1}{q_1}\int_{\Gamma_1}\vert u\vert ^{q(x)}dx \end{equation} (3.1)

    and

    \begin{equation} I(t) = I(u(t)) = (g\circ \nabla u)(t)+\left(1-\int_{0}^{t}g(s)ds\right)\|\nabla u\|_2^2-\int_{\Gamma_1}\vert u\vert ^{q(x)}dx. \end{equation} (3.2)

    Clearly, we have

    \begin{equation} E(t)\ge J(t)+\frac{1}{2}\|u_t\|_2^2. \end{equation} (3.3)

    Lemma 3.2. Suppose that (A1)-(A4) hold and (u_0, u_1)\in H^1_{\Gamma_0}(\Omega)\times L^2(\Omega) , such that

    \begin{equation} c_{e}^{q_2}E^{\frac{q_2-2}{2}}(0)+c^{q_2}_e E^{\frac{q_1-2}{2}}(0) < \ell, \quad I(u_0) > 0, \end{equation} (3.4)

    then

    I(u(t)) > 0, \quad \forall t > 0.

    Proof. Sine I is continuous and I(u_0) > 0, then there exists T_m < T such that

    I(u(t)) \ge 0, \ \forall t\in [0, T_m];

    which gives

    \begin{equation} \begin{aligned} &J(t) = \frac{1}{q_1}I(t)+\frac{q_1-2}{2q_1}\left[(g\circ \nabla u)(t)+\left(1-\int_{0}^{t}g(s)ds\right)\|\nabla u\|_2^2\right]\\ & \quad \ge \frac{q_1-2}{2q_1}\left[(g\circ \nabla u)(t)+\left(1-\int_{0}^{t}g(s)ds\right)\|\nabla u\|_2^2\right] \end{aligned} \end{equation} (3.5)

    Now,

    \begin{equation} \begin{aligned} &\ell \|\nabla u\|_2^2 \le \left(1-\int_{0}^{t}g(s)ds\right)\|\nabla u\|_2^2\le \frac{2q_1}{q_1-2}J(t)\le \frac{2q_1}{q_1-2}E(t)\le \frac{2q_1}{q_1-2}E(0). \end{aligned} \end{equation} (3.6)

    Using Youngs and Poincaré inequalities and the trace theorem, we get \forall t\in [0, T_m],

    \begin{equation} \begin{aligned} &\int_{\Gamma_1}\vert u \vert^{q(x)}dx = \int_{ \Gamma^{+}_{1}}\vert u \vert^{q(x)}dx+\int_{ \Gamma^{-}_{1}}\vert u \vert^{q(x)}dx\\ & \quad \le \int_{ \Gamma^{+}_{1}}\vert u \vert^{q_2}dx+\int_{ \Gamma^{-}_{1}}\vert u \vert^{q_1}dx\\ & \quad \le \int_{ \Gamma_{1}}\vert u \vert^{q_2}dx+\int_{ \Gamma_{1}}\vert u \vert^{q_1}dx\\ & \quad \le c_e^{q_2}\|\nabla u\|_2^{q_2}+c_e^{q_1}\|\nabla u\|_2^{q_1}\\ & \quad \le \left(c_e^{q_2}\|\nabla u\|_2^{q_2-2}+c_e^{q_1}\|\nabla u\|_2^{q_1-2}\right)\|\nabla u\|_2^2\\ & \quad < \ell \|\nabla u\|_2^2\\ & \quad \le \left(1-\int_{0}^{t}g(s)ds\right) \|\nabla u\|_2^2, \end{aligned} \end{equation} (3.7)

    where

    \begin{equation*} \Gamma^{-}_{1} = \{x \in \Gamma_1: \vert u(x, t) \vert < 1\}\; \; {\rm{and}} \; \; \Gamma^{+}_{1} = \{x \in \Gamma_1: \vert u(x, t) \vert \geq 1\}. \end{equation*}

    Therefore,

    I(t) = (g\circ \nabla u)(t)+\left(1-\int_{0}^{t}g(s)ds\right)\|\nabla u\|_2^2-\frac{1}{q_1}\int_{\Gamma_1}\vert u \vert^{q(x)} > 0.

    Notice that (3.7) shows that u \in L^{q(\cdot)}(\Gamma_1 \times (0, T)) .

    Proposition 3.3. Suppose that (A1)-(A4) hold. Let (u_0, u_1)\in H^1_{\Gamma_0}(\Omega)\times L^2(\Omega) be given, satisfying (3.4). Then the solution of (1.6) is global andbounded.

    Proof. It suffices to show that \|\nabla u\|_2^2+\|u_t\|_2^2 is bounded independently of t . To achieve this, we use (2.7), (3.2) and (3.5) to get

    \begin{equation} \begin{aligned} E(0)\ge E(t)& = J(t)+\frac{1}{2}\|u_t\|_2^2\\ &\ge \frac{q_1-2}{2q_1}\left(\ell \|\nabla u\|_2^2+(g \circ \nabla u)(t)\right)+ \frac{1}{2}\|u_t\|_2^2+\frac{1}{q_1}I(t)\\ &\ge \frac{q_1-2}{2q_1}\ell \|\nabla u\|_2^2+\frac{1}{2}\|u_t\|_2^2. \end{aligned} \end{equation} (3.8)

    Since I(t) and (g\circ \nabla u)(t) are positive, Therefore

    \|\nabla u\|_2^2+\|u_t\|_2^2\le CE(0),

    where C is a positive constant, which depends only on q_1 and \ell and the proof is completed.

    Remark 3.4. Using (3.6), we have

    \begin{equation} \|\nabla u\|_2^2 \le \frac{2q_1}{\ell (q_1-2)}E(0). \end{equation} (3.9)

    In this section, we state our decay result and provide some examples to illustrate our theorems.

    Theorem 4.1 (The case: {\bf{m_1\geq 2}} ). Assume that (A1)-(A4) and (3.4) hold. Let (u_0, u_1)\in H^1_{\Gamma_0}(\Omega)\times L^2(\Omega). Then, there exist positive constants {\lambda}_1 , {\lambda}_2 , {\lambda}_3, \, {\lambda}_4 such that

    \begin{equation} E(t) \leq {\lambda}_1 e^{- {\lambda}_2 \int_{t_0}^t \vartheta(s) ds}, \qquad\forall\, t > t_0, \ {{if}}\qquad \Psi\ {{is\ linear}}; \end{equation} (4.1)

    and

    \begin{equation} E(t) \leq {\lambda}_3 \Psi_0^{-1}\left( {\lambda}_4\int_{t_0}^t \vartheta(s) ds \right), \qquad\forall\, t > t_0, \ {{if}}\qquad \Psi \ {{is\ nonlinear}}; \end{equation} (4.2)

    where \Psi_0(s) = \int_{t}^{r}\frac{1}{s\Psi^{\prime}(s)}ds and r = g(t_0) .

    Theorem 4.2 (The case: {\bf{1 < m_1 < 2}} ). Assume that (A1)-(A4) and (3.4) hold. Let (u_0, u_1)\in H^1_{\Gamma_0}(\Omega)\times L^2(\Omega). Then, there exist positive constants \beta_1 , \beta_2, \, \beta_3 and t_1 > t_0 such that

    \begin{equation} E(t)\le \frac{\beta_1}{\left(\int_{t_0}^{t}\vartheta(s)ds\right)^{m_1-1}}, \quad \forall t > t_0,\ {{if}} \qquad \Psi \ {{is\ linear}}, \end{equation} (4.3)

    and, if \Psi is nonlinear, we have

    \begin{equation} E(t) \leq \beta_2(t-t_0)^{2-m_1} \Psi_1^{-1}\left[\frac{1}{\beta_3\left((t-t_0)^{\frac{m_1-2}{m_1-1}}\int_{t_1}^t\vartheta(s)ds\right)}\right], \qquad\forall\, t > t_1, \end{equation} (4.4)

    where \Psi_1(\tau) = \tau^{\frac{1}{m_1-1}} \Psi'(\tau).

    Example 1 (The case: {\bf{m_1\geq 2}}). ● We consider g(t) = ae^{-\sigma t} , t \geq 0 , where a, \sigma > 0 and a is chosen in such a way that (A1) is hold, then

    g'(t) = -\sigma \Psi(g(t)) \qquad\mathrm{with} \qquad\vartheta(t) = \sigma\qquad\mathrm{and}\qquad \Psi(s) = s.

    So, (4.1) gives, for d_1, d_2 > 0

    E(t) \leq d_1e^{-d_2t}, \qquad\forall\, t > t_0.

    Let g(t) = ae^{-(1+t)^\nu} , for t\geq 0 , 0 < \nu < 1 and a is chosen so that condition (A1) is satisfied. Then

    g'(t) = -\vartheta(t)\Psi(g(t))\qquad\mathrm{with}\qquad \vartheta(t) = \nu (1+t)^{\nu-1}\qquad\mathrm{and}\qquad \Psi(s) = s.

    Hence, (4.1) implies, for some C > 0 ,

    E(t) \leq C e^{-c(1+t)^\nu}.

    For \nu > 1 , let

    g(t) = \frac{a}{(1+t)^\nu}, \qquad t\geq0

    and a is chosen so that hypothesis (A1) remains valid. Then

    g'(t) = -\rho \Psi(g(t))\qquad\mathrm{with} \qquad\vartheta(t) = \rho \qquad\mathrm{and}\qquad \Psi(s) = s^p,

    where \rho is a fixed constant, p = \frac{1+\nu}{\nu} which satisfies 1 < p < 2 . Therefore, by estimate (4.2), we have

    E(t) \leq \frac{C}{(1+t)^\nu}, \qquad\forall\, t > t_0.

    Example 2 (The case: {\bf{1 < m_1 < 2 }}). ● Consider g(t) = \alpha e^{-\sigma (1+t)^{\nu}}, \quad t \geq 0, \quad 0 < \nu < 1, \quad \alpha, \sigma > 0, and \alpha is chosen so that (A1) holds, then g'(t) = -\sigma\Psi(g(t)) with \vartheta(t) = \nu (1+t)^{\nu-1} and \Psi(s) = s. We next infer that the solution of (1.6) satisfies the following energy estimate under the conditions of Theorem 4.2

    E(t) \leq \frac{C}{(t-t_0)^{m_1-1}}, \qquad\forall\, t > t_1.

    Let

    g(t) = \frac{\alpha}{(1+t)^\nu}, \qquad \nu > 1,

    and \alpha is chosen such that hypothesis (A1) remains valid. Then

    g'(t) = -\sigma\Psi(g(t))\qquad\mathrm{with} \qquad\vartheta(t) = \sigma\qquad\mathrm{and}\qquad \Psi(s) = s^{p}, \qquad\, p = \frac{1+\nu}{\nu}

    where \sigma is a fixed constant. Then, we conclude for t large enough and some constant C > 0 that the solution of (1.6) satisfies the following energy estimate under the conditions of Theorem 4.2

    E(t) \leq \frac{C}{(t-t_0)^{\lambda}},

    where \lambda = \frac{(m_1-1)(m_1+\nu-2)}{m_1+\nu-1} > 0 .

    The proofs of Theorem 4.1 and Theorem 4.2 will be done through several Lemmas.

    We establish various lemmas for our proofs in this section.

    Lemma 5.1 ([47]). Assume that (A1) holds. Then for any 0 < {\varepsilon} < 1 , we have

    \begin{equation} C_{\varepsilon}(h_{\varepsilon} \circ v)(t)\ge \int_0^L\left(\int_0^tg(t-s)(v(t)-v(s))ds\right)^2dx, \qquad\forall\, t\geq0. \end{equation} (5.1)

    where

    C_{\varepsilon}: = \int_0^\infty\frac{g^2(s)}{h_{\varepsilon}(t)}ds \qquad\mathrm{and}\qquad h_{\varepsilon}(t): = {\varepsilon} g(t)-g'(t).

    Lemma 5.2. Assume that (A1)-(A4) and (3.4) hold, the functional

    F_1(t): = \int_{\Omega} u u_tdx

    satisfies the estimates:

    \begin{equation} \begin{aligned} F'_1(t)&\le -\frac{\ell}{4} \vert \vert \nabla u(t) \vert \vert^2_2 + \vert \vert u_t \vert \vert^2_2+c C_{\varepsilon}(h_{\varepsilon}\circ \nabla u)(t)\\&+\int_{\Gamma_1}|u| ^{q(x)}dx+c \int_{\Gamma_1} |u_t|^{m(x)} dx, \quad {{for}}\ m_1 \geq 2, \end{aligned} \end{equation} (5.2)
    \begin{equation} \begin{aligned} F'_1(t)&\le -\frac{\ell}{4} \vert \vert \nabla u(t) \vert \vert^2_2 +\vert \vert u_t \vert \vert^2_2+c C_{\varepsilon}(h_{\varepsilon}\circ \nabla u)(t)+\int_{\Gamma_1}|u|^{q(x)}dx\\&+c \int_{\Gamma_1} |u_t|^{m(x)} dx+\bigg(\int_{\Gamma_1}|u_t|^{m(x)}\bigg)^{m_1-1}, {{for}}\ 1 < m_1 < 2. \end{aligned} \end{equation} (5.3)

    Proof. By differentiating F_1 and using (1.6), we get

    \begin{equation} \begin{aligned} &F'_1(t) = \int_{\Omega} \nabla u(t) \int_0^t g(t-s)\left(\nabla u(s)-\nabla u(t) \right) ds dx-\left(1-\int_0^t g(s)ds \right) \vert \vert \nabla u \vert \vert^2_2\\& \quad +\vert \vert u_t \vert \vert^2_2+\int_{\Gamma_1}|u|^{q(x)}dx-\int_{\Gamma_1}u|u_t|^{m(x)-2}u_t dx. \end{aligned} \end{equation} (5.4)

    (5.1) and Young's inequality, give, for any \delta_0 > 0 ,

    \begin{equation} \begin{aligned} &\int_{\Omega}\nabla u.\int_{0}^{t}g(t-s)(\nabla u(s)-\nabla u(t))dsdx\\ & \quad \le\delta_0 \int_{\Omega}{\vert \nabla u\vert}^{2}dx+\frac{C_{\epsilon}}{4\delta_0}(h_{\epsilon} \circ\nabla u)(t). \end{aligned} \end{equation} (5.5)

    The use of Young's inequality with \lambda(x) = \frac{m(x)}{m(x)-1} and \lambda^{\prime}(x) = m(x) , leads to

    \begin{equation} -\int_{\Gamma_1}u|u_t|^{m(x)}u_t dx \le \int_{\Gamma_1}{c_\delta}(x)|u_t|^{m(x)} dx+\delta \int_{\Gamma_1}|u|^{m(x)}dx, \end{equation} (5.6)

    where

    c_{\delta}(x) = \frac{(m(x)-1)^{m(x)-1}}{\delta ^{m(x)-1}(m(x))^{m(x)}(m(x))^{m(x)}}.

    Combining (2.1), (2.6), (2.7) and (3.9), we get

    \begin{equation} \begin{split} \int_{\Gamma_1}|u| ^{m(x)} dx &\leq \int_{\Gamma_1^+}|u| ^{m(x)} dx+ \int_{\Gamma_1^-}|u| ^{m(x)} dx\\ &\le \int_{\Gamma_1^+}|u| ^{m_2} dx+ \int_{\Gamma_1^-}|u| ^{m_1} dx \\ &\leq \int_{\Gamma_1}|u| ^{m_2} dx+ \int_{\Gamma_1}|u| ^{m_1}dx\\ &\le \bigg(c_e^{m_1} \vert \vert \nabla u \vert \vert_2^{m_1} + c_e^{m_2} \vert \vert \nabla u \vert \vert_2^{m_2} \bigg)\\ & \le \bigg( c_e^{m_1} \vert \vert \nabla u \vert \vert_2^{m_1-2}+c_e^{m_2}\vert \vert \nabla u \vert \vert_2^{m_2-2} \bigg)\vert \vert \nabla u \vert \vert_2^{2} \\ & \le \bigg( c_e^{m_1} \bigg(\frac{2q_1}{\ell (q_1-2)}E(0)\bigg)^{m_1-2}+c_e^{m_2} \bigg(\frac{2q_1}{\ell (q_1-2)}E(0)\bigg)^{m_2-2} \bigg)\vert \vert \nabla u \vert \vert_2^{2} \\ & \le c_0 \vert \vert \nabla u \vert \vert_2^{2}, \end{split} \end{equation} (5.7)

    where

    c_0 = \bigg( c_e^{m_1} \bigg(\frac{2q_1}{\ell (q_1-2)}E(0)\bigg)^{m_1-2}+c_e^{m_2} \bigg(\frac{2q_1}{\ell (q_1-2)}E(0)\bigg)^{m_2-2} \bigg).

    From (5.6) and (5.7), we have

    \begin{equation} -\int_{\Gamma_1}u|u_t|^{m(x)}u_t dx \le \delta c_0 \vert \vert \nabla u \vert \vert_2^{2}+\int_{\Gamma_1}{c_\delta}(x)|u_t|^{m(x)} dx. \end{equation} (5.8)

    Combining all the above results, choosing \delta_0 = \frac{\ell}{2} and \delta = \frac{\ell}{4 c_{0}} and using Poincaré's inequality and the trace theorem completes the proof of (5.2).

    To prove (5.3), we apply Young's and Poincaré's inequalities and the trace theorem to obtain

    \begin{equation} \begin{aligned} &-\int_{\Gamma_{11}}u|u_t|^{m(x)-2}u_tdx \le \eta \int_{\Gamma_{11}}|u| ^2 dx+\frac{1}{4\eta} \int_{\Gamma_{11}}|u_t|^{2m(x)-2} dx\\ &\le \eta c^2_\rho \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Gamma_{11}^{+}}|u_t|^{2m(x)-2} dx+\int_{\Gamma_{11}^{-}}|u_t|^{2m(x)-2} dx\bigg] \\ &\le \eta c^2_\rho \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Gamma_{11}^{+}}|u_t|^{m(x)} dx+\int_{\Gamma_{11}^{-}}|u_t|^{2m_1-2} dx\bigg]\\ &\le \eta c^2_\rho \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Gamma_1}|u_t|^{m(x)} dx+\bigg(\int_{\Gamma_{11}^{-}}|u_t|^{2} dx\bigg)^{m_1-1}\bigg]\\ &\le \eta c^2_\rho \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Gamma_1}|u_t|^{m(x)} dx+\bigg(\int_{\Gamma_{11}^{-}}|u_t|^{m(x)} dx\bigg)^{m_1-1}\bigg]\\ &\le \eta c^2_\rho \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Gamma_1}|u_t|^{m(x)} dx+\bigg(\int_{\Gamma_1}|u_t|^{m(x)} dx\bigg)^{m_1-1}\bigg], \end{aligned} \end{equation} (5.9)

    where

    \begin{equation*} \Gamma_{11} = \{x \in \Omega: m(x) < 2\}, \; \; \; \; \Gamma_{12} = \{x \in \Omega: m(x) \geq 2\}, \end{equation*}
    \begin{equation} \begin{aligned} &\Gamma_{11}^{-} = \{x \in \Gamma_{11}: \vert u_t(x, t) \vert < 1\} \; \; {\rm{and}} \; \; \Gamma_{11}^{+} = \{x \in \Gamma_{11}: \vert u_t(x, t) \vert \geq 1\}. \end{aligned} \end{equation} (5.10)

    By selecting \eta = \frac{\ell}{8 c^2_\rho} , (5.9) becomes

    \begin{equation} \begin{aligned} &-\int_{\Gamma_{11}}u|u_t|^{m(x)-2}u_tdx \le c \bigg[+\bigg(\int_{\Gamma_1}|u_t|^{m(x)} dx\bigg)^{m_1-1}+\int_{\Gamma_1}|u_t|^{m(x)} dx\bigg]+\frac{\ell}{8} \vert \vert \nabla u \vert \vert_2^{2}. \end{aligned} \end{equation} (5.11)

    Next, for any \delta we have, by the case m(x) \ge 2,

    \begin{equation} -\int_{\Gamma_{12}}u|u_t|^{m(x)}u_t dx \le \delta c_0 \vert \vert \nabla u \vert \vert_2^{2}+\int_{\Gamma_1}{c_\delta}(x)|u_t|^{m(x)} dx. \end{equation} (5.12)

    As a result of combining the estimates above, we arrive at

    \begin{equation*} \begin{aligned} F'_1(t)&\le -\left(\frac{3\ell}{8}-c_0 \delta \right)\vert \vert \nabla u(t) \vert \vert^2_2+ \vert \vert u_t \vert \vert^2_2+c C_{\varepsilon}(h_{\varepsilon}\circ \nabla u)(t)+\int_{\Gamma_1}|u| ^{q(x)}dx\\&+c \left[\bigg(\int_{\Gamma_1}|u_t|^{m(x)}\bigg)^{m_1-1}+\int_{\Gamma_1}\left(1+c_{\delta}(x)\right) |u_t|^{m(x)} dx\right]. \end{aligned} \end{equation*}

    By choosing \delta = \frac{\ell}{8c_0} , then c_{\delta}(x) is bounded and hence (5.3) is obtained.

    Lemma 5.3. Assume that (A1)-(A4) and (3.4) hold. Then for any \delta > 0 , the functional

    F_2(t): = -\int_{\Omega} u_t \int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)ds dx

    satisfies the estimates:

    \begin{equation} \begin{aligned} F'_2(t)&\le \delta(1+c_q) \|\nabla u\|^2_2-\Big(\int_{0}^{t}g(s)ds-\delta\Big)\|u_t\|^2_2+ \int_{\Gamma_1}{c_\delta}(x)|u_t|^{m(x)}dx\\ &+\bigg[\frac{c}{\delta}\bigg(C_{{\varepsilon}}+1 \bigg) +c C_{{\varepsilon}} \bigg](h_{{\varepsilon}}\circ \nabla u)(t)+c_1 \delta (1-\ell)^{m_1-1}(g\circ \nabla u)(t), {{for}}\ m_1 \geq 2, \end{aligned} \end{equation} (5.13)

    and for 1 < m_1 < 2 , we have

    \begin{equation} \begin{aligned} F'_2(t) &\le \delta(1+c_q) \|\nabla u\|^2_2-\Big(\int_{0}^{t}g(s)ds-\delta\Big)\|u_t\|^2_2+c\delta (g\circ \nabla u)(t)\\ &+ \bigg[\frac{c}{\delta}\bigg(C_{{\varepsilon}}+1 \bigg) +c C_{{\varepsilon}} \bigg](h_{{\varepsilon}}\circ \nabla u)(t)+\frac{c}{\delta} \bigg[\int_{\Gamma_1} |u_t|^{m(x)}dx+ \bigg(\int_{\Gamma_1} |u_t|^{m(x)}dx\bigg)^{m_1-1}\bigg] \end{aligned} \end{equation} (5.14)

    where the constant c_m > 0 depends on m_1, m_2 and \ell , and h_{\varepsilon} is defined earlier in Lemma (5.1).

    Proof. Direct differentiation of F_2 and using (1.6) leads to

    \begin{equation} \begin{aligned} F'_2(t)& = \int_{\Omega}\nabla u\int_{0}^{t}g(t-s)\big(\nabla u(t)-\nabla u(s)\big)dsdx\\ & \quad -\int_{\Omega}\Big(\int_{0}^{t}g(t-s)\nabla u(s)ds\Big)\Big(\int_{0}^{t}g(t-s)\big(\nabla u(t)-\nabla u(s)\big)ds\Big)dx\\ & \quad -\int_{\Omega}u_t\int_{0}^{t}g'(t-s)\big(u(t)-u(s)\big)dsdx-\left(\int_{0}^{t}g(s)ds\right) \|u_t\|^2_2\\ & \quad -\int_{\Gamma_1}|u_t|^{m(x)-2}u_t\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)dsdx\\ & \quad +\int_{\Gamma_1}|u| ^{q(x)-2} u \int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)dsdx\\ & = \left(1-\int_{0}^{t}g(s)ds\right)\int_{\Omega}\nabla u\int_{0}^{t}g(t-s)\big(\nabla u(t)-\nabla u(s)\big)dsdx\\ & \quad +\int_{\Omega}\Big(\int_{0}^{t}g(t-s)\big(\nabla u(t)-\nabla u(s)\big)ds\Big)^2dx\\ & \quad -\int_{\Omega}u_t\int_{0}^{t}g'(t-s)\big(u(t)-u(s)\big)dsdx-\left(\int_{0}^{t}g(s)ds\right) \|u_t\|^2_2\\ & \quad -\int_{\Gamma_1}|u_t|^{m(x)-2}u_t\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)dsdx\\ & \quad +\int_{\Gamma_1}|u| ^{q(x)-2} u \int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)dsdx. \end{aligned} \end{equation} (5.15)

    Using Young's inequality and Lemma 5.1, we get

    \begin{equation} \begin{aligned} &\left(1-\int_{0}^{t}g(s)ds\right)\int_{\Omega} \nabla u .\int_{0}^{t}g(t-s)\big(\nabla u(t)-\nabla u(s)\big)dsdx\\ &\le \delta\|\nabla u\|_2^2+\frac{c}{\delta}C_{\varepsilon} (h_{\varepsilon} \circ \nabla u)(t)+c C_{\varepsilon} (h_{\varepsilon} \circ \nabla u)(t). \end{aligned} \end{equation} (5.16)

    From Lemma (5.1) and Young's inequality, we get

    \begin{equation} \begin{aligned} &-\int_{\Omega}u_t\int_{0}^{t}g'(t-s)\big(u(t)-u(s)\big)dsdx\\ & = -{\varepsilon} \int_{\Omega}u_t\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)dsdx+\int_{\Omega}u_t\int_{0}^{t}h_{\varepsilon}(t-s)\big(u(t)-u(s)\big)dsdx\\ &\le \frac{\delta}{2}\|u_t\|^2_2+\frac{{\varepsilon}^2}{2\delta}\int_{\Omega}\Big(\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)ds\Big)^2dx +\frac{\delta}{2}\|u_t\|^2_2\\ & \quad +\frac{1}{2\delta}\int_{\Omega}\Big(\int_{0}^{t}h_{\varepsilon}(t-s)\big(u(t)-u(s)\big)ds\Big)^2dx\\ &\le \delta\|u_t\|^2_2+\frac{c}{\delta}C_{\varepsilon}(h_{\varepsilon}\circ u)(t)+\frac{1}{2\delta}\int_{0}^{t}h_{\varepsilon}(s)ds\int_{0}^{t}h_{\varepsilon}(t-s)\|u(t)-u(s)\|^2_2ds\\ &\le \delta\|u_t\|^2_2+\frac{c}{\delta}(C_{\varepsilon}+1)(h_{\varepsilon}\circ \nabla u)(t). \end{aligned} \end{equation} (5.17)

    Now, for almost every x\in \Omega , we get

    \begin{equation} \begin{aligned} &\int_{0}^{t}g(t-s)\vert u(t)-u(s)\vert ds\le \left(\int_{0}^{t}g(s)ds\right)^{\frac{m(x)-1}{m(x)}}\left(\int_{0}^{t}g(t-s)\vert u(t)-u(s)\vert^{m(x)}ds\right)^{\frac{1}{m(x)}}\\ & \quad \le (1-\ell)^{\frac{m(x)-1}{m(x)}}\left(\int_{0}^{t}g(t-s)\vert u(t)-u(s)\vert^{m(x)}ds\right)^{\frac{1}{m(x)}}. \end{aligned} \end{equation} (5.18)

    Next, for almost every x\in \Omega, we obtain

    \begin{equation} \bigg \vert \int_{0}^{t}g(t-s)\vert u(t)-u(s)\vert ds \bigg \vert^{m(x)}\le (1-\ell)^{m_1-1}\int_{0}^{t}g(t-s)\vert u(t)-u(s)\vert^{m(x)} ds. \end{equation} (5.19)

    Using Young's, Hölder's, Poincaré's inequalities and Lemma 5.1, we have

    \begin{equation} \begin{aligned} &-\int_{\Gamma_1}|u_t|^{m(x)-2}u_t\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)dsdx\\ &\le \delta\int_{\Gamma_1}\bigg|\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)ds\bigg|^{m(x)}dx+\int_{\Gamma_1}{c_\delta}(x)|u_t|^{m(x)}dx\\ &\le \delta \Big(1-\ell\Big)^{m_1-1} \int_{\Gamma_1} \int_{0}^{t}g(t-s)|(u(t)-u(s)|^{m(x)} dsdx+ \int_{\Gamma_1}{c_\delta}(x)|u_t|^{m(x)}dx, \end{aligned} \end{equation} (5.20)

    where

    c_{\delta}(x) = \delta ^{1-m(x)}(m(x))^{-m(x)} (m(x)-1)^{m(x)-1}.

    Further, we have

    \begin{equation} \begin{aligned} &\int_{\Gamma_1} \int_{0}^{t}g(t-s)|(u(t)-u(s)|^{m(x)} dsdx\\ &\le \int_{\Gamma_1^+}\int_{0}^{t}g(t-s)|(u(t)-u(s)|^{m_2} dsdx+\int_{\Gamma_1^-}\int_{0}^{t}g(t-s)|(u(t)-u(s)|^{m_1} dsdx\\ &\le \int_{0}^{t}g(t-s)\vert \vert (u(t)-u(s)\vert \vert_{m_2}^{m_2} ds+\int_{0}^{t}g(t-s)\vert \vert (u(t)-u(s)\vert \vert_{m_1}^{m_1} ds\\ &\le \left[c_e^{m_2}\left(\frac{2q_1}{\ell (q_1-2)}E(0)\right)^{\frac{m_2-2}{2}}+c_e^{m_1}\left(\frac{2q_1}{\ell (q_1-2)}E(0)\right)^{\frac{m_1-2}{2}}\right]\int_{0}^{t}g(t-s)\vert \vert (u(t)-u(s)\vert \vert_{2}^{2} ds. \end{aligned} \end{equation} (5.21)

    Therefore,

    \begin{equation} \begin{aligned} &-\int_{\Gamma_1}|u_t|^{m(x)-2}u_t\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)dsdx\le c_1 \delta \Big(1-\ell\Big)^{m_1-1} (g\circ \nabla u)(t)\\ & \quad +\int_{\Gamma_1}{c_\delta}(x)|u_t|^{m(x)}dx, \end{aligned} \end{equation} (5.22)

    where c_1 = \left[c_e^{m_2}\left(\frac{2q_1}{\ell (q_1-2)}E(0)\right)^{\frac{m_2-2}{2}}+c_e^{m_1}\left(\frac{2q_1}{\ell (q_1-2)}E(0)\right)^{\frac{m_1-2}{2}}\right].

    To estimate the last term in (5.15), we use Young's inequality and Lemma 5.1, to obtain

    \begin{equation} \begin{aligned} &\int_{\Gamma_1}|u| ^{q(x)-1}\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)dsdx\\ &\le \delta \int_{\Gamma_1}\vert u \vert^{2q(x)-2}dx+\frac{1}{4\delta}\int_{\Gamma_1}\Big(\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)ds\Big)^2dx\\ &\le \delta \int_{\Gamma_1}\vert u\vert^{2q(x)-2}dx+\frac{C_{\varepsilon}}{4\delta}(h_{\varepsilon} \circ \nabla u)(t). \end{aligned} \end{equation} (5.23)

    The first term in (5.23) can be estimated as follows:

    \begin{equation} \begin{split} \int_{\Gamma_1} |u| ^{2q(x)-2} dx & = \int_{\Gamma_1^{+}}|u| ^{2q(x)-2} dx+\int_{\Gamma_1^{-}}|u| ^{2q(x)-2} dx\\ &\le \int_{\Gamma_1^{+}}|u| ^{2q_2-2} dx+\int_{\Gamma_1^{-}}|u| ^{2q_1-2} dx\\ &\le \int_{\Gamma_1}|u| ^{2q_2-2} dx+\int_{\Gamma_1}|u| ^{2q_1-2} dx\\ & \le c_\rho^{2q_2-2}\vert \vert \nabla u \vert \vert_2^{2q_2-2}+c_\rho^{2q_1-2}\vert \vert \nabla u \vert \vert_2^{2q_1-2}\\ &\le \bigg(c_\rho^{2q_2-2}\bigg( \frac{2q_1}{\ell (q_1-2)}E(0)\bigg)^{2q_2-4}+c_\rho^{2q_1-2} \bigg( \frac{2q_1}{\ell (q_1-2)}E(0)\bigg)^{2q_1-4} \bigg)\vert \vert \nabla u \vert \vert_2^{2}\\ & \le c_{q}\vert \vert \nabla u \vert \vert_2^{2}, \end{split} \end{equation} (5.24)

    where

    c_q = \bigg(c_\rho^{2q_2-2}\bigg( \frac{2q_1}{\ell (q_1-2)}E(0)\bigg)^{2q_2-4}+c_\rho^{2q_1-2} \bigg( \frac{2q_1}{\ell (q_1-2)}E(0)\bigg)^{2q_1-4} \bigg).

    Collecting all the above estimates with (5.15), we see that (5.13) is archived.

    To prove (5.14), we start by re-estimating the fifth term in (5.15) as follows:

    \begin{equation} \begin{aligned} &-\int_{\Gamma_1}|u_t|^{m(x)-2}u_t\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)dsdx\\ &\le \delta \int_{\Gamma_1}\bigg|\int_{0}^{t}g(t-s)\big(u(t)-u(s)\big)ds\bigg|^{2}dx+\frac{c}{\delta}\int_{\Gamma_1} |u_t|^{2m(x)-2}dx\\ &\le \delta (1-\ell) (g \circ u)(t)+ \frac{c}{\delta} \int_{\Gamma_1}|u_t|^{2m(x)-2}dx\\ &\le c\delta (g \circ \nabla u)(t)+ \frac{c}{\delta} \int_{\Gamma_{11}}|u_t|^{2m(x)-2}dx +\frac{c}{\delta} \int_{\Gamma_{12}}|u_t|^{2m(x)-2}dx \\ &\le c\delta (g \circ \nabla u)(t)+\frac{c}{\delta}\bigg(\int_{\Gamma_1}|u_t|^{m(x)}dx + \bigg(\int_{\Gamma_1}|u_t|^{m(x)}dx\bigg)^{m_1-1}\bigg). \end{aligned} \end{equation} (5.25)

    Hence, (5.14) is established.

    Lemma 5.4. [43] Assume that (A1) and (A3) hold, then the functional

    F_3(t): = \int_{0}^{t}f(t-s)\|\nabla u(s)\|^2_2ds

    satisfies the estimate:

    \begin{equation} \begin{array}{l} F_3'(t)\le 3(1-\ell)\|\nabla u\|^2_2-\frac{1}{2}(g\circ \nabla u)(t), \end{array} \end{equation} (5.26)

    where f(t) = \int_{t}^{\infty}g(s)ds .

    Lemma 5.5. Given t_0 > 0. Assume that (A1)-(A4) and (3.4) holdand m_1 \geq 2 . Then, the functional \mathcal{L} defined by

    \mathcal{L}(t): = N E(t) + {\varepsilon}_1 F_1(t) + {\varepsilon}_2 F_2(t)

    satisfies, for fixed N, \, {\varepsilon}_1, \, {\varepsilon}_2 > 0 ,

    \begin{equation} \mathcal{L} \sim E \end{equation} (5.27)

    and for any \, t \geq t_0 ,

    \begin{equation} \begin{aligned} \mathcal{L}'(t) \leq - c \|u_t\|^2_2 - 4(1 - \ell)\|\nabla u\|^2_2 + \frac{1}{4}( g \circ \nabla u)(t)+c \int_{\Gamma_1}|u| ^{q(x)}dx. \end{aligned} \end{equation} (5.28)

    Proof. The equivalence \mathcal{L} \sim E can be proved straightforward. For the proof of (5.28), we start combining (2.6), (2.7), (5.2) and (5.13) and recalling g'(t): = {\varepsilon} g(t)-h_{\varepsilon}(t) , to get:

    \begin{equation} \begin{aligned} \mathcal{L}'(t)&\le -\Big[\Big(\int_{0}^{t}g(s)ds-\delta\Big){\varepsilon}_2-{\varepsilon}_1\Big]\|u_t\|^2_2-\bigg(\frac{\ell}{4}{\varepsilon}_1-\delta {\varepsilon}_2(1+c_q)\bigg)\|\nabla u\|^2_2 \\ &-\Big[\frac{N}{2}-\frac{{\varepsilon}_2 c}{\delta}-c C_{{\varepsilon}}\bigg( \varepsilon_1+\frac{ \varepsilon_2}{\delta}+ \varepsilon_2\bigg) \Big](h_{{\varepsilon}}\circ \nabla u)(t)\\ &- \int_{\Gamma_1}\big(N-c {\varepsilon}_1 - {\varepsilon}_2 c_{\delta}(x) \big) |u_t|^{m(x)}dx+\varepsilon_1 \int_{\Gamma_1}|u| ^{q(x)}dx\\ &+ \bigg(\frac{N{\varepsilon}}{2}+\varepsilon_2 c_1 \delta (1-\ell)^{m_1-1}\bigg)(g\circ \nabla u)(t). \end{aligned} \end{equation} (5.29)

    Now, set g_0 = \int_{0}^{t_0}g(s)ds and select \delta small enough so that

    \delta < \min\Big\{\frac{1}{2}g_0, \frac{\ell g_0}{16(1+c_q)}, \frac{\ell g_0}{1024 c_1 (1-\ell)^{m_1}}\Big\}.

    Once \delta is fixed, then {c_\delta}(x) is bounded and the choice of {\varepsilon}_1 = \frac{3}{8}g_0 {\varepsilon}_2 yields

    \frac{1}{4}g_0{\varepsilon}_2 < {\varepsilon}_1 < \frac{1}{2}g_0{\varepsilon}_2.
    \begin{equation} \begin{array}{l} c_1: = (g_0-{\delta}){\varepsilon}_2 - {\varepsilon}_1 > \frac{1}{2}g_0{\varepsilon}_2-{\varepsilon}_1 = \frac{1}{8}g_0{\varepsilon}_2 > 0, \\ c_2: = \frac{\ell}{4}{\varepsilon}_1 - {\delta}{\varepsilon}_2 (1+c_q) > \frac{\ell}{32}g_0{\varepsilon}_2 > 0. \end{array} \end{equation} (5.30)

    By taking {\varepsilon}_2 = \frac{1}{8 c_1 \delta (1-\ell)^{m_1-1}}, we get

    c_1 \delta (1-\ell)^{m_1-1}{\varepsilon}_2 = \frac{1}{8} { and }c_2 > \frac{\ell}{32}g_0{\varepsilon}_2 = \frac{\ell g_0}{256c_1 \delta (1-\ell)^{m_1-1}} > 4(1-\ell).

    Then (5.29) becomes

    \begin{equation} \begin{aligned} \mathcal{L}'(t)\le -c_1\|u_t\|^2_2-4(1-\ell)\|\nabla u\|^2_2+\bigg(\frac{N{\varepsilon}}{2}+\frac{1}{8}\bigg)(g\circ \nabla u)(t)+\varepsilon_1 \int_{\Gamma_1}|u| ^{q(x)}dx \\ -\Big[\frac{N}{2}-\frac{{\varepsilon}_2 c}{\delta}-c C_{{\varepsilon}}\bigg( \varepsilon_1+\frac{ \varepsilon_2}{\delta}+ \varepsilon_2\bigg) \Big](h_{{\varepsilon}}\circ \nabla u)(t)- \bigg[N-c({\varepsilon}_1+{\varepsilon}_2) \bigg]\int_{\Gamma_1} |u_t|^{m(x)}dx\\ \end{aligned} \end{equation} (5.31)

    From \frac{{\varepsilon} g^2(s)}{{\varepsilon} g(s)-g'(s)} < g(s) and using the Lebesgue Dominated Convergence Theorem, we conclude that

    \lim\limits_{{\varepsilon}\rightarrow0^+}{\varepsilon} C_{\varepsilon} = \lim\limits_{{\varepsilon}\rightarrow0^+}\int_0^\infty\frac{{\varepsilon} g^2(s)}{{\varepsilon} g(s)-g'(s)}ds = 0.

    So, there exists 0 < {\varepsilon}_0 < 1 such that if {\varepsilon} < {\varepsilon}_0 , then

    {\varepsilon} C_{\varepsilon} < \frac{1}{16\bigg(c \varepsilon_1+\frac{c \varepsilon_2}{\delta}+c \varepsilon_2\bigg) } .

    Now, choosing N large enough so that \mathcal{L} \sim E and

    N > \max \left\lbrace \frac{4c}{{\delta}} {\varepsilon}_2, \, \, \frac{1}{4{\varepsilon}}, \, \, \frac{c({\varepsilon}_1 + {\varepsilon}_2)}{a} \right\rbrace.

    For {\varepsilon} = \frac{1}{4N} , we have

    \frac{N}{4} - \frac{c}{{\delta}} {\varepsilon}_2 > 0 \qquad\mathrm{and}\qquad {\varepsilon} < {\varepsilon}_0.

    This gives

    \begin{equation} \frac{N}{2} - \frac{{\varepsilon}_2 c}{\delta}-C_{{\varepsilon}}\bigg(c \varepsilon_1+\frac{c \varepsilon_2}{\delta}+c \varepsilon_2\bigg) > 0. \end{equation} (5.32)

    A Combination of (5.31)-(5.32), leads to (5.28).

    Lemma 5.6. Given t_0 > 0 . Assume that (A1)-(A4) and (3.4) holdand 1 < m_1 < 2 . Then, the functional \mathcal{L} defined by

    \mathcal{L}(t): = N E(t) + {\varepsilon}_1 F_1(t) + {\varepsilon}_2 F_2(t)

    satisfies, for fixed N, \, {\varepsilon}_1, \, {\varepsilon}_2 > 0 ,

    \begin{equation} \mathcal{L} \sim E \end{equation} (5.33)

    and for any \, t \geq t_0 ,

    \begin{equation} \begin{aligned} \mathcal{L}'(t) \leq - c \|u_t\|^2_2 - 4(1 - \ell)\|\nabla u\|^2_2 + \frac{1}{4} ( g \circ \nabla u)(t) +\varepsilon_1 \int_{\Gamma_1}|u| ^{q(x)}dx+c \bigg(-E'(t)\bigg)^{m_1-1}. \end{aligned} \end{equation} (5.34)

    Proof. Estimate (5.34) can be established by using the same above arguments with some changes only on

    \delta < \min\Big\{\frac{1}{2}g_0, \frac{\ell}{16c(1+c_q)}g_0, \frac{\ell g_0}{1024 (1-\ell)}\Big\}, \ { {\rm{and}} }\ {\varepsilon}_2 = \frac{1}{8\delta}.

    Lemma 5.7. Assume that (A1)-(A4) and (3.4) hold, then for m_1\geq 2 , then

    \begin{equation} \int_0^{\infty} E(s) ds < \infty. \end{equation} (5.35)

    Proof. Combining Lemmas 5.4 and 5.5 and choosing \varepsilon_1 small enough, we see that the functional L_1 defined by

    L_1(t) : = \mathcal{L}(t) + F_3(t)

    is nonnegative and satisfies, for some c_0 > 0 and for any t \geq t_0 ,

    \begin{equation*} \begin{split} L_1'(t) \leq& -c \|u_t\|^2_2 - (1-\ell)\left\| \nabla u\right\|^2_2 - \frac{1}{4}\left( g \circ \nabla u \right)(t)+\varepsilon_1 \int_{\Gamma_1}|u| ^{q(x)}dx\\ \leq& -c_0 E(t)-\left(\frac{c}{2 q_2}-\varepsilon_1 \right)\int_{\Gamma_1}|u| ^{q(x)}dx\\ \leq& - c_0 E(t). \end{split} \end{equation*}

    An integration over (t_0, t) , leads

    \int_{t_0}^{t}E(s)ds\le -\frac{L_1(t)+L_1(t_0)}{c_0}, \quad \forall t \ge t_0.

    Using the continuity of E , we obtain

    \begin{equation*} \int_0^\infty E(s)ds < +\infty. \end{equation*}

    Lemma 5.8. Assume that (A1)-(A4) and (3.4) hold, then for 1 < m_1 < 2 , we have

    \begin{equation} \int_0^{\infty}E^{\frac{1}{m_1-1}}(s) ds < \infty. \end{equation} (5.36)

    Furthermore,

    \begin{equation} \int_{t_0}^{\infty}E(s) ds \le c(t-t_0)^{2-m_1}, \quad \forall t \ge t_0. \end{equation} (5.37)

    Proof. Combing Lemmas 5.4 and 5.6 and selecting \varepsilon_1 small enough, we conclude that the functional L_2 defined by

    L_2(t) : = \mathcal{L}(t) + F_3(t)

    satisfies, for some c_0, \; c > 0 and for any t \geq t_0 ,

    \begin{equation} \begin{split} L_2'(t) \leq& -c\|u_t\|^2_2 - (1-\ell)\left\| \nabla u\right\|^2_2 - \frac{1}{4}\left( g \circ \nabla u \right)(t)+\varepsilon_1 \int_{\Gamma_1}|u| ^{q(x)}dx+C\Big[\int_{\Gamma_1}|u_t|^mdx\Big]^{m_1-1}\\ \leq& -c_0 E(t)-\left(\frac{c}{2 q_2}-\varepsilon_1 \right)\int_{\Gamma_1}|u| ^{q(x)}dx+c\big(-E'(t)\big)^{m_1-1}\\ \leq& - c_0 E(t)+c\big(-E'(t)\big)^{m_1-1} , \quad \forall t \ge t_0. \end{split} \end{equation} (5.38)

    Now, multiplying (5.38) by E^\alpha(t), \; \alpha = \frac{2-m_1}{m_1-1} , and using Young's inequality, we arrive at

    \begin{equation} \begin{array}{l} E^\alpha(t)L_2'(t)\le - c_0 E^{\alpha+1}(t)+c_1E^\alpha(t)\big(-E'(t)\big)^{m_1-1}\\ \quad \le -c_0(1-{\varepsilon}) E^{\alpha+1}(t)+\frac{c}{{\varepsilon}}\big(-E'(t)\big).\\ \end{array} \end{equation} (5.39)

    Choosing {\varepsilon} small enough and using the fact E'\leq 0 , then (5.39) becomes:

    \begin{equation} E^{\alpha+1}(t)\le -cL_3'(t), \quad \forall t \ge t_0, \end{equation} (5.40)

    where L_3(t) = E^\alpha(t)L_2(t)+cE(t) .

    Integrating over (t_0, t) , we get

    \int_{t_0}^{t}E^{\alpha +1}(s)ds\le L_3(t_0), \quad \forall t \ge t_0.

    Therefore, we get

    \begin{equation*} \int_0^\infty E^{\frac{1}{m_1-1}}(s)ds < +\infty. \end{equation*}

    Using Hölder's inequality, we get

    \begin{equation} \int_{t_0}^{t}E(s)ds\le (t-t_0)^{\frac{\alpha}{\alpha+1}}\Big[\int_{t_0}^{t}E^{\alpha+1}(s)ds\Big]^{\frac{1}{\alpha+1}}\le c(t-t_0)^{\frac{\alpha}{\alpha+1}} = c(t-t_0)^{2-m_1}, \; \forall t\geq t_0. \end{equation} (5.41)

    This completes the proof.

    In this section, we prove Theorem 4.1 and Theorem 4.2.

    Case 1: \Psi is linear. Using (2.3), (2.6), and (5.28), then for any t\geq t_0 , we have

    \begin{equation*} \begin{aligned} &\vartheta(t) \mathcal{L}'(t) \leq -c\vartheta(t)E(t) +c \vartheta (g\circ \nabla u)(t)\le -c\vartheta(t)E(t) +c(g^{\prime}\circ \nabla u)(t)\\ & \quad \le -c\vartheta(t)E(t) - c E'(t). \end{aligned} \end{equation*}

    Letting \vartheta \mathcal{L}+cE\sim E and integrating over (t_0, t) , we get for some C, \lambda > 0,

    \begin{equation*} E(t)\le C\exp{\left(-\lambda \int_{t_0}^{t}\vartheta(s)ds\right)}, \ t\geq t_0. \end{equation*}

    Case 2: \Psi is nonlinear. We start defining the following functional

    \begin{equation} \eta(t) : = \gamma\int_{t_0}^t \left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2, \quad\forall\, t \geq t_0, \end{equation} (6.1)

    where \gamma > 0 should be carefully selected. Using (3.9) and (5.35), we get

    \begin{align*} &\eta(t) = \gamma \int_{t_0}^t\left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2 \\ & \leq 2 \gamma \int_{t_0}^t\left(\left\| \nabla u(t)\right\|^2_2 + \left\|\nabla u(t-s)\right\|^2_2\right)ds \\ & \leq \frac{8\gamma q_1}{\ell (q_1-2)} \int_{t_0}^t \big( E(t) + E(t-s) \big)ds \\ & \leq \frac{8\gamma q_1}{\ell (q_1-2)} \int_{t_0}^\infty E(s) ds < \infty, \qquad\forall\, t \geq t_0. \end{align*}

    Therefore, we can select \gamma small enough so that

    \begin{equation} \eta(t) < 1, \qquad\forall\, t \geq t_0. \end{equation} (6.2)

    We also define the following

    \begin{equation} \theta(t): = -\int_{t_0}^t g'(s) \| \nabla u(t)-\nabla u(t-s)\|^2_2\leq -c E'(t). \end{equation} (6.3)

    Since \bar \Psi is strictly convex and \bar \Psi(0) = 0 , we have

    \bar \Psi(s\tau) \leq s \bar \Psi(\tau), \qquad \mathrm{for} \quad 0 \leq s \leq 1 \quad \mathrm{and} \quad \tau \in [0, \infty).

    Combining the above with (2.3), Jensen's inequality and (6.2), we obtain, for any t > t_0 ,

    \begin{align*} \theta(t)& = -\frac{1}{\eta(t)}\int_{t_0}^t\eta(t)g'(s)\left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2\\ &\geq\frac{1}{\eta(t)}\int_{t_0}^t\eta(t)\vartheta(s)\Psi(g(s))\left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2\\ &\geq\frac{\vartheta(t)}{\eta(t)}\int_{t_0}^t \bar \Psi(\eta(t)g(s))\left\| \nabla u(t)-\nabla u(t-s))\right\|^2_2\\ &\geq\frac{\vartheta(t)}{\gamma} \bar{\Psi} \left( \gamma \int_{t_0}^t g(s)\left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2\right). \end{align*}

    Then, for any t \geq t_0 , we have

    \begin{equation} \int_{t_0}^t g(s)\left\| \nabla (u(t)-u(t-s))\right\|^2_2 \leq \frac{1}{\gamma}\bar{\Psi}^{-1}\left(\frac{\gamma\theta(t)}{\vartheta(t)}\right), \ \forall t > t_0. \end{equation} (6.4)

    Combining (2.6), (5.28), (6.4) and using Lemma 2.9, we get, for any t\geq t_0 ,

    \begin{equation} \begin{aligned} & \mathcal{L}'(t) \leq -\beta_1 E(t) - c E'(t)+ c\int_{t_0}^t g(s)\left\| \nabla (u(t)-u(t-s))\right\|^2_2\\ & \quad \le -\beta_1 E(t) - c E'(t)+ \frac{c}{\gamma}\bar{\Psi}^{-1}\left(\frac{\gamma\theta(t)}{\vartheta(t)}\right). \end{aligned} \end{equation} (6.5)
    \begin{equation} \mathcal{F}'(t) \leq -\beta_1 E(t) + \frac{c}{\gamma} \bar{\Psi}^{-1} \left( \frac{\gamma \theta(t)}{\vartheta(t)}\right), \qquad \forall\, t \geq t_0, \end{equation} (6.6)

    where \mathcal{F}: = \mathcal{L}+cE . For {\varepsilon}_0 < r , we define

    \mathcal{F}_1(t) : = \bar \Psi'\left( \frac{{\varepsilon}_0E(t)}{E(0)} \right) \mathcal{F}(t), \qquad \forall\, t \geq t_0.

    Then, using the facts that E'\leq0 , \Psi' > 0 and \Psi'' > 0 , estimate (6.6) becomes

    \begin{eqnarray} \mathcal{F}_1'(t) & = & \frac{{\varepsilon}_0 E'(t)}{E(0)} \bar \Psi'\left(\frac{{\varepsilon}_0E(t)}{E(0)}\right) \mathcal{F}(t) + \bar \Psi'\left(\frac{{\varepsilon}_0E(t)}{E(0)}\right) \mathcal{F}'(t) \\ &\leq& - \beta_1 E(t)\bar \Psi'\left(\frac{{\varepsilon}_0E(t)}{E(0)}\right) + \frac{c}{\gamma}\bar \Psi'\left(\frac{{\varepsilon}_0E(t)}{E(0)}\right)\bar{\Psi}^{-1}\left(\frac{\gamma\theta(t)}{\vartheta(t)}\right), \quad \forall\, t \geq t_0. \end{eqnarray} (6.7)

    Recall that \bar \Psi is convex on (0, \infty) and let \bar \Psi^* be the convex conjugate of \bar \Psi in the sense of Young [48] such that

    \begin{equation} \bar \Psi^*(s) = s\big(\bar \Psi'\big)^{-1}(s)-\bar \Psi\left[\big(\bar \Psi'\big)^{-1}(s), \right] \forall s \in (0, \infty). \end{equation} (6.8)

    and satisfies the following generalized Young inequality

    \begin{equation} AB\leq\bar \Psi^*(A)+\bar \Psi(B), \forall A, B \in (0, \infty). \end{equation} (6.9)

    Then a combination of (2.7), (6.7)) and (6.9) with applying the generalized Young inequality over (0, \infty) with A = \bar \Psi'\left(\frac{{\varepsilon}_0 E(t)}{E(0)}\right) and B = \bar \Psi^{-1}\left(\frac{\gamma\theta(t)}{\vartheta(t)}\right),

    \begin{eqnarray*} \mathcal{F}_1'(t) &\leq& - \beta_1 E(t)\bar \Psi'\left(\frac{{\varepsilon}_0E(t)}{E(0)}\right) + \frac{c}{\gamma}\bar \Psi^*\left[\bar \Psi'\left(\frac{{\varepsilon}_0 E(t)}{E(0)}\right)\right] + \frac{c \theta(t)}{\vartheta(t)}\\ &\leq& - (\beta_1 E(0) - c {\varepsilon}_0)\frac{E(t)}{E(0)}\bar \Psi'\left(\frac{{\varepsilon}_0E(t)}{E(0)}\right) + c\frac{\theta(t)}{\vartheta(t)}, \qquad \forall\, t \geq t_0. \end{eqnarray*}

    Take {\varepsilon}_0 small enough, if needed, to obtain, for some positive constant \beta_1 ,

    \begin{eqnarray*} \mathcal{F}_1'(t) &\leq& -\beta_1\frac{E(t)}{E(0)}\bar \Psi'\left(\frac{{\varepsilon}_0E(t)}{E(0)}\right)+c\frac{\theta(t)}{\vartheta(t)}, \qquad \forall\, t \geq t_0. \end{eqnarray*}

    Multiplying both sides of the last inequality by \vartheta(t) and using {\varepsilon}_0\frac{E(t)}{E(0)} < r and inequality 6.3, we get

    \begin{eqnarray*} \label{e12s5} \vartheta(t) \mathcal{F}_1'(t) &\leq& - \beta_2\frac{E(t)}{E(0)}\Psi'\left(\frac{{\varepsilon}_0E(t)}{E(0)}\right)\vartheta(t)+c\theta(t) \notag\\ &\leq& -\beta_2\frac{E(t)}{E(0)}\Psi'\left(\frac{{\varepsilon}_0E(t)}{E(0)}\right)\vartheta(t)-c E'(t) , \qquad \forall\, t \geq t_0. \end{eqnarray*}

    Hence by setting \mathcal{F}_2 = \vartheta \mathcal{F}_1+cE , we obtain, for two constants \alpha_1, \alpha_2 > 0,

    \begin{equation} \alpha_1 \mathcal{F}_2(t)\le E(t)\le \alpha_2 \mathcal{F}_2, \quad \forall t\ge t_0 \end{equation} (6.10)

    and

    \begin{eqnarray} \mathcal{F}_2'(t) &\leq& - \beta_2\frac{E(t)}{E(0)}\Psi'\left(\frac{{\varepsilon}_0E(t)}{E(0)}\right)\vartheta(t), \quad \forall t\ge t_0. \end{eqnarray} (6.11)

    Now, let

    \Lambda(t): = \frac{\alpha_1 \mathcal{F}_2(t)}{E(0)}\ {\rm{and}}\ \Psi_2(\tau) = \tau \Psi^{\prime}({\varepsilon}_0 \tau),

    then we deduce from (A2) that \Psi_2, \Psi_2^{\prime} > 0 on (0, 1] , and from (6.10) and (6.11) that \Lambda\sim E and

    \begin{equation} -\frac{\Lambda^{\prime}(t)}{\Psi_2(\Lambda(t))}\ge \lambda_1\vartheta(t), \quad \forall t > t_0, \end{equation} (6.12)

    Integration over (t_0, t) , we get

    \begin{equation*} \int_{{\varepsilon}_0 \Lambda(t)}^{{\varepsilon}_0 \Lambda(t_0)}\frac{1}{s\Psi^{\prime}(s)}ds\ge \int_{t_0}^{t}\vartheta(s)ds, \quad \forall t > t_0. \end{equation*}

    Hence,

    \begin{equation*} E(t)\le \lambda_2 \Psi_0^{-1}\left(\lambda_1\int_{t_0}^{t}\vartheta(s)ds\right), \quad \forall t > t_0, \end{equation*}

    where \Psi_0 = \int_{t}^{r}\frac{1}{s\Psi'(s)}ds and \lambda_2 > 0.

    Case 1: \Psi is linear. Combining (2.3), (2.6) and (5.34), then for some \gamma_1 > 0 , we have

    \begin{equation} \begin{aligned} &\vartheta(t) \mathcal{L}'(t) \leq -\gamma_1\vartheta(t)E(t) + c\vartheta(t)(g\circ \nabla u)(t)+c\vartheta(t) \bigg[-E'(t)\bigg]^{m_1-1}\\ & \quad \le -\gamma_1\vartheta(t)E(t) - c E'(t)+c\vartheta(t) \bigg[-E'(t)\bigg]^{m_1-1}, \quad \forall t > t_0. \end{aligned} \end{equation} (6.13)

    Letting \mathcal{L}_1: = \vartheta \mathcal{L}+cE\sim E , multiplying both sides of the above estimate by E^k , with k = \frac{2-m_1}{m_1-1} and applying Young's inequality, we obtain

    \begin{equation*} E^k(t) \mathcal{L}_{1}^{\prime}(t)\le -(\gamma_1-\epsilon)\vartheta(t)E^{k+1}(t)-cE^{\prime}(t), \quad \forall t > t_0. \end{equation*}

    Set \mathcal{L}_2: = E^k \mathcal{L}_1+cE \sim E , take \epsilon small enough and use the fact E'\leq 0 we get, for some \gamma_2, \gamma_3 > 0,

    \begin{equation*} \mathcal{L}_2^{\prime}(t)\le -\gamma_2 \vartheta(t)E^{k+1}(t)\le -\gamma_3 \vartheta(t) \mathcal{L}_2^{k+1}(t), \quad \forall t\ge t_0. \end{equation*}

    Now, we integrate over (t_0, t) and use \mathcal{L} \sim E, to get,

    \begin{equation*} E(t)\le C\left(\int_{t_0}^{t}\vartheta(s)ds\right)^{1-m_1}, \quad \forall t\ge t_0. \end{equation*}

    Case 2: \Psi is nonlinear. We define the following functional

    \eta_1(t) : = \frac{\gamma_0}{(t-t_0)^{2-m_1}}\int_{t_0}^t \left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2ds, \quad\forall\, t \geq t_0.

    Thanks to (5.37), we can pick \gamma_0 small enough so that \eta_1(t) < 1 . Then, for any t\ge t_0, we have

    \begin{align*} \theta_1(t)& = -\frac{1}{\eta_1(t)}\int_{t_0}^t\eta_1(t)g'(s) \left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2 ds\\ &\geq\frac{1}{\eta_1(t)}\int_{t_0}^t\eta_1(t)\vartheta(s)\Psi(g(s)) \left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2ds\\ &\geq\frac{\vartheta(t)}{\eta_1(t)}\int_{t_0}^t \bar{\Psi}(\eta_1(t)g(s)) \left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2 ds\\ &\geq\frac{(t-t_0)^{{2-m_1}}\vartheta(t)}{\gamma}\bar{\Psi}\left( \frac{\gamma}{(t-t_0)^{2-m_1}} \int_{t_0}^t g(s)\left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2 ds\right), \end{align*}

    which gives

    \begin{equation} \int_{t_0}^t g(s) \left\| \nabla u(t)-\nabla u(t-s)\right\|^2_2ds\le \frac{1}{\gamma_0}(t-t_0)^{2-m_1} \bar{\Psi}^{-1} \left(\frac{\gamma_0\theta_1(t)}{\vartheta(t)(t-t_0)^{2-m_1}}\right). \end{equation} (6.14)

    Using (2.6), (5.34), (6.14) and Lemma 2.9, then for any t\geq t_0 , we get

    \begin{equation} \begin{array}{l} \mathcal{L}'(t) \leq -\gamma_4 E(t) - c E'(t)+ \frac{c}{\gamma_0}(t-t_0)^{2-m_1} \bar{\Psi}^{-1} \left(\frac{\gamma_0\theta_1(t)}{\vartheta(t)(t-t_0)^{2-m_1}}\right)+c \bigg[-E'(t)\bigg]^{m_1-1}. \end{array} \end{equation} (6.15)

    Thus, (6.15) becomes

    \begin{equation} \mathcal{F}'(t) \leq -\gamma_4 E(t) + \frac{c(t-t_0)^{{2-m_1}}}{\gamma_0}\bar{\Psi}^{-1}\left(\frac{\gamma_0\theta_1(t)}{(t-t_0)^{{2-m_1}}\vartheta(t)}\right)+c\bigg[-E'(t)\bigg]^{m_1-1}, \qquad \forall\, t \geq t_0, \end{equation} (6.16)

    where \mathcal{F}: = \mathcal{L}+cE\sim E .

    For 0 < {\varepsilon}_1 < r , we shall define

    \mathcal{F}_1(t) : = \bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)} \right) \mathcal{F}(t), \qquad \forall\, t \geq t_0.

    Using (2.7), (6.16), the assumption (A1) , and the generalized Young inequality, then for any t > t_0, we have

    \begin{equation} \begin{aligned} & \mathcal{F}_1'(t) = \Big[\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}}.\frac{E'(t)}{E(0)}-\frac{(2-m_1){\varepsilon}_1}{(t-t_0)^{3-m_1}}.\frac{E(t)}{E(0)}\Big] \bar \Psi''\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right) \mathcal{F}(t) \\ & \quad + \bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right) \mathcal{F}'(t) \\ &\leq \bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}}.\frac{E(t)}{E(0)}\right) \mathcal{F}'(t)\\ & \leq -\gamma_4 E(t)\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right) +c\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\bigg[-E'(t)\bigg]^{m_1-1}\\ & \quad + \frac{(t-t_0)^{{2-m_1}}}{\gamma_0}\bar{\Psi}^{-1}\left(\frac{\gamma_0\theta_1(t)}{(t-t_0)^{{2-m_1}}\vartheta(t)}\right)\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\\ &\leq - \gamma_4 E(t)\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right) + \frac{c(t-t_0)^{{2-m_1}}}{\gamma_0}\bar \Psi^*\left[\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\right] \\ & \quad +c \frac{ \theta_1(t)}{\vartheta(t)}+c\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\bigg[-E'(t)\bigg]^{m_1-1}.\\ &\leq - \gamma_4 E(t)\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right) + c{\varepsilon}_1\frac{E(t)}{E(0)}\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right) \\ & \quad + c\frac{ \theta_1(t)}{\vartheta(t)}+c\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\bigg[-E'(t)\bigg]^{m_1-1}\\ &\le - (\gamma_4 E(0) - c{\varepsilon}_1 )\frac{E(t)}{E(0)}\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right) +c \frac{ \theta_1(t)}{\vartheta(t)}\\ & \quad +c\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\bigg[-E'(t)\bigg]^{m_1-1}\\ &\le - \gamma_5 \frac{E(t)}{E(0)}\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right) + c\frac{ \theta_1(t)}{\vartheta(t)}\\ & \quad +c\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\bigg[-E'(t)\bigg]^{m_1-1}, \end{aligned} \end{equation} (6.17)

    where \gamma_5 > 0. Multiplying the last inequality by \vartheta(t) and using (6.3), then for any t > t_0, we obtain

    \begin{equation*} \begin{aligned} &\vartheta(t) \mathcal{F}_1'(t)\le - \gamma_5 E(t)\vartheta(t)\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right) -cE'(t)\\ & \quad +c\vartheta(t)\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\big(-E'(t)\big)^{{m_1-1}}. \end{aligned} \end{equation*}

    By setting \mathcal{F}_2: = \vartheta \mathcal{F}_1+cE , we get, for any t > t_0,

    \begin{equation*} \begin{aligned} & \mathcal{F}_2'(t)\le - \gamma_5 E(t)\vartheta(t)\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\\ & \quad +c\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\big(-E'(t)\big)^{{m_1-1}}. \end{aligned} \end{equation*}

    Multiplying the above inequality by E^n , \left(n = \frac{2-m_1}{m_1-1}\right), and using Young's inequality, then for some \gamma_6 , we have

    \begin{equation*} \begin{aligned} & E^n(t) \mathcal{F}_2'(t)\le -\left(\frac{\gamma_5}{E(0)}-c{\varepsilon}\right)E^{n+1}(t)\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right) \\ & \quad +c({\varepsilon})\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\big(-E'(t)\big)\\ &\le -\left(\frac{\gamma_5}{E(0)}-c{\varepsilon}\right) \vartheta(t)E^{\frac{2-m_1}{m_1-1}}(t)\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{2-m_1}} .\frac{E(t)}{E(0)}\right)-cE^{\prime}(t). \end{aligned} \end{equation*}

    Let \mathcal{F}_3 = E^n \mathcal{F}_2+cE and choose {\varepsilon} small enough, then for a constant \gamma_6 > 0 , we get

    \begin{equation} \mathcal{F}'_3(t)\le -\gamma_6\vartheta(t)\left(\frac{E(t)}{E(0)}\right)^{n+1}\bar \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right). \end{equation} (6.18)

    We deduce from \lim_{t\to \infty}{\frac{1}{(t-t_0)^{2-m_1}}} = 0 , that, there exists t_1 > t_0 such that \frac{1}{(t-t_0)^{2-m_1}} < 1 for any t\ge t_1 , which implies

    \begin{equation} \vartheta(t)\Big(\frac{E(t)}{E(0)}\Big)^{n+1} \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\le -c \mathcal{F}'_3(t), \quad \forall t > t_1. \end{equation} (6.19)

    Integrating (6.19) over (t_1, t) yields

    \begin{equation} \int_{t_1}^{t} \left(\frac{E(t)}{E(0)}\right)^{n+1} \Psi'\left(\frac{{\varepsilon}_1}{(s-t_0)^{{2-m_1}}} .\frac{E(s)}{E(0)}\right)\vartheta(s)ds \le -\int_{t_1}^{t} \mathcal{F}'_3(s)ds\le c \mathcal{F}'_3(t_1). \end{equation} (6.20)

    Since \Psi'' > 0 and E' \leq 0 , it follows that the map

    t\longmapsto\left( \frac{E(t)}{E(0)}\right)^{n+1} \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)

    is non-increasing. Therefore, we get

    \begin{equation} \begin{aligned} \left( \frac{E(t)}{E(0)}\right)^{n+1} \Psi'\left(\frac{{\varepsilon}_1}{(t-t_0)^{{2-m_1}}} .\frac{E(t)}{E(0)}\right)\int_{t_1}^{t}\vartheta(s)ds \le c \mathcal{F}'_3(t_1) \quad \forall t > t_1. \end{aligned} \end{equation} (6.21)

    Multiplying (6.21) by \bigg(\frac{{\varepsilon}_1}{(t-t_0)^{2-m_1}}\bigg)^{n+1} and setting \Psi_1(\tau): = \tau^{n+1}\Psi^{\prime}(\tau) , which is strictly increasing, we obtain, for \lambda_1, \lambda_2 > 0,

    \begin{equation} E(t) \leq {\lambda}_2(t-t_0)^{2-m_1} \Psi_1^{-1}\left[\left({\lambda}_1(t-t_0)^{\frac{m_1-2}{m_1-1}}\int_{t_1}^t\vartheta(s)ds\right)^{-1}\right], \qquad\forall\, t > t_1, \end{equation} (6.22)

    This completes the proof.

    We give numerical simulations in this section to support our theoretical results in Theorems 4.1 and 4.2. We use the conservative Lax-Wendroff strategy presented in [49] to demonstrate the decay of two tests. To discretize the system (1.1) , we use a second-order finite difference method (FDM) in time and space for the space-time domain \Omega\times (0, T) = [0, 1]\times (0, 25) . The mixed boundary conditions in the system (1.1) could be viewed as a Dirichlet boundary condition on one hand and a Neuman boundary condition on the other. Let for instance, u_0(x) = x and u_1(x) = 1-x. Then, the condition

    \frac{\partial u}{\partial n}-\int_0^t g(t-s) \frac{\partial u}{\partial n} ds+\vert u_t \vert^{m(x)-2} u_t = \vert u \vert^{q(x)-2} u , \quad in \quad \Gamma_1 \times (0, T)

    will apply to the following two tests:

    TEST 1: In the first test, we set m(x) = q(x) = 2 . We use the boundary condition at x = 1 (the term u_1 will be vanish at x = 1 , while the right-hand side condition will have a nonzero starting value).

    TEST 2: In the second numerical test, we examine the case m(x) \neq 2 and q(x) \neq 2 for all x\in[0, 1] . We use the boundary at x = 0 (the term u_1 term will not vanish at x = 0 and the right hand side condition will be canceled). For this, we use the functions m(x) = q(x) = 2+\dfrac{1}{1+x} for all x\in [0, 1] .

    To check that the implemented method and the run code are numerically stable, we use \Delta{t} < 0.5\Delta x , satisfying the stability condition according to the Courant-Friedrichs-Lewy (CFL) inequality, where \Delta t = 0.0025 represents the time step and \Delta x = 0.01 the spatial step. The spatial interval [0, 1] is subdivided into 100 subintervals, whereas the temporal interval [0, T] = [0, 25] is deduced from the stability condition above. We run our code for 10,000 time steps using the following initial conditions:

    \begin{equation*} u(x, 0) = x(1-x)\;\mathrm{and}\; u_t(x, 0) = 0, \quad {\rm{in}}\ [0, 1]. \label{InSol1} \end{equation*}

    In Tests 1 and 2, we demonstrated the decay under the initial and boundary conditions. The plots in Figure 1 show the temporal wave evolution in cross sections. The three cross sections are taken at x = 0.75, 1.5, 2.25 (see Figure 1. The corresponding energies given by the "modified" equation (3.1) are presented in Figure 2. The damping behavior is well seen in both tests. The result shown in Figure 2 is equally important. As a result, the similarity decrease for the energy decay rates obtained in Test 1 and Test 2 can be clearly observed. We normalized the output by dividing the maximums value in order to compare the asymptotic convergence of the energy.

    Figure 1.  The behavioral decay of the solution wave (left: TEST 1, right: TEST 2).
    Figure 2.  The energy functions (left: TEST 1, right: TEST 2).

    Finally, it should be stressed that our intention focuses is to show the energy decay represented in Figure 2. However, we remarked that there are some similarities in the energy decay behavior. Both functions have at least a polynomial decay. This is due to the initial conditions used for the problem. We believe that, for other choices of the initial solution, we could obtain a clear difference between the outputs of the energy function.

    In this work, we considered a viscoelastic wave equation with boundary damping and variable exponents. We first proved the existence of global solutions and then we established optimal and general decay estimates depending on the behavior of the relaxation function and the nature of the variable exponent nonlinearity. We finally end our paper with some numerical illustrations. Working with variable exponents in the boundary is totally different from the earlier results and of much challenging. We compared our results with other related results and showed that our results improved and extended some earlier results in the literature.

    The authors appreciate the continued assistance of King Fahd University of Petroleum and Minerals (KFUPM) and the University of Sharjah. The authors also thank the referees for their very careful reading and valuable comments. This work is funded by KFUPM, Grant No. #SB201012.

    The authors declare that there is no conflict of interest regarding the publication of this paper.



    [1] V. Weston, S. He, Wave splitting of the telegraph equation in r3 and its application to inverse scattering, Inverse Probl., 9 (1993), 789.
    [2] J. Banasiak, J. R. Mika, Singularly perturbed telegraph equations with applications in the random walk theory, J. Appl. Math. Stochastic Anal., 11 (1998), 9–28. https://doi.org/10.1155/S1048953398000021 doi: 10.1155/S1048953398000021
    [3] P. Jordan, A. Puri, Digital signal propagation in dispersive media, J. Appl. Phys., 85 (1999), 1273–1282. https://doi.org/10.1063/1.369258 doi: 10.1063/1.369258
    [4] B. Bulbul, M. Sezer, W. Greiner, Relativistic quantum mechanics wave equations, 2000.
    [5] A. M. Wazwaz, New travelling wave solutions to the boussinesq and the klein-gordon equations, Commun. Nonlinear Sci., 13 (2008), 889–901. https://doi.org/10.1016/j.cnsns.2006.08.005 doi: 10.1016/j.cnsns.2006.08.005
    [6] S. M. El-Sayed, The decomposition method for studying the klein-gordon equation, Chaos Soliton. Fract., 18 (2003), 1025–1030.
    [7] P. Caudrey, J. Eilbeck, J. Gibbon, The sine-gordon equation as a model classical field theory, Il Nuovo. Cimento. B (1971–1996), 25 (1975), 497–512.
    [8] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and nonlinear wave equations, 1982.
    [9] J. Perring, T. Skyrme, A model unified field equation, In: Selected Papers, With Commentary, Of Tony Hilton Royle Skyrme, 216–221, World Scientific, 1994.
    [10] G. B. Whitham, Linear and nonlinear waves, John Wiley Sons, 2011.
    [11] A. Ashyralyev, M. E. Köksal, A numerical solution of wave equation arising in non-homogeneous cylindrical shells, Turk. J. Math., 32 (2008), 409–427. https://doi.org/10.1002/uog.6013 doi: 10.1002/uog.6013
    [12] M. E. Koksal, An operator-difference method for telegraph equations arising in transmission lines, Discrete Dyn. Nat. Soc., 2011 (2011).
    [13] W. Chen, R. Ikehata, The cauchy problem for the moore-gibson-thompson equation in the dissipative case, J. Differ. Equations, 292 (2021), 176–219. https://doi.org/10.1002/uog.6013 doi: 10.1002/uog.6013
    [14] W. Chen, A. Palmieri, Nonexistence of global solutions for the semilinear moore-gibson-thompson equation in the conservative case, arXiv preprint arXiv: 1909.08838, 2019.
    [15] W. Chen, T. A. Dao, The cauchy problem for the nonlinear viscous boussinesq equation in the l^q framework, J. Differ. Equations, 320 (2022), 558–597. https://doi.org/10.1016/j.jde.2022.03.001 doi: 10.1016/j.jde.2022.03.001
    [16] A. Ashyralyev, M. E. Koksal, R. P. Agarwal, An operator-difference scheme for abstract cauchy problems, Comput. Math. Appl., 61 (2011), 1855–1872. https://doi.org/10.1016/j.camwa.2011.02.014 doi: 10.1016/j.camwa.2011.02.014
    [17] M. E. Koksal, M. Senol, A. K. Unver, Numerical simulation of power transmission lines, Chinese J. Phys., 59 (2019), 507–524.
    [18] M. E. Koksal, Recent developments on operator-difference schemes for solving nonlocal bvps for the wave equation, Discrete Dyn. Nat. Soc., 2011 (2011).
    [19] A. Ashyralyev, M. E. Koksal, On the numerical solution of hyperbolic pdes with variable space operator, Numer. Meth. Part. D. E., 25 (2009), 1086–1099. https://doi.org/10.1002/num.20388 doi: 10.1002/num.20388
    [20] A. Ashyralyev, M. E. Koksal, Stability of a second order of accuracy difference scheme for hyperbolic equation in a hilbert space, Discrete Dyn. Nat. Soc., 2007 (2007).
    [21] S. Pandit, R. Jiwari, K. Bedi, M. E. Koksal, Haar wavelets operational matrix based algorithm for computational modelling of hyperbolic type wave equations, Eng. Computation., 2017.
    [22] V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equations, 109 (1994), 295–308. https://doi.org/10.1006/jdeq.1994.1051 doi: 10.1006/jdeq.1994.1051
    [23] H. A. Levine, J. Serrin, A global nonexistence theorem for quasilinear evolution equations with dissipation, 1995.
    [24] E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differ. Equations, 186 (2002), 259–298. https://doi.org/10.1016/S0022-0396(02)00023-2 doi: 10.1016/S0022-0396(02)00023-2
    [25] M. Cavalcanti, V. D. Cavalcanti, J. Prates Filho, J. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differ. Integral Equ., 14 (2001), 85–116.
    [26] M. M. Al-Gharabli, A. M. Al-Mahdi, S. A. Messaoudi, General and optimal decay result for a viscoelastic problem with nonlinear boundary feedback, J. Dyn. Control Syst., 25 (2019), 551–572. https://doi.org/10.1007/s10883-018-9422-y doi: 10.1007/s10883-018-9422-y
    [27] M. Aassila, A note on the boundary stabilization of a compactly coupled system of wave equations, Appl. Math. Lett., 12 (1999), 19–24.
    [28] H. K. Wang, G. Chen, Asymptotic behaviour of solutions of the one-dimensional wave equation with a nonlinear boundary stabilizer, SIAM J. Control Optim., 27 (1989), 758–775. https://doi.org/10.1137/0327040 doi: 10.1137/0327040
    [29] I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differ. Integral Equ., 6 (1993), 507–533.
    [30] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim., 28 (1990), 466–477.
    [31] W. Liu, J. Yu, On decay and blow-up of the solution for a viscoelastic wave equation with boundary damping and source terms, Nonlinear Anal-Theor., 74 (2011), 2175–2190. https://doi.org/10.1016/j.na.2010.11.022 doi: 10.1016/j.na.2010.11.022
    [32] M. Ruzicka, Electrorheological fluids: Modeling and mathematical theory, Lect. Notes Math., 1748 (2000), 16–38.
    [33] O. Benslimane, A. Aberqi, J. Bennouna, Existence and uniqueness of weak solution of p (x) -laplacian in sobolev spaces with variable exponents in complete manifolds, arXiv preprint arXiv: 2006.04763, 2020.
    [34] O. A. Omer, M. Z. Abidin, Boundedness of the vector-valued intrinsic square functions on variable exponents herz spaces, Mathematics, 10 (2022), 1168.
    [35] M. A. Ragusa, A. Tachikawa, Regularity of minimizers of some variational integrals with discontinuity, Z. für Anal. und ihre Anwendungen, 27 (2008), 469–482. https://doi.org/10.1002/sim.2928 doi: 10.1002/sim.2928
    [36] S. A. Messaoudi, J. H. Al-Smail, A. A. Talahmeh, Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities, Comput. Math. Appl., 76 (2018), 1863–1875.
    [37] S. Ghegal, I. Hamchi, S. A. Messaoudi, Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal., 99 (2020), 1333–1343.
    [38] S. A. Messaoudi, M. M. Al-Gharabli, A. M. Al-Mahdi, On the decay of solutions of a viscoelastic wave equation with variable sources, Math. Meth. Appl. Sci., 2020.
    [39] M. M. Al-Gharabli, A. M. Al-Mahdi, S. A. Messaoudi, General and optimal decay result for a viscoelastic problem with nonlinear boundary feedback, J. Dyn. Control Syst., 25 (2019), 551–572. https://doi.org/10.1007/s10883-018-9422-y doi: 10.1007/s10883-018-9422-y
    [40] D. Edmunds, J. Rákosník, Sobolev embeddings with variable exponent, Studia Math., 3 (2000), 267–293.
    [41] X. Fan, D. Zhao, On the spaces lp (x)(\omega) and wm, p (x)(\omega), J. Math. Anal. Appl., 263 (2001), 424–446.
    [42] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011.
    [43] M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Meth. Appl. Sci., 41 (2018), 192–204. https://doi.org/10.1002/mma.4604 doi: 10.1002/mma.4604
    [44] S. Antontsev, Wave equation with p (x, t)-laplacian and damping term: existence and blow-up, Differ. Equ. Appl., 3 (2011), 503–525.
    [45] L. Lu, S. Li, S. Chai, On a viscoelastic equation with nonlinear boundary damping and source terms: Global existence and decay of the solution, Nonlinear Anal-Real, 12 (2011), 295–303. https://doi.org/10.1016/j.nonrwa.2010.06.016 doi: 10.1016/j.nonrwa.2010.06.016
    [46] S. A. Messaoudi, A. A. Talahmeh, J. H. Al-Smail, Nonlinear damped wave equation: Existence and blow-up, Comput. Math. Appl., 74 (2017), 3024–3041. https://doi.org/10.1016/j.camwa.2017.07.048 doi: 10.1016/j.camwa.2017.07.048
    [47] K. P. Jin, J. Liang, T. J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differ. Equ., 257 (2014), 1501–1528. https://doi.org/10.1016/j.jde.2014.05.018 doi: 10.1016/j.jde.2014.05.018
    [48] V. I. Arnol'd, Mathematical methods of classical mechanics, vol. 60, Springer Science & Business Media, 2013.
    [49] J. H. Hassan, S. A. Messaoudi, M. Zahri, Existence and new general decay results for a viscoelastic timoshenko system, Z. für Anal. und ihre Anwendungen, 39 (2020), 185–222. https://doi.org/10.4171/ZAA/1657 doi: 10.4171/ZAA/1657
  • This article has been cited by:

    1. Muhammad I. Mustafa, Viscoelastic Wave Equation with Variable-Exponent Nonlinear Boundary Feedback, 2024, 30, 1079-2724, 10.1007/s10883-024-09714-z
    2. Muhammad I. Mustafa, On the interaction between the viscoelasticity and the boundary variable-exponent nonlinearity in plate systems, 2024, 103, 0003-6811, 2923, 10.1080/00036811.2024.2327436
    3. Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Existence and Blow-up Study of a Quasilinear Wave Equation with Damping and Source Terms of Variable Exponents-type Acting on the Boundary, 2024, 30, 1079-2724, 10.1007/s10883-024-09695-z
    4. Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Mohammad Kafini, Asymptotic behavior of the wave equation solution with nonlinear boundary damping and source term of variable exponent-type, 2024, 9, 2473-6988, 30638, 10.3934/math.20241479
    5. Kalifa Lassana Barry, Karima Laoubi, Stabilization of the wave equation with internal damping and numerical simulations, 2025, 0020-7179, 1, 10.1080/00207179.2025.2461595
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2221) PDF downloads(120) Cited by(5)

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog