This paper is concerned with the existence, uniqueness and exponential stability of mild solutions for a class of impulsive stochastic differential equations driven by Poisson jumps and time-varying delays. Utilizing the successive approximation method, we obtain the criteria of existence and uniqueness of mild solutions for the considered impulsive stochastic differential equations. Then, the exponential stability in the $ p $th moment of the mild solution is also devised for considered equations by establishing an improved impulsive-integral inequality, which improves some known existing ones. Finally, an example and numerical simulations are given to illustrate the efficiency of the obtained theoretical results.
Citation: Dongdong Gao, Daipeng Kuang, Jianli Li. Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps[J]. AIMS Mathematics, 2023, 8(7): 15269-15284. doi: 10.3934/math.2023780
This paper is concerned with the existence, uniqueness and exponential stability of mild solutions for a class of impulsive stochastic differential equations driven by Poisson jumps and time-varying delays. Utilizing the successive approximation method, we obtain the criteria of existence and uniqueness of mild solutions for the considered impulsive stochastic differential equations. Then, the exponential stability in the $ p $th moment of the mild solution is also devised for considered equations by establishing an improved impulsive-integral inequality, which improves some known existing ones. Finally, an example and numerical simulations are given to illustrate the efficiency of the obtained theoretical results.
[1] | T. Taniguchi, The exponential stability for stochastic delay partial differential equations, J. Math. Anal. Appl., 331 (2007), 191–205. https://doi.org/10.1016/j.jmaa.2006.08.055 doi: 10.1016/j.jmaa.2006.08.055 |
[2] | L. G. Xu, D. H. He, Q. Ma, Impulsive stabilization of stochastic differential equations with time delays, Math. Comput. Model., 57 (2013), 997–1004. https://doi.org/10.1016/j.mcm.2012.10.011 doi: 10.1016/j.mcm.2012.10.011 |
[3] | X. Zhou, X. Z. Liu, S. M. Zhong, Stability of delayed impulsive stochastic differential equations driven by a fractional Brown motion with time-varying delay, Adv. Differ. Equ., 2016 (2016), 328. https://doi.org/10.1186/s13662-016-1018-9 doi: 10.1186/s13662-016-1018-9 |
[4] | X. Z. Fu, Q. X. Zhu, Y. X. Guo, Stabilization of stochastic functional differential systems with delayed impulses, Appl. Math. Comput., 346 (2019), 776–789. https://doi.org/10.1016/j.amc.2018.10.063 doi: 10.1016/j.amc.2018.10.063 |
[5] | F. Huang, J. l. Li, Pth moment input-to-state stability of impulsive stochastic functional differential systems with Markovian switching, T. I. Meas. Control, 44 (2022), 2986–2997. https://doi.org/10.1177/01423312221095736 doi: 10.1177/01423312221095736 |
[6] | A. Khodadadian, M. Parvizi, M. Abbaszadeh, M. Dehghan, C. Heitzinger, A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation, Comput. Mech., 64 (2019), 937–949. https://doi.org/10.1007/s00466-019-01688-1 doi: 10.1007/s00466-019-01688-1 |
[7] | N. Noii, A. Khodadadian, F. Aldakheel, Probabilistic failure mechanisms via Monte Carlo simulations of complex microstructures, Comput. Meth. Appl. Mech. Engineer., 399 (2022), 115358. https://doi.org/10.1016/j.cma.2022.115358 doi: 10.1016/j.cma.2022.115358 |
[8] | J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753–760. https://doi.org/10.1016/j.jmaa.2007.11.019 doi: 10.1016/j.jmaa.2007.11.019 |
[9] | H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays, Stat. Probab. Lett., 80 (2010), 50–56. https://doi.org/10.1016/j.spl.2009.09.011 doi: 10.1016/j.spl.2009.09.011 |
[10] | D. S. Li, X. M. Fan, Exponential stability of impulsive stochastic partial differential equations with delays, Stat. Probab. Lett., 126 (2017), 185–192. https://doi.org/10.1016/j.spl.2017.03.016 doi: 10.1016/j.spl.2017.03.016 |
[11] | L. G. Xu, S. Z. S. Ge, H. X. Hu, Boundedness and stability analysis for impulsive stochastic differential equations driven by G-Brownian motion, Internat. J. Control, 92 (2019), 642–652. https://doi.org/10.1080/00207179.2017.1364426 doi: 10.1080/00207179.2017.1364426 |
[12] | Y. X. Guo, Q. X. Zhu, F. Wang, Stability analysis of impulsive stochastic functional differential equations, Commun. Nonlinear Sci. Numer. Simul., 82 (2020), 105013. https://doi.org/10.1016/j.cnsns.2019.105013 doi: 10.1016/j.cnsns.2019.105013 |
[13] | S. Li, L. X. Shu, X. B. Shu, F. Xu, Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays, Stochastics, 91 (2019), 857–872. https://doi.org/10.1080/17442508.2018.1551400 doi: 10.1080/17442508.2018.1551400 |
[14] | M. Benhadria, T. Caraballob, Z. Halim, Existence of solutions and stability for impulsive neutral stochastic functional differential equations, Stoch. Anal. Appl., 37 (2019), 777–798. https://doi.org/10.1080/07362994.2019.1611449 doi: 10.1080/07362994.2019.1611449 |
[15] | W. P. Cao, Q. X. Zhu, Razumikhin-type theorem for pth exponential stability of impulsive stochastic functional differential equations basedon vector Lyapunov function, Nonlinear Anal. Hybri. Syst., 39 (2021), 100983. https://doi.org/10.1016/j.nahs.2020.100983 doi: 10.1016/j.nahs.2020.100983 |
[16] | S. F. Deng, X. B. Shu, J. Z. Mao, Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Mönch fixed point, J. Math. Anal. Appl., 467 (2018), 398–420. https://doi.org/10.1016/j.jmaa.2018.07.002 doi: 10.1016/j.jmaa.2018.07.002 |
[17] | L. X. Shu, X. B. Shu, Q. X. Zhu, F. Xu, Existence and exponential stability of mild solutions for second-order neutral stochastic functional differential equation with random impulses, J. Appl. Anal. Comput., 11 (2021), 59–80. https://doi.org/10.11948/20190089 doi: 10.11948/20190089 |
[18] | F. Huang, J. L. Li, Exponential ultimate boundedness and stability of stochastic differential equations with impulse, Asian J. Control, 25 (2023), 88–100. https://doi.org/10.1002/asjc.2786 doi: 10.1002/asjc.2786 |
[19] | M. Faustmann, J. M. Melenk, M. Parvizi, On the stability of Scott-Zhang type operators and application to multilevel preconditioning in fractional diffusion, ESAIM Math. Model. Numer. Anal., 55 (2021), 595–625. https://doi.org/10.1051/m2an/2020079 doi: 10.1051/m2an/2020079 |
[20] | M. Parvizi, A. Khodadadian, M. R. Eslahchi, Analysis of Ciarlet-Raviart mixed finite element methods for solving damped Boussinesq equation, J. Comput. Appl. Math., 379 (2020), 112818. https://doi.org/10.1016/j.cam.2020.112818 doi: 10.1016/j.cam.2020.112818 |
[21] | M. Parvizi, M. R. Eslahchi, A numerical method based on extended Raviart-Thomas (ER-T) mixed finite element method for solving damped Boussinesq equation, Math. Meth. Appl. Sci., 40 (2017), 5906–5924. https://doi.org/10.1002/mma.4442 doi: 10.1002/mma.4442 |
[22] | A. Anguraj, K. Ravikumar, J. J. Nieto, On stability of stochastic differential equations with random impulses driven by Poisson jumps, Stochastics, 93 (2021), 682–696. https://doi.org/10.1080/17442508.2020.1783264 doi: 10.1080/17442508.2020.1783264 |
[23] | Z. T. Hou, J. H. Bao, C. G. Yuan, Exponential stability of energy solutions to stochastic partial differential equations with variable delays and jumps, J. Math. Anal. Appl., 366 (2010), 44–54. https://doi.org/10.1016/j.jmaa.2010.01.019 doi: 10.1016/j.jmaa.2010.01.019 |
[24] | G. L. Chen, O. V. Gaans, S. V. Lunel, Existence and exponential stability of a class of impulsive neutral stochastic partial differential equations with delays and Poisson jumps, Stat. Probab. Lett., 141 (2018), 7–18. https://doi.org/10.1016/j.spl.2018.05.017 doi: 10.1016/j.spl.2018.05.017 |
[25] | A. Anguraja, K. Ravikumara, E. M. Elsayed, Exponential stability of impulsive neutral stochastic integro-differential equations driven by a Poisson jumps and time-varying delays, Filomat, 34 (2020), 1809–1819. https://doi.org/10.2298/FIL2006809A doi: 10.2298/FIL2006809A |
[26] | A. Chadha, S. N. Bora, Existence and exponential stability for neutral stochastic fractional differential equations with impulses driven by Poisson jumps, Stochastics, 90 (2018), 663–681. https://doi.org/10.1080/17442508.2017.1402899 doi: 10.1080/17442508.2017.1402899 |
[27] | G. Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/CBO9780511666223 |