The quantale module introduced by Abramsky and Vickers, engaged a large number of researchers. This research article focuses the combined behavior of rough set, soft set and an algebraic structure quantale module with the left action. In fact, the paper reflects the generalization of rough soft sets. This combined effect is totally dependent on soft binary relation including aftersets and foresets. Different soft substructures in quantale modules are defined. The characterizations of soft substructures in quantale modules based on soft binary relation are presented. Further, in quantale modules, we define soft compatible and soft complete relations in terms of aftersets and foresets. Furthermore, we use soft compatible and soft complete relations to approximate soft substructures of quantale modules and these approximations are interpreted by aftersets and foresets. This concept generalizes the concept of rough soft quantale modules. Additionally, we describe the algebraic relationships between the upper (lower) approximations of soft substructures of quantale modules and the upper (lower) approximations of their homomorphic images using the concept of soft quantale module homomorphism.
Citation: Saqib Mazher Qurashi, Ferdous Tawfiq, Qin Xin, Rani Sumaira Kanwal, Khushboo Zahra Gilani. Different characterization of soft substructures in quantale modules dependent on soft relations and their approximations[J]. AIMS Mathematics, 2023, 8(5): 11684-11708. doi: 10.3934/math.2023592
The quantale module introduced by Abramsky and Vickers, engaged a large number of researchers. This research article focuses the combined behavior of rough set, soft set and an algebraic structure quantale module with the left action. In fact, the paper reflects the generalization of rough soft sets. This combined effect is totally dependent on soft binary relation including aftersets and foresets. Different soft substructures in quantale modules are defined. The characterizations of soft substructures in quantale modules based on soft binary relation are presented. Further, in quantale modules, we define soft compatible and soft complete relations in terms of aftersets and foresets. Furthermore, we use soft compatible and soft complete relations to approximate soft substructures of quantale modules and these approximations are interpreted by aftersets and foresets. This concept generalizes the concept of rough soft quantale modules. Additionally, we describe the algebraic relationships between the upper (lower) approximations of soft substructures of quantale modules and the upper (lower) approximations of their homomorphic images using the concept of soft quantale module homomorphism.
[1] | C. J. Mulvey, Rendiconti del circolo matematico di Palermo, Comput. Math. Appl., 12 (1986), 99–104. |
[2] | C. Russo, Quantale modules and their operators with applications, J. Log. Comput., 20 (2010), 917–946. https://doi.org/10.1093/logcom/exn088 doi: 10.1093/logcom/exn088 |
[3] | C. Russo, An order-theoretic analysis of interpretations among propositional deductive systems, Ann. Pure Appl. Log., 164 (2013), 112–130. https://doi.org/10.1016/j.apal.2012.09.006 doi: 10.1016/j.apal.2012.09.006 |
[4] | C. Russo, Quantale modules, with Applications to logic and image processing, Ph.D. Thesis, University of Salerno, Italy, 2007. |
[5] | C. Russo, Quantales and their modules: Projective objects, ideals, and congruences, arXiv preprint. https://doi.org/10.48550/arXiv.1706.00135 |
[6] | D. Molodstov, Soft set theory—First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[7] | F. Feng, C. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets a tentative approach, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6 |
[8] | F. Feng, M. I. Ali, M. Shabir, Soft relations applied to semigroups, Filomat, 27 (2013), 1183–1196. https://doi.org/10.2298/FIL1307183F doi: 10.2298/FIL1307183F |
[9] | H. Heymans, I. Stubbe, Modules on involutive quantales: Canonical Hilbert structure, applications to sheaf theory, Order, 26 (2009), 177–196. https://doi.org/10.1007/s11083-009-9116-x doi: 10.1007/s11083-009-9116-x |
[10] | J. Zhan, B. Davvaz, A kind of new rough set: Rough soft sets and rough soft rings, J. Intell. Fuzzy Syst., 30 (2016), 475–483. https://doi.org/10.3233/IFS-151772] doi: 10.3233/IFS-151772 |
[11] | K. I. Rosenthal, The theory of quantaloids, Addison Wesley Longman, USA, 2014. https://doi.org/10.1201/9781498710404 |
[12] | L. Y. Yang, L. S. Xu, Roughness in quantales, J. Inf. Sci., 220 (2013), 568–579. https://doi.org/10.1016/j.ins.2012.07.042 doi: 10.1016/j.ins.2012.07.042 |
[13] | M. A. Bilal, M. Shabir, Approximations of pythagorean fuzzy sets over dual universes by soft binary relations, J. Intell. Fuzzy Syst., 41 (2021), 2495–2511. https://doi.org/10.3233/JIFS-202725 doi: 10.3233/JIFS-202725 |
[14] | M. Shabir, R. S. Kanwal, M. I. Ali, Reduction of an information systems, Soft comput., 24 (2020), 10801–10813. https://doi.org/10.1007/s00500-019-04582-3 doi: 10.1007/s00500-019-04582-3 |
[15] | N. Galatos, C. Tsinakis, Equivalence of consequence relations: An order-theoretic and categorical perspective, J. Symbolic Logic, 74 (2009), 780–810. https://doi.org/10.2178/jsl/1245158085 doi: 10.2178/jsl/1245158085 |
[16] | P. Zhang, T. Li, G. Wang, C. Luo, H. Chen, J. Zhang, et al., Multi source information fusion based on rough set theory: A review, Inf. Fusion, 68 (2021), 85–117. https://doi.org/10.1016/j.inffus.2020.11.004 doi: 10.1016/j.inffus.2020.11.004 |
[17] | P. Zhang, T. Li, Z. Yuan, C. Luo, K. Liu, X. Yang, Heterogeneous feature selection based on neighborhood combination entropy, IEEE Trans. Neural Netw. Learn Syst., 2022. https://doi.org/10.1109/TNNLS.2022.3193929 doi: 10.1109/TNNLS.2022.3193929 |
[18] | R. Šlesinger, Decomposition and projectivity of quantale modules, Acta Univ. Matthiae Belii, Ser. Math., 16 (2010), 81–89. |
[19] | R. S. Kanwal, M. Shabir, Approximation of soft ideals by soft relations in semigroups, J. Intell. Fuzzy Syst., 37 (2019), 7977–7989. https://doi.org/10.3233/JIFS-190328 doi: 10.3233/JIFS-190328 |
[20] | S. Abramsky, S. Vickers, Quantales, observational logic and process semantics, Math. Struct. Comput. Sci., 3 (1993), 161–227. https://doi.org/10.1017/S0960129500000189 doi: 10.1017/S0960129500000189 |
[21] | S. A. Solovyov, On the category Q-Mod, Alg. Univ., 58 (2008), 35–58. https://doi.org/10.1007/s00012-008-2038-4 doi: 10.1007/s00012-008-2038-4 |
[22] | S. Liang, The category of QP quantale modules, Gen, 18 (2013), 24–36. |
[23] | S. Liang, Algebraic properties of the category of QP quantale modules, Prog. Appl. Math., 6 (2013), 6–14. |
[24] | S. M. Qurashi, K. Z. Gilani, M. Shabir, M. Gulzar, A. Alam, Soft relations applied to the substructures of quantale module and their approximation, Complexity, 2022. https://doi.org/10.1155/2022/9073503 doi: 10.1155/2022/9073503 |
[25] | S. M. Qurashi, M. Shabir, Roughness in quantale modules, J. Intell. Fuzzy Syst., 35(2018), 2359–2372. https://doi.org/10.3233/JIFS-17886 doi: 10.3233/JIFS-17886 |
[26] | S. M. Qurashi, M. Shabir, Characterizations of quantales by the properties of their ($ {\in }_{\gamma } $, $ {\in }_{\gamma } $∨$ {q}_{\delta } $)-fuzzy (subquantales) ideals, Punjab Univ. J. Math., 51 (2019), 67–85. Available from: http://journals.pu.edu.pk/journals/index.php/pujm/article/viewArticle/3411 |
[27] | Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956 |