In this paper, we introduce a new family of algebras $ {\mathcal{H}}_n $, which are generated by three generators $ x, y, z $, with the following relations: (1) $ x^{2n} = 1, \ y^2 = xy+y, \ xy = yx; $ and (2) $ z^2 = z, \ xz = zx = z, \ zy = 2z. $ First, it shows that $ {\mathcal{H}}_n $ is a positively based algebra. Then, all the indecomposable modules of $ {\mathcal{H}}_n $ are constructed. Additionally, it shows that the dimension of each indecomposable $ {\mathcal{H}}_n $-module is at most $ 2 $. Finally, all the left (right) cells and left (right) cell modules of $ {\mathcal{H}}_n $ are described, and the decompositions of the decomposable left cell modules are also obtained.
Citation: Shiyu Lin, Shilin Yang. A new family of positively based algebras $ {\mathcal{H}}_n $[J]. AIMS Mathematics, 2024, 9(2): 2602-2618. doi: 10.3934/math.2024128
In this paper, we introduce a new family of algebras $ {\mathcal{H}}_n $, which are generated by three generators $ x, y, z $, with the following relations: (1) $ x^{2n} = 1, \ y^2 = xy+y, \ xy = yx; $ and (2) $ z^2 = z, \ xz = zx = z, \ zy = 2z. $ First, it shows that $ {\mathcal{H}}_n $ is a positively based algebra. Then, all the indecomposable modules of $ {\mathcal{H}}_n $ are constructed. Additionally, it shows that the dimension of each indecomposable $ {\mathcal{H}}_n $-module is at most $ 2 $. Finally, all the left (right) cells and left (right) cell modules of $ {\mathcal{H}}_n $ are described, and the decompositions of the decomposable left cell modules are also obtained.
[1] | Z. Arad, E. Fisman, M. Muzychuk, Generalized table algebras, Isr. J. Math., 114 (1999), 29–60. https://doi.org/10.1007/BF02785571 |
[2] | I. Assem, D. Simson, A. Skowroński, Elements of the representation theory of associative algebras volume 1: Techniques of representation theory, Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511614309 |
[3] | H. I. Blau, Table algebras, Eur. J. Combin., 30 (2009), 1426–1455. https://doi.org/10.1016/j.ejc.2008.11.008 |
[4] | L. F. Cao, H. X. Chen, L. B. Li, The cell modules of the Green algebra of Drinfel'd quantum double $D(H_4)$, Acta Math. Sin.-English Ser., 38 (2022), 1116–1132. https://doi.org/10.1007/s10114-022-9046-8 doi: 10.1007/s10114-022-9046-8 |
[5] | J. L. Chen, S. L. Yang, D. G. Wang, Y. J. Xu, On $4n$-dimensional neither pointed nor semisimple Hopf algebras and the associated weak Hopf algebras, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1809.00514 |
[6] | M. Geck, Left cells and constructible representations, Represent. Theor., 9 (2005), 385–416. https://doi.org/10.1090/S1088-4165-05-00245-1 doi: 10.1090/S1088-4165-05-00245-1 |
[7] | D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165–184. https://doi.org/10.1007/BF01390031 doi: 10.1007/BF01390031 |
[8] | T. Kildetoft, V. Mazorchuk, Special modules over positively based algebras, Doc. Math., 21 (2016), 1171–1192. https://doi.org/10.4171/DM/555 doi: 10.4171/DM/555 |
[9] | G. Kudryavtseva, V. Mazorchuk, On multisemigroups, Port. Math., 72 (2015), 47–80. https://doi.org/10.4171/PM/1956 |
[10] | S. Y. Lin, S. L. Yang, Representations of a class of positively based algebras, Czech. Math. J., 73 (2023), 811–838. https://doi.org/10.21136/CMJ.2023.0254-22 doi: 10.21136/CMJ.2023.0254-22 |
[11] | G. Lusztig, A class of irreducible representations of Weyl group, Indagat. Math., 82 (1979), 323–335. https://doi.org/10.1016/1385-7258(79)90036-2 doi: 10.1016/1385-7258(79)90036-2 |
[12] | G. Lusztig, A class of irreducible representations of Weyl group., Indagat. Math., 85 (1982), 219–226. https://doi.org/10.1016/S1385-7258(82)80013-9 doi: 10.1016/S1385-7258(82)80013-9 |
[13] | G. Lusztig, Irreducible representations of finite classical groups, Invent. Math., 43 (1977), 125–175. https://doi.org/10.1007/BF01390002 doi: 10.1007/BF01390002 |
[14] | V. Mazorchuk, V. Miemietz, Cell 2-representations of finitary 2-categories, Compos. Math., 147 (2011), 1519–1545. http://dx.doi.org/10.1112/S0010437X11005586 doi: 10.1112/S0010437X11005586 |
[15] | G. Singh, Bialgebra structures on table algebras, Linear Multilinear A., 69 (2021), 2288–2314. http://dx.doi.org/10.1080/03081087.2019.1669524 doi: 10.1080/03081087.2019.1669524 |
[16] | I. Schur, Zur Theorie der einfach transitiven Permutations-gruppen, Preuss. Akad. Wiss. Phys.-Math. KI., 1933,598–623. |
[17] | I. Schur, Gesammelte abhandlungen, Springer-Verlag, Berlin, New York, 1973. |
[18] | D. Su, S. L. Yang, Green rings of weak Hopf algebras based on generalized Taft algebras, Period. Math. Hung., 76 (2018), 229–242. http://dx.doi.org/10.1007/s10998-017-0221-0 doi: 10.1007/s10998-017-0221-0 |
[19] | D. P. Thurston, Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), 9725–9732. http://dx.doi.org/10.1073/pnas.1313070111 doi: 10.1073/pnas.1313070111 |