Uchino initiated the investigation of twisted Rota-Baxter operators on associative algebras. Relevant studies have been extensive in recent times. In this paper, we introduce the notion of a twisted Rota-Baxter operator on a Hom-Lie algebra. By utilizing higher derived brackets, we establish an explicit $ L_{\infty} $-algebra whose Maurer-Cartan elements are precisely twisted Rota-Baxter operators on Hom-Lie algebra s. Additionally, we employ Getzler's technique of twisting $ L_\infty $-algebras to establish the cohomology of twisted Rota-Baxter operators. We demonstrate that this cohomology can be regarded as the Chevalley-Eilenberg cohomology of a specific Hom-Lie algebra with coefficients in an appropriate representation. Finally, we study the linear and formal deformations of twisted Rota-Baxter operators by using the cohomology defined above. We also show that the rigidity of a twisted Rota-Baxter operator can be derived from Nijenhuis elements associated with a Hom-Lie algebra.
Citation: Senrong Xu, Wei Wang, Jia Zhao. Twisted Rota-Baxter operators on Hom-Lie algebras[J]. AIMS Mathematics, 2024, 9(2): 2619-2640. doi: 10.3934/math.2024129
Uchino initiated the investigation of twisted Rota-Baxter operators on associative algebras. Relevant studies have been extensive in recent times. In this paper, we introduce the notion of a twisted Rota-Baxter operator on a Hom-Lie algebra. By utilizing higher derived brackets, we establish an explicit $ L_{\infty} $-algebra whose Maurer-Cartan elements are precisely twisted Rota-Baxter operators on Hom-Lie algebra s. Additionally, we employ Getzler's technique of twisting $ L_\infty $-algebras to establish the cohomology of twisted Rota-Baxter operators. We demonstrate that this cohomology can be regarded as the Chevalley-Eilenberg cohomology of a specific Hom-Lie algebra with coefficients in an appropriate representation. Finally, we study the linear and formal deformations of twisted Rota-Baxter operators by using the cohomology defined above. We also show that the rigidity of a twisted Rota-Baxter operator can be derived from Nijenhuis elements associated with a Hom-Lie algebra.
[1] | G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., 10 (1960), 731–742. |
[2] | P. Cartier, On the structure of free Baxter algebras, Adv. Math., 9 (1972), 253–265. https://doi.org/10.1016/0001-8708(72)90018-7 doi: 10.1016/0001-8708(72)90018-7 |
[3] | G. C. Rota, Baxter algebras and combinatorial identities, Ⅰ & Ⅱ, Bull. Amer. Math. Soc., 75 (1969), 325–329. https://doi.org/10.1090/S0002-9904-1969-12156-7 doi: 10.1090/S0002-9904-1969-12156-7 |
[4] | T. Brzeziński, Rota-Baxter systems, dendriform algebras and covariant bialgebras, J. Algebra, 460 (2016), 1–25. https://doi.org/10.1016/j.jalgebra.2016.04.018 doi: 10.1016/j.jalgebra.2016.04.018 |
[5] | A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem Ⅰ: The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys., 210 (2000), 249–273. https://doi.org/10.1007/s002200050779 doi: 10.1007/s002200050779 |
[6] | L. Guo, An introduction to Rota-Baxter algebra, International Press, 2012. |
[7] | B. A. Kupershmidt, What a classical r-matrix really is, J. Nonlinear Math. Phys., 6 (1999), 448–488. https://doi.org/10.2991/jnmp.1999.6.4.5 doi: 10.2991/jnmp.1999.6.4.5 |
[8] | M. Chen, J. Liu, Y. Ma, Lie n-algebras and cohomologies of relative Rota-Baxter operators on n-Lie algebras, J. Geom. Phys., 187 (2023), 104785. https://doi.org/10.1016/j.geomphys.2023.104785 doi: 10.1016/j.geomphys.2023.104785 |
[9] | S. Hou, Y. Sheng, Y. Zhou, 3-post-Lie algebras and relative Rota-Baxter operators of nonzero weight on 3-Lie algebras, J. Algebra, 615 (2023), 103–129. https://doi.org/10.1016/j.jalgebra.2022.10.016 doi: 10.1016/j.jalgebra.2022.10.016 |
[10] | R. Tang, C. Bai, L. Guo, Y. Sheng, Deformations and their controlling cohomologies of $\mathcal{O}$-operators, Comm. Math. Phys., 368 (2019), 665–700. https://doi.org/10.1007/s00220-019-03286-x doi: 10.1007/s00220-019-03286-x |
[11] | R. Tang, Y. Sheng, Leibniz bialgebras, relative Rota-Baxter operators, and the classical Leibniz Yang-Baxter equation, J. Noncommut. Geom., 16 (2022), 1179–1211. https://doi.org/10.4171/JNCG/448 doi: 10.4171/JNCG/448 |
[12] | L. Yuan, J. Liu, Twisting theory, relative Rota-Baxter type operators and $L_\infty$-algebras on Lie conformal algebras, J. Algebra, 636 (2023), 88–122. https://doi.org/10.1016/j.jalgebra.2023.08.021 doi: 10.1016/j.jalgebra.2023.08.021 |
[13] | O. Reynolds, On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philos. Trans. Roy. Soc. A, 136 (1895), 123–164; reprinted in Proc. Roy. Soc. London Ser. A, 451 (1995), 5–47. https://doi.org/10.1098/rspa.1995.0116 doi: 10.1098/rspa.1995.0116 |
[14] | J. K. Fériet, Introduction to the statistical theory of turbulence: Correlation and spectrum, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics, College Park, Md., 1951. |
[15] | H. Chu, S. Hu, M. Kang, A variant of the Reynolds operator, Proc. Am. Math. Soc., 133 (2005), 2865–2871. https://doi.org/10.1090/S0002-9939-05-07845-7 doi: 10.1090/S0002-9939-05-07845-7 |
[16] | J. B. Miller, Möbius transforms of Reynolds operators, J. Reine Angew. Math., 218 (1965), 6–16. https://doi.org/10.1515/crll.1965.218.6 doi: 10.1515/crll.1965.218.6 |
[17] | A. Neeb, Positive Reynolds operators and generating derivations, Math. Nachr., 203 (1999), 131–146. https://doi.org/10.1002/mana.1999.3212030109 doi: 10.1002/mana.1999.3212030109 |
[18] | G. C. Rota, Reynolds operators, In: Proceedings of Symposia in Applied Mathematics, vol. XVI, Amer. Math. Soc., Providence, R.I., 1964, 70–83. |
[19] | T. Zhang, X. Gao, L. Guo, Reynolds algebras and their free objects from bracketed words and rooted trees, J. Pure Appl. Algebra, 225 (2021), 106766. https://doi.org/10.1016/j.jpaa.2021.106766 doi: 10.1016/j.jpaa.2021.106766 |
[20] | C. Klimeik, T. Strobl, WZW-Poisson manifolds, J. Geom. Phys., 43 (2002), 341–344. https://doi.org/10.1016/S0393-0440(02)00027-X doi: 10.1016/S0393-0440(02)00027-X |
[21] | P. Ševera, A. Weinstein, Poisson geometry with a 3-form background, Progr. Theoret. Phys. Suppl., 144 (2001), 145–154. https://doi.org/10.1143/PTPS.144.145 doi: 10.1143/PTPS.144.145 |
[22] | K. Uchino, Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operators, Lett. Math. Phys., 85 (2008), 91–109. https://doi.org/10.1007/s11005-008-0259-2 doi: 10.1007/s11005-008-0259-2 |
[23] | A. Das, Twisted Rota-Baxter operators, Reynolds operators on Lie algebras and NS-Lie algebras, J. Math. Phys., 62 (2021), 091701. https://doi.org/10.1063/5.0051142 doi: 10.1063/5.0051142 |
[24] | A. Das, Cohomology and deformations of twisted Rota-Baxter operators and NS-algebras, J. Homotopy Relat. Struct., 17 (2022), 233–262. https://doi.org/10.1007/s40062-022-00305-y doi: 10.1007/s40062-022-00305-y |
[25] | S. Hou, Y. Sheng, Generalized Reynolds operators on 3-Lie algebras and NS-3-Lie algebras, Int. J. Geom. Method. Mod. Phys., 18 (2021), 2150223. https://doi.org/10.1142/S0219887821502236 doi: 10.1142/S0219887821502236 |
[26] | R. Gharbi, S. Mabrouk, A. Makhlouf, Maurer-Cartan type cohomology on generalized Reynolds operators and NS-structures on Lie triple systems, arXiv: 2309.01385v1, 2023. https://doi.org/10.48550/arXiv.2309.01385 |
[27] | J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036 |
[28] | F. Ammar, A. Ejbehi, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21 (2011), 813–836. |
[29] | E. A. Fernández-Culma, N. Rojas, On the classification of 3-dimensional complex hom-Lie algebras, J. Pure Appl. Algebra, 227 (2023), 107272. https://doi.org/10.1016/j.jpaa.2022.107272 doi: 10.1016/j.jpaa.2022.107272 |
[30] | A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64. |
[31] | Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Th., 15 (2012), 1081–1098. https://doi.org/10.1007/s10468-011-9280-8 doi: 10.1007/s10468-011-9280-8 |
[32] | D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A, 42 (2009), 165202. https://doi.org/10.1088/1751-8113/42/16/165202 doi: 10.1088/1751-8113/42/16/165202 |
[33] | Y. Li, D. Wang, Twisted Rota-Baxter operators on 3-Hom-Lie algebras, Comm. Algebra, 51 (2023), 4662–4675. https://doi.org/10.1080/00927872.2023.2215321 doi: 10.1080/00927872.2023.2215321 |
[34] | D. Wang, Y. Ke, Reynolds operators on Hom-Leibniz algebras, Filomat, 37 (2023), 2117–2130. https://doi.org/10.2298/FIL2307117W doi: 10.2298/FIL2307117W |
[35] | A. Das, S. Sen, Nijenhuis operators on Hom-Lie algebras, Comm. Algebra, 50 (2022), 1038–1054. https://doi.org/10.1080/00927872.2021.1977942 doi: 10.1080/00927872.2021.1977942 |
[36] | S. K. Mishra, A. Naolekar, $\mathcal{O}$-operators on hom-Lie algebras, J. Math. Phys., 61 (2020), 121701. https://doi.org/10.1063/5.0026719 doi: 10.1063/5.0026719 |
[37] | S. Guo, Y. Zhang, The cohomology of relative cocycle weighted Reynolds operators and NS-pre-Lie algebras, Comm. Algebra, 51 (2023), 5313–5331. https://dx.doi.org/10.1080/00927872.2023.2232853 doi: 10.1080/00927872.2023.2232853 |
[38] | T. Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra, 202 (2005), 133–153. https://doi.org/10.1016/j.jpaa.2005.01.010 doi: 10.1016/j.jpaa.2005.01.010 |
[39] | E. Getzler, Lie theory for nilpotent $L_\infty$-algebras, Ann. Math., 170 (2009), 271–301. https://doi.org/10.4007/annals.2009.170.271 doi: 10.4007/annals.2009.170.271 |
[40] | J. Stasheff, Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, In: Quantum groups (Leningrad, 1990), 120–137, Lecture Notes in Math., 1510, Springer, Berlin, 1992. https://doi.org/10.1007/BFb0101184 |