Research article Special Issues

Finite element approximation of fractional hyperbolic integro-differential equation

  • In this article, we propose a Galerkin finite element method for numerically solving a type of fractional hyperbolic integro-differential equation, which can be considered as the generalization of the classical hyperbolic Volterra integro-differential equation. Along with Galerkin finite element method in spatial direction, we apply a second order symmetric difference method in time. Next we discuss the regularity analysis of the weak solution and convergence analysis of the semi-discrete scheme. Then we further study the stability analysis and the error estimation of the fully discrete problems, according to the properties of fractional Ritz-Volterra projection, Ritz projection and so on. Numerical examples with comparisons among the proposed schemes verify our theoretical analyses.

    Citation: Zhengang Zhao, Yunying Zheng, Xianglin Zeng. Finite element approximation of fractional hyperbolic integro-differential equation[J]. AIMS Mathematics, 2022, 7(8): 15348-15369. doi: 10.3934/math.2022841

    Related Papers:

    [1] Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of S-asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1<α<2. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004
    [2] Dongdong Gao, Daipeng Kuang, Jianli Li . Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps. AIMS Mathematics, 2023, 8(7): 15269-15284. doi: 10.3934/math.2023780
    [3] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [4] Huanhuan Zhang, Jia Mu . Periodic problem for non-instantaneous impulsive partial differential equations. AIMS Mathematics, 2022, 7(3): 3345-3359. doi: 10.3934/math.2022186
    [5] Ahmed Salem, Kholoud N. Alharbi . Fractional infinite time-delay evolution equations with non-instantaneous impulsive. AIMS Mathematics, 2023, 8(6): 12943-12963. doi: 10.3934/math.2023652
    [6] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
    [7] Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty . A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r(1,2) with impulses. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548
    [8] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [9] M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran . Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229
    [10] Dumitru Baleanu, Rabha W. Ibrahim . Optical applications of a generalized fractional integro-differential equation with periodicity. AIMS Mathematics, 2023, 8(5): 11953-11972. doi: 10.3934/math.2023604
  • In this article, we propose a Galerkin finite element method for numerically solving a type of fractional hyperbolic integro-differential equation, which can be considered as the generalization of the classical hyperbolic Volterra integro-differential equation. Along with Galerkin finite element method in spatial direction, we apply a second order symmetric difference method in time. Next we discuss the regularity analysis of the weak solution and convergence analysis of the semi-discrete scheme. Then we further study the stability analysis and the error estimation of the fully discrete problems, according to the properties of fractional Ritz-Volterra projection, Ritz projection and so on. Numerical examples with comparisons among the proposed schemes verify our theoretical analyses.



    Fractional differential equations rise in many fields, such as biology, physics and engineering. There are many results about the existence of solutions and control problems (see [1,2,3,4,5,6]).

    It is well known that the nonexistence of nonconstant periodic solutions of fractional differential equations was shown in [7,8,11] and the existence of asymptotically periodic solutions was derived in [8,9,10,11]. Thus it gives rise to study the periodic solutions of fractional differential equations with periodic impulses.

    Recently, Fečkan and Wang [12] studied the existence of periodic solutions of fractional ordinary differential equations with impulses periodic condition and obtained many existence and asymptotic stability results for the Caputo's fractional derivative with fixed and varying lower limits. In this paper, we study the Caputo's fractional evolution equations with varying lower limits and we prove the existence of periodic mild solutions to this problem with the case of general periodic impulses as well as small equidistant and shifted impulses. We also study the Caputo's fractional evolution equations with fixed lower limits and small nonlinearities and derive the existence of its periodic mild solutions. The current results extend some results in [12].

    Set ξq(θ)=1qθ11qϖq(θ1q)0, ϖq(θ)=1πn=1(1)n1θnq1Γ(nq+1)n!sin(nπq), θ(0,). Note that ξq(θ) is a probability density function defined on (0,), namely ξq(θ)0, θ(0,) and 0ξq(θ)dθ=1.

    Define T:XX and S:XX given by

    T(t)=0ξq(θ)S(tqθ)dθ,  S(t)=q0θξq(θ)S(tqθ)dθ.

    Lemma 2.1. ([13,Lemmas 3.2,3.3]) The operators T(t) and S(t),t0 have following properties:

    (1) Suppose that supt0S(t)M. For any fixed t0, T() and S() are linear and bounded operators, i.e., for any uX,

    T(t)uMu and S(t)uMΓ(q)u.

    (2) {T(t),t0} and {S(t),t0} are strongly continuous.

    (3) {T(t),t>0} and {S(t),t>0} are compact, if {S(t),t>0} is compact.

    Let N0={0,1,,}. We consider the following impulsive fractional equations

    {cDqtk,tu(t)=Au(t)+f(t,u(t)), q(0,1), t(tk,tk+1), kN0,u(t+k)=u(tk)+Δk(u(tk)), kN,u(0)=u0, (2.1)

    where cDqtk,t denotes the Caputo's fractional time derivative of order q with the lower limit at tk, A:D(A)XX is the generator of a C0-semigroup {S(t),t0} on a Banach space X, f:R×XX satisfies some assumptions. We suppose the following conditions:

    (Ⅰ) f is continuous and T-periodic in t.

    (Ⅱ) There exist constants a>0, bk>0 such that

    {f(t,u)f(t,v)auv, tR, u,vX,uv+Δk(u)Δk(v)bkuv, kN, u,vX.

    (Ⅲ) There exists NN such that T=tN+1,tk+N+1=tk+T and Δk+N+1=Δk for any kN.

    It is well known [3] that (2.1) has a unique solution on R+ if the conditions (Ⅰ) and (Ⅱ) hold. So we can consider the Poincaré mapping

    P(u0)=u(T)+ΔN+1(u(T)).

    By [14,Lemma 2.2] we know that the fixed points of P determine T-periodic mild solutions of (2.1).

    Theorem 2.2. Assume that (I)-(III) hold. Let Ξ:=Nk=0MbkEq(Ma(tk+1tk)q), where Eq is the Mittag-Leffler function (see [3, p.40]), then there holds

    P(u)P(v)Ξuv, u,vX. (2.2)

    If Ξ<1, then (2.1) has a unique T-periodic mild solution, which is also asymptotically stable.

    Proof. By the mild solution of (2.1), we mean that uC((tk,tk+1),X) satisfying

    u(t)=T(ttk)u(t+k)+ttkS(ts)f(s,u(s))ds. (2.3)

    Let u and v be two solutions of (2.3) with u(0)=u0 and v(0)=v0, respectively. By (2.3) and (II), we can derive

    u(t)v(t)T(ttk)(u(t+k)v(t+k))+ttk(ts)q1S(ts)(f(s,u(s)f(s,v(s))dsMu(t+k)v(t+k)+MaΓ(q)ttk(ts)q1f(s,u(s)f(s,v(s))ds. (2.4)

    Applying Gronwall inequality [15, Corollary 2] to (2.4), we derive

    u(t)v(t)Mu(t+k)v(t+k)Eq(Ma(ttk)q), t(tk,tk+1), (2.5)

    which implies

    u(tk+1)v(tk+1)MEq(Ma(tk+1tk)q)u(t+k)v(t+k),k=0,1,,N. (2.6)

    By (2.6) and (Ⅱ), we derive

    P(u0)P(v0)=u(tN+1)v(tN+1)+ΔN+1(u(tN+1))ΔN+1(v(tN+1))bN+1u(tN+1)v(tN+1)(Nk=0MbkEq(Ma(tk+1tk)q))u0v0=Ξu0v0, (2.7)

    which implies that (2.2) is satisfied. Thus P:XX is a contraction if Ξ<1. Using Banach fixed point theorem, we obtain that P has a unique fixed point u0 if Ξ<1. In addition, since

    Pn(u0)Pn(v0)Ξnu0v0, v0X,

    we get that the corresponding periodic mild solution is asymptotically stable.

    We study

    {cDqkhu(t)=Au(t)+f(u(t)), q(0,1), t(kh,(k+1)h), kN0,u(kh+)=u(kh)+ˉΔhq, kN,u(0)=u0, (2.8)

    where h>0, ˉΔX, and f:XX is Lipschitz. We know [3] that under above assumptions, (2.8) has a unique mild solution u(u0,t) on R+, which is continuous in u0X, tR+{kh|kN} and left continuous in t ant impulsive points {kh|kN}. We can consider the Poincaré mapping

    Ph(u0)=u(u0,h+).

    Theorem 2.3. Let w(t) be a solution of following equations

    {w(t)=ˉΔ+1Γ(q+1)f(w(t)), t[0,T],w(0)=u0. (2.9)

    Then there exists a mild solution u(u0,t) of (2.8) on [0,T], satisfying

    u(u0,t)=w(tqq1)+O(hq).

    If w(t) is a stable periodic solution, then there exists a stable invariant curve of Poincaré mapping of (2.8) in a neighborhood of w(t). Note that h is sufficiently small.

    Proof. For any t(kh,(k+1)h),kN0, the mild solution of (2.8) is equivalent to

    u(u0,t)=T(tkh)u(kh+)+tkh(ts)q1S(ts)f(u(u0,s))ds=T(tkh)u(kh+)+tkh0(tkhs)q1S(tkhs)f(u(u(kh+),s))ds. (2.10)

    So

    u((k+1)h+)=T(h)u(kh+)+ˉΔhq+h0(hs)q1S(hs)f(u(u(kh+),s))ds=Ph(u(kh+)), (2.11)

    and

    Ph(u0)=u(u0,h+)=T(h)u0+ˉΔhq+h0(hs)q1S(hs)f(u(u0,s))ds. (2.12)

    Inserting

    u(u0,t)=T(t)u0+hqv(u0,t), t[0,h],

    into (2.10), we obtain

    v(u0,t)=1hqt0(ts)q1S(ts)f(T(t)u0+hqv(u0,t))ds=1hqt0(ts)q1S(ts)f(T(t)u0)ds+1hqt0(ts)q1S(ts)(f(T(t)u0+hqv(u0,t))f(T(t)u0))ds=1hqt0(ts)q1S(ts)f(T(t)u0)ds+O(hq),

    since

    t0(ts)q1S(ts)(f(T(t)u0+hqv(u0,t))f(T(t)u0))dst0(ts)q1S(ts)f(T(t)u0+hqv(u0,t))f(T(t)u0)dsMLlochqtqΓ(q+1)maxt[0,h]{v(u0,t)}h2qMLlocΓ(q+1)maxt[0,h]{v(u0,t)},

    where Lloc is a local Lipschitz constant of f. Thus we get

    u(u0,t)=T(t)u0+t0(ts)q1S(ts)f(T(t)u0)ds+O(h2q), t[0,h], (2.13)

    and (2.12) gives

    Ph(u0)=T(h)u0+ˉΔhq+h0(hs)q1S(hs)f(T(h)u0)ds+O(h2q).

    So (2.11) becomes

    u((k+1)h+)=T(h)u(kh+)+ˉΔhq+(k+1)hkh((k+1)hs)q1S((k+1)hs)f(T(h)u(kh+))ds+O(h2q). (2.14)

    Since T(t) and S(t) are strongly continuous,

    limt0T(t)=I and limt0S(t)=1Γ(q)I. (2.15)

    Thus (2.14) leads to its approximation

    w((k+1)h+)=w(kh+)+ˉΔhq+hqΓ(q+1)f(w(kh+)),

    which is the Euler numerical approximation of

    w(t)=ˉΔ+1Γ(q+1)f(w(t)).

    Note that (2.10) implies

    u(u0,t)T(tkh)u(kh+)=O(hq), t[kh,(k+1)h]. (2.16)

    Applying (2.15), (2.16) and the already known results about Euler approximation method in [16], we obtain the result of Theorem 2.3.

    Corollary 2.4. We can extend (2.8) for periodic impulses of following form

    {cDqkhu(t)=Au(t)+f(u(t)), t(kh,(k+1)h), kN0,u(kh+)=u(kh)+ˉΔkhq, kN,u(0)=u0, (2.17)

    where ˉΔkX satisfy ˉΔk+N+1=ˉΔk for any kN. Then Theorem 2.3 can directly extend to (2.17) with

    {w(t)=N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)), t[0,T], kN,w(0)=u0 (2.18)

    instead of (2.9).

    Proof. We can consider the Poincaré mapping

    Ph(u0)=u(u0,(N+1)h+),

    with a form of

    Ph=PN+1,hP1,h

    where

    Pk,h(u0)=ˉΔkhq+u(u0,h).

    By (2.13), we can derive

    Pk,h(u0)=ˉΔkhq+u(u0,h)=T(h)u0+ˉΔkhq+h0(hs)q1S(hs)f(T(h)u0)ds+O(h2q).

    Then we get

    Ph(u0)=T(h)u0+N+1k=1ˉΔkhq+(N+1)h0(hs)q1S(hs)f(T(h)u0)ds+O(h2q).

    By (2.15), we obtain that Ph(u0) leads to its approximation

    u0+N+1k=1ˉΔkhq+(N+1)hqΓ(q+1)f(u0). (2.19)

    Moreover, equations

    w(t)=N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t))

    has the Euler numerical approximation

    u0+hq(N+1k=1ˉΔkN+1+1Γ(q+1)f(u0))

    with the step size hq, and its approximation of N+1 iteration is (2.19), the approximation of Ph. Thus Theorem 2.3 can directly extend to (2.17) with (2.18).

    Now we consider following equations with small nonlinearities of the form

    {cDq0u(t)=Au(t)+ϵf(t,u(t)), q(0,1), t(tk,tk+1), kN0,u(t+k)=u(tk)+ϵΔk(u(tk)), kN,u(0)=u0, (3.1)

    where ϵ is a small parameter, cDq0 is the generalized Caputo fractional derivative with lower limit at 0. Then (3.1) has a unique mild solution u(ϵ,t). Give the Poincaré mapping

    P(ϵ,u0)=u(ϵ,T)+ϵΔN+1(u(ϵ,T)).

    Assume that

    (H1) f and Δk are C2-smooth.

    Then P(ϵ,u0) is also C2-smooth. In addition, we have

    u(ϵ,t)=T(t)u0+ϵω(t)+O(ϵ2),

    where ω(t) satisfies

    {cDq0ω(t)=Aω(t)+f(t,T(t)u0), t(tk,tk+1), k=0,1,,N,ω(t+k)=ω(tk)+Δk(T(tk)u0), k=1,2,,N+1,ω(0)=0,

    and

    ω(T)=Nk=1T(Ttk)Δk(T(tk)u0)+T0(Ts)q1S(Ts)f(s,T(s)u0)ds.

    Thus we derive

    {P(ϵ,u0)=u0+M(ϵ,u0)+O(ϵ2)M(ϵ,u0)=(T(T)I)u0+ϵω(T)+ϵΔN+1(T(T)u0). (3.2)

    Theorem 3.1. Suppose that (I), (III) and (H1) hold.

    1). If (T(T)I) has a continuous inverse, i.e. (T(T)I)1 exists and continuous, then (3.1) has a unique T-periodic mild solution located near 0 for any ϵ0 small.

    2). If (T(T)I) is not invertible, we suppose that ker(T(T)I)=[u1,,uk] and X=im(T(T)I)X1 for a closed subspace X1 with dimX1=k. If there is v0[u1,,uk] such that B(0,v0)=0 (see (3.7)) and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ0 small.

    3). If rσ(Du0M(ϵ,u0))<0, then the T-periodic mild solution is asymptotically stable. If rσ(Du0M(ϵ,u0))(0,+), then the T-periodic mild solution is unstable.

    Proof. The fixed point u0 of P(ϵ,x0) determines the T-periodic mild solution of (3.1), which is equivalent to

    M(ϵ,u0)+O(ϵ2)=0. (3.3)

    Note that M(0,u0)=(T(T)I)u0. If (T(T)I) has a continuous inverse, then (3.3) can be solved by the implicit function theorem to get its solution u0(ϵ) with u0(0)=0.

    If (T(T)I) is not invertible, then we take a decomposition u0=v+w, v[u1,,uk], take bounded projections Q1:Xim(T(T)I), Q2:XX1, I=Q1+Q2 and decompose (3.3) to

    Q1M(ϵ,v+w)+Q1O(ϵ2)=0, (3.4)

    and

    Q2M(ϵ,v+w)+Q2O(ϵ2)=0. (3.5)

    Now Q1M(0,v+w)=(T(T)I)w, so we can solve by implicit function theorem from (3.4), w=w(ϵ,v) with w(0,v)=0. Inserting this solution into (3.5), we get

    B(ϵ,v)=1ϵ(Q2M(ϵ,v+w)+Q2O(ϵ2))=Q2ω(T)+Q2ΔN+1(T(t)v+w(ϵ,v))+O(ϵ). (3.6)

    So

    B(0,v)=Nk=1Q2T(Ttk)Δk(T(tk)v)+Q2T0(Ts)q1S(Ts)f(s,T(s)v)ds. (3.7)

    Consequently we get, if there is v0[u1,,uk] such that B(0,v0)=0 and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ0 small.

    In addition, Du0P(ϵ,u0(ϵ))=I+Du0M(ϵ,u0)+O(ϵ2). Thus we can directly derive the stability and instability results by the arguments in [17].

    In this section, we give an example to demonstrate Theorem 2.2.

    Example 4.1. Consider the following impulsive fractional partial differential equation:

    { cD12tk,tu(t,y)=2y2u(t,y)+sinu(t,y)+cos2πt,  t(tk,tk+1), kN0,  y[0,π], Δk(u(tk,y))=u(t+k,y)u(tk,y)=ξu(tk,y),  kN,  y[0,π], u(t,0)=u(t,π)=0,  t(tk,tk+1),  kN0, u(0,y)=u0(y),  y[0,π], (4.1)

    for ξR, tk=k3. Let X=L2[0,π]. Define the operator A:D(A)XX by Au=d2udy2 with the domain

    D(A)={uXdudy,d2udy2X, u(0)=u(π)=0}.

    Then A is the infinitesimal generator of a C0-semigroup {S(t),t0} on X and S(t)M=1 for any t0. Denote u(,y)=u()(y) and define f:[0,)×XX by

    f(t,u)(y)=sinu(y)+cos2πt.

    Set T=t3=1, tk+3=tk+1, Δk+3=Δk, a=1, bk=|1+ξ|. Obviously, conditions (I)-(III) hold. Note that

    Ξ=2k=0|1+ξ|E12(13)=|1+ξ|3(E12(13))3.

    Letting Ξ<1, we get E12(13)1<ξ<E12(13)1. Now all assumptions of Theorem 2.2 hold. Hence, if E12(13)1<ξ<E12(13)1, (4.1) has a unique 1-periodic mild solution, which is also asymptotically stable.

    This paper deals with the existence and stability of periodic solutions of impulsive fractional evolution equations with the case of varying lower limits and fixed lower limits. Although, Fečkan and Wang [12] prove the existence of periodic solutions of impulsive fractional ordinary differential equations in finite dimensional Euclidean space, we extend some results to impulsive fractional evolution equation on Banach space by involving operator semigroup theory. Our results can be applied to some impulsive fractional partial differential equations and the proposed approach can be extended to study the similar problem for periodic impulsive fractional evolution inclusions.

    The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. This research is supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), Foundation of Postgraduate of Guizhou Province (YJSCXJH[2019]031), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 2/0153/16 and No. 1/0078/17.

    All authors declare no conflicts of interest in this paper.



    [1] R. M. Christensen, Theory of viscoelasticity, J. Appl. Mech., 38 (1971), 720. http://dx.doi.org/10.1115/1.3408900 doi: 10.1115/1.3408900
    [2] M. E. Gurtin, A. C. Pipkin, A general theory of heat conduction with finite wave speed, Arch. Rational Mech. Anal., 31 (1968), 113–126. http://dx.doi.org/10.1007/BF00281373 doi: 10.1007/BF00281373
    [3] R. K. Miller, An integro-differential equation for grid heat conductions with memory, J. Math. Anal. Appl., 66 (1978), 313–332. http://dx.doi.org/10.1016/0022-247x(78)90234-2 doi: 10.1016/0022-247x(78)90234-2
    [4] M. Renardy, Mathematical analysis of viscoelastic flows, Ann. Rev. Fluid Mech., 21 (1989), 21–36. http://dx.doi.org/10.1146/annurev.fl.21.010189.000321 doi: 10.1146/annurev.fl.21.010189.000321
    [5] C. M. Chen, S. Tsimin, Finite element methods for integrodifferential equations, Word Scientific, Singapore, 1998. http://dx.doi.org/10.1142/3594
    [6] M. M. Meerschaert, F. Sabzikar, Tempered fractional Brownian motion, Stat. Probabil. Lett., 83 (2013), 2269–2275. http://dx.doi.org/10.1016/j.spl.2013.06.016 doi: 10.1016/j.spl.2013.06.016
    [7] E. W. Montroll, G. H. Weiss, Random walks on lattices. Ⅱ, J. Math. Phys., 6 (1965), 167–181. http://dx.doi.org/10.1063/1.1704269 doi: 10.1063/1.1704269
    [8] I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA, 1998.
    [9] Z. G. Zhao, Y. Y. Zheng, P. Guo, A Galerkin finite element method for a class of time-space fractional diffusion quation with nonsmooth data, J. Sci. Comput., 70 (2017), 386–406. http://dx.doi.org/10.1007/s10915-015-0107-3 doi: 10.1007/s10915-015-0107-3
    [10] I. Dassios, F. Font, Solution method for the time-fractional hyperbolic heat equation, Math. Meth. Appl. Sci., 44 (2021), 11844–11855. http://dx.doi.org/10.1002/mma.6506 doi: 10.1002/mma.6506
    [11] P. Kumar, K. N. Rai, Fractional modeling of hyperbolic bioheat transfer equation during thermal therapy, J. Mech. Medi. Biol., 17 (2017), 1–19. http://dx.doi.org/10.1142/S0219519417500580 doi: 10.1142/S0219519417500580
    [12] A. Ashyralyev, F. Dal, Z. Pinar, A note on the fractional hyperbolic differential and difference equations, Appl. Math. Comput., 217 (2011), 4654–4664. http://dx.doi.org/10.1016/j.amc.2010.11.017 doi: 10.1016/j.amc.2010.11.017
    [13] W. Qiu, D. Xu, H. B. Chen, A formally second-order BDF finite difference scheme for the integro-differential equations with the multi-term kernels, Int. J. Comput. Math., 97 (2020), 2055–2073. https://doi.org/10.1080/00207160.2019.1677896 doi: 10.1080/00207160.2019.1677896
    [14] W. Qiu, D. Xu, J. Guo, A formally second-order backward differentiation formula Sinc-collocation method for the Volterra integro-differential equation with a weakly singular kernel based on the double exponential transformation, Numer. Methods Partial Differ. Equ., 38 (2022), 830–847. http://dx.doi.org/10.1002/num.22703 doi: 10.1002/num.22703
    [15] V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ., 22 (2006), 558–576. http://dx.doi.org/10.1002/num.20112 doi: 10.1002/num.20112
    [16] Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. http://dx.doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
    [17] V. J. Ervin, N. Heuer, J. P. Roop, Numerical approximation of a time dependent nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45 (2007), 572–591. http://dx.doi.org/10.1137/050642757 doi: 10.1137/050642757
    [18] W. H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), 204–226. http://dx.doi.org/10.1137/080714130 doi: 10.1137/080714130
    [19] Y. Y. Zheng, C. P. Li, Z. G. Zhao, A note on the finite element method for the space-fractional advection diffusion equation, Comput. Math. Appl., 59 (2001), 1718–1726. http://dx.doi.org/10.1016/j.camwa.2009.08.071 doi: 10.1016/j.camwa.2009.08.071
    [20] C. P. Li, Z. G. Zhao, Y. Q. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62 (2011), 855–875. http://dx.doi.org/10.1016/j.camwa.2011.02.045 doi: 10.1016/j.camwa.2011.02.045
    [21] F. H. Zeng, F. W. Liu, C. P. Li, K. Burrage, I. Turner, V. Anh, A crank–nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), 2599–2622. http://dx.doi.org/10.1137/130934192 doi: 10.1137/130934192
    [22] W. R. Cao, F. H. Zeng, Z. Q. Zhang, G. E. Karniadakis, Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions, SIAM J. Sci. Comput., 38 (2016), A3070–A3093. http://dx.doi.org/10.1137/16M1070323 doi: 10.1137/16M1070323
    [23] Z. G. Zhao, Y. Y. Zheng, P. Guo, A Galerkin finite element scheme for time-space fractional diffusion equation, Int. J. Comput. Math., 93 (2016), 1212–1225. http://dx.doi.org/10.1080/00207160.2015.1044986 doi: 10.1080/00207160.2015.1044986
    [24] Y. M. Liu, Y. B. Yan, M. Khan, Discontinuous Galerkin time stepping method for solving linear space fractional partial differential equations, Appl. Numer. Math., 115 (2017), 200–213. http://dx.doi.org/10.1016/j.apnum.2017.01.009 doi: 10.1016/j.apnum.2017.01.009
    [25] G. A. Zou, A. Atangana, Y. Zhou, Error estimates of a semidiscrete finite element method for fractional stochastic diffusion-wave equations, Numer. Methods Partial Differ. Equ., 34 (2018), 1834–1848. http://dx.doi.org/10.1002/num.22252 doi: 10.1002/num.22252
    [26] Z. J. Zhang, W. H. Deng, G. E. Karniadakis, A Riesz basis Galerkin method for the tempered fractional Laplacian, SIAM J. Numer. Anal., 56 (2018), 3010–3039. http://dx.doi.org/10.1137/17M1151791 doi: 10.1137/17M1151791
    [27] D. Y. Shi, H. J. Yang, Superconvergence analysis of finite element method for time-fractional Thermistor problem, Appl. Math. Comput., 323 (2018), 31–42. http://dx.doi.org/10.1016/j.amc.2017.11.027 doi: 10.1016/j.amc.2017.11.027
    [28] S. G. Samko, A. A. Kilbas, O. I. Maxitchev, Integrals and derivatives of the fractional order and some of their applications, (in Russian), Nauka i Tekhnika, Minsk, 1987.
    [29] C. P. Li, F. H. Zeng, Numerical methods for fractional calculus, Chapman and Hall/CRC, 2015. http://dx.doi.org/10.1201/b18503
    [30] K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31–52. http://dx.doi.org/10.1023/b:numa.0000027736.85078.be doi: 10.1023/b:numa.0000027736.85078.be
    [31] P. Zhuang, F. Liu, V. Anh, I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46 (2008), 1079–1095. http://dx.doi.org/10.1137/060673114 doi: 10.1137/060673114
    [32] C. P. Li, F. H. Zeng, The finite difference mehtods for fractional ordinary differential equations, Numer. Func. Anal. Optim., 34 (2013), 149–179. http://dx.doi.org/10.1080/01630563.2012.706673 doi: 10.1080/01630563.2012.706673
    [33] S. Larsson, V. Thomé, L. B. Wahlbin, Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method, Math. Comput., 67 (1998), 45–71. http://dx.doi.org/10.1090/S0025-5718-98-00883-7 doi: 10.1090/S0025-5718-98-00883-7
    [34] J. T. Ma, Finite element method for partial Volterra integro-diffeential equations on two-dimensions unbounded spatial domains, Appl. Math. Comput., 186 (2007), 598–609. http://dx.doi.org/10.1016/j.amc.2006.08.004 doi: 10.1016/j.amc.2006.08.004
    [35] F. H. Zeng, J. X. Cao, C. P. Li, Grönwall inequalities, In: Recent advances in applied nonlinear dynamics with numerical analysis, World Scientific, Singapore, 2013. http://dx.doi.org/10.1142/9789814436465_0001
    [36] W. L. Qiu, D. Xu, H. F. Chen, J. Guo, An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions, Comput. Math. Appl., 80 (2020), 3156–3172. http://dx.doi.org/10.1016/j.camwa.2020.11.003 doi: 10.1016/j.camwa.2020.11.003
    [37] C. P. Li, M. Cai, Theory and numerical approximations of fractional integrals and derivatives, SIAM, 2019. http://dx.doi.org/10.1137/1.9781611975888
  • This article has been cited by:

    1. Xinguang Zhang, Lixin Yu, Jiqiang Jiang, Yonghong Wu, Yujun Cui, Gisele Mophou, Solutions for a Singular Hadamard-Type Fractional Differential Equation by the Spectral Construct Analysis, 2020, 2020, 2314-8888, 1, 10.1155/2020/8392397
    2. Xinguang Zhang, Jiqiang Jiang, Lishan Liu, Yonghong Wu, Extremal Solutions for a Class of Tempered Fractional Turbulent Flow Equations in a Porous Medium, 2020, 2020, 1024-123X, 1, 10.1155/2020/2492193
    3. Jingjing Tan, Xinguang Zhang, Lishan Liu, Yonghong Wu, Mostafa M. A. Khater, An Iterative Algorithm for Solving n -Order Fractional Differential Equation with Mixed Integral and Multipoint Boundary Conditions, 2021, 2021, 1099-0526, 1, 10.1155/2021/8898859
    4. Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad, Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions, 2022, 7, 2473-6988, 8314, 10.3934/math.2022463
    5. Lianjing Ni, Liping Wang, Farooq Haq, Islam Nassar, Sarp Erkir, The Effect of Children’s Innovative Education Courses Based on Fractional Differential Equations, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0039
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1980) PDF downloads(116) Cited by(0)

Figures and Tables

Figures(9)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog