In this article, we propose a Galerkin finite element method for numerically solving a type of fractional hyperbolic integro-differential equation, which can be considered as the generalization of the classical hyperbolic Volterra integro-differential equation. Along with Galerkin finite element method in spatial direction, we apply a second order symmetric difference method in time. Next we discuss the regularity analysis of the weak solution and convergence analysis of the semi-discrete scheme. Then we further study the stability analysis and the error estimation of the fully discrete problems, according to the properties of fractional Ritz-Volterra projection, Ritz projection and so on. Numerical examples with comparisons among the proposed schemes verify our theoretical analyses.
Citation: Zhengang Zhao, Yunying Zheng, Xianglin Zeng. Finite element approximation of fractional hyperbolic integro-differential equation[J]. AIMS Mathematics, 2022, 7(8): 15348-15369. doi: 10.3934/math.2022841
In this article, we propose a Galerkin finite element method for numerically solving a type of fractional hyperbolic integro-differential equation, which can be considered as the generalization of the classical hyperbolic Volterra integro-differential equation. Along with Galerkin finite element method in spatial direction, we apply a second order symmetric difference method in time. Next we discuss the regularity analysis of the weak solution and convergence analysis of the semi-discrete scheme. Then we further study the stability analysis and the error estimation of the fully discrete problems, according to the properties of fractional Ritz-Volterra projection, Ritz projection and so on. Numerical examples with comparisons among the proposed schemes verify our theoretical analyses.
[1] |
R. M. Christensen, Theory of viscoelasticity, J. Appl. Mech., 38 (1971), 720. http://dx.doi.org/10.1115/1.3408900 doi: 10.1115/1.3408900
![]() |
[2] |
M. E. Gurtin, A. C. Pipkin, A general theory of heat conduction with finite wave speed, Arch. Rational Mech. Anal., 31 (1968), 113–126. http://dx.doi.org/10.1007/BF00281373 doi: 10.1007/BF00281373
![]() |
[3] |
R. K. Miller, An integro-differential equation for grid heat conductions with memory, J. Math. Anal. Appl., 66 (1978), 313–332. http://dx.doi.org/10.1016/0022-247x(78)90234-2 doi: 10.1016/0022-247x(78)90234-2
![]() |
[4] |
M. Renardy, Mathematical analysis of viscoelastic flows, Ann. Rev. Fluid Mech., 21 (1989), 21–36. http://dx.doi.org/10.1146/annurev.fl.21.010189.000321 doi: 10.1146/annurev.fl.21.010189.000321
![]() |
[5] | C. M. Chen, S. Tsimin, Finite element methods for integrodifferential equations, Word Scientific, Singapore, 1998. http://dx.doi.org/10.1142/3594 |
[6] |
M. M. Meerschaert, F. Sabzikar, Tempered fractional Brownian motion, Stat. Probabil. Lett., 83 (2013), 2269–2275. http://dx.doi.org/10.1016/j.spl.2013.06.016 doi: 10.1016/j.spl.2013.06.016
![]() |
[7] |
E. W. Montroll, G. H. Weiss, Random walks on lattices. Ⅱ, J. Math. Phys., 6 (1965), 167–181. http://dx.doi.org/10.1063/1.1704269 doi: 10.1063/1.1704269
![]() |
[8] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA, 1998. |
[9] |
Z. G. Zhao, Y. Y. Zheng, P. Guo, A Galerkin finite element method for a class of time-space fractional diffusion quation with nonsmooth data, J. Sci. Comput., 70 (2017), 386–406. http://dx.doi.org/10.1007/s10915-015-0107-3 doi: 10.1007/s10915-015-0107-3
![]() |
[10] |
I. Dassios, F. Font, Solution method for the time-fractional hyperbolic heat equation, Math. Meth. Appl. Sci., 44 (2021), 11844–11855. http://dx.doi.org/10.1002/mma.6506 doi: 10.1002/mma.6506
![]() |
[11] |
P. Kumar, K. N. Rai, Fractional modeling of hyperbolic bioheat transfer equation during thermal therapy, J. Mech. Medi. Biol., 17 (2017), 1–19. http://dx.doi.org/10.1142/S0219519417500580 doi: 10.1142/S0219519417500580
![]() |
[12] |
A. Ashyralyev, F. Dal, Z. Pinar, A note on the fractional hyperbolic differential and difference equations, Appl. Math. Comput., 217 (2011), 4654–4664. http://dx.doi.org/10.1016/j.amc.2010.11.017 doi: 10.1016/j.amc.2010.11.017
![]() |
[13] |
W. Qiu, D. Xu, H. B. Chen, A formally second-order BDF finite difference scheme for the integro-differential equations with the multi-term kernels, Int. J. Comput. Math., 97 (2020), 2055–2073. https://doi.org/10.1080/00207160.2019.1677896 doi: 10.1080/00207160.2019.1677896
![]() |
[14] |
W. Qiu, D. Xu, J. Guo, A formally second-order backward differentiation formula Sinc-collocation method for the Volterra integro-differential equation with a weakly singular kernel based on the double exponential transformation, Numer. Methods Partial Differ. Equ., 38 (2022), 830–847. http://dx.doi.org/10.1002/num.22703 doi: 10.1002/num.22703
![]() |
[15] |
V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ., 22 (2006), 558–576. http://dx.doi.org/10.1002/num.20112 doi: 10.1002/num.20112
![]() |
[16] |
Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. http://dx.doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
![]() |
[17] |
V. J. Ervin, N. Heuer, J. P. Roop, Numerical approximation of a time dependent nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45 (2007), 572–591. http://dx.doi.org/10.1137/050642757 doi: 10.1137/050642757
![]() |
[18] |
W. H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), 204–226. http://dx.doi.org/10.1137/080714130 doi: 10.1137/080714130
![]() |
[19] |
Y. Y. Zheng, C. P. Li, Z. G. Zhao, A note on the finite element method for the space-fractional advection diffusion equation, Comput. Math. Appl., 59 (2001), 1718–1726. http://dx.doi.org/10.1016/j.camwa.2009.08.071 doi: 10.1016/j.camwa.2009.08.071
![]() |
[20] |
C. P. Li, Z. G. Zhao, Y. Q. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62 (2011), 855–875. http://dx.doi.org/10.1016/j.camwa.2011.02.045 doi: 10.1016/j.camwa.2011.02.045
![]() |
[21] |
F. H. Zeng, F. W. Liu, C. P. Li, K. Burrage, I. Turner, V. Anh, A crank–nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), 2599–2622. http://dx.doi.org/10.1137/130934192 doi: 10.1137/130934192
![]() |
[22] |
W. R. Cao, F. H. Zeng, Z. Q. Zhang, G. E. Karniadakis, Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions, SIAM J. Sci. Comput., 38 (2016), A3070–A3093. http://dx.doi.org/10.1137/16M1070323 doi: 10.1137/16M1070323
![]() |
[23] |
Z. G. Zhao, Y. Y. Zheng, P. Guo, A Galerkin finite element scheme for time-space fractional diffusion equation, Int. J. Comput. Math., 93 (2016), 1212–1225. http://dx.doi.org/10.1080/00207160.2015.1044986 doi: 10.1080/00207160.2015.1044986
![]() |
[24] |
Y. M. Liu, Y. B. Yan, M. Khan, Discontinuous Galerkin time stepping method for solving linear space fractional partial differential equations, Appl. Numer. Math., 115 (2017), 200–213. http://dx.doi.org/10.1016/j.apnum.2017.01.009 doi: 10.1016/j.apnum.2017.01.009
![]() |
[25] |
G. A. Zou, A. Atangana, Y. Zhou, Error estimates of a semidiscrete finite element method for fractional stochastic diffusion-wave equations, Numer. Methods Partial Differ. Equ., 34 (2018), 1834–1848. http://dx.doi.org/10.1002/num.22252 doi: 10.1002/num.22252
![]() |
[26] |
Z. J. Zhang, W. H. Deng, G. E. Karniadakis, A Riesz basis Galerkin method for the tempered fractional Laplacian, SIAM J. Numer. Anal., 56 (2018), 3010–3039. http://dx.doi.org/10.1137/17M1151791 doi: 10.1137/17M1151791
![]() |
[27] |
D. Y. Shi, H. J. Yang, Superconvergence analysis of finite element method for time-fractional Thermistor problem, Appl. Math. Comput., 323 (2018), 31–42. http://dx.doi.org/10.1016/j.amc.2017.11.027 doi: 10.1016/j.amc.2017.11.027
![]() |
[28] | S. G. Samko, A. A. Kilbas, O. I. Maxitchev, Integrals and derivatives of the fractional order and some of their applications, (in Russian), Nauka i Tekhnika, Minsk, 1987. |
[29] | C. P. Li, F. H. Zeng, Numerical methods for fractional calculus, Chapman and Hall/CRC, 2015. http://dx.doi.org/10.1201/b18503 |
[30] |
K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31–52. http://dx.doi.org/10.1023/b:numa.0000027736.85078.be doi: 10.1023/b:numa.0000027736.85078.be
![]() |
[31] |
P. Zhuang, F. Liu, V. Anh, I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46 (2008), 1079–1095. http://dx.doi.org/10.1137/060673114 doi: 10.1137/060673114
![]() |
[32] |
C. P. Li, F. H. Zeng, The finite difference mehtods for fractional ordinary differential equations, Numer. Func. Anal. Optim., 34 (2013), 149–179. http://dx.doi.org/10.1080/01630563.2012.706673 doi: 10.1080/01630563.2012.706673
![]() |
[33] |
S. Larsson, V. Thomé, L. B. Wahlbin, Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method, Math. Comput., 67 (1998), 45–71. http://dx.doi.org/10.1090/S0025-5718-98-00883-7 doi: 10.1090/S0025-5718-98-00883-7
![]() |
[34] |
J. T. Ma, Finite element method for partial Volterra integro-diffeential equations on two-dimensions unbounded spatial domains, Appl. Math. Comput., 186 (2007), 598–609. http://dx.doi.org/10.1016/j.amc.2006.08.004 doi: 10.1016/j.amc.2006.08.004
![]() |
[35] | F. H. Zeng, J. X. Cao, C. P. Li, Grönwall inequalities, In: Recent advances in applied nonlinear dynamics with numerical analysis, World Scientific, Singapore, 2013. http://dx.doi.org/10.1142/9789814436465_0001 |
[36] |
W. L. Qiu, D. Xu, H. F. Chen, J. Guo, An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions, Comput. Math. Appl., 80 (2020), 3156–3172. http://dx.doi.org/10.1016/j.camwa.2020.11.003 doi: 10.1016/j.camwa.2020.11.003
![]() |
[37] | C. P. Li, M. Cai, Theory and numerical approximations of fractional integrals and derivatives, SIAM, 2019. http://dx.doi.org/10.1137/1.9781611975888 |