This article aims to demonstrate the formation of entropy due to variable thermal conductivity, radiation, and fluid friction irreversibilities for a three-dimensional upper-convected Maxwell (UCM) fluid. The fluid motion occurs as a result of exponential stretching sheets. Separate discussions are held regarding the entropy generation related to the prescribed surface temperature and prescribed surface heat flux. Additionally, the heat transport mechanism is examined in the presence of thermal radiation. The governing physical situation is first modeled and then solved by using the homotopy analysis method to acquire the solution. The physical importance of relevant flow parameters is shown graphically and in tabular form. It is noted that the entropy generated is reduced with an increase in the thermal radiation parameter. Streamline patterns are also drawn for two- and three-dimensional UCM fluid models. Finally, the current analytical solution is found to be in agreement with the solutions in the literature.
Citation: Sheheryar Shah, M. N. Abrar, Kamran Akhtar, Aziz Khan, Thabet Abdeljawad. Entropy formation analysis for magnetized UCM fluid over an exponentially stretching surface with PST and PSHF wall conditions[J]. AIMS Mathematics, 2023, 8(5): 11666-11683. doi: 10.3934/math.2023591
This article aims to demonstrate the formation of entropy due to variable thermal conductivity, radiation, and fluid friction irreversibilities for a three-dimensional upper-convected Maxwell (UCM) fluid. The fluid motion occurs as a result of exponential stretching sheets. Separate discussions are held regarding the entropy generation related to the prescribed surface temperature and prescribed surface heat flux. Additionally, the heat transport mechanism is examined in the presence of thermal radiation. The governing physical situation is first modeled and then solved by using the homotopy analysis method to acquire the solution. The physical importance of relevant flow parameters is shown graphically and in tabular form. It is noted that the entropy generated is reduced with an increase in the thermal radiation parameter. Streamline patterns are also drawn for two- and three-dimensional UCM fluid models. Finally, the current analytical solution is found to be in agreement with the solutions in the literature.
[1] | A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transfer, 101 (1979), 718-725. https://doi.org/10.1115/1.3451063 doi: 10.1115/1.3451063 |
[2] | M. M. Rashidi, A. B. Parsab, O. Anwar Beg, L. Shamekhib, S. M. Sadri, Tasveer A. Bég, Parametric analysis of entropy generation in magneto-hemodynamic flow in a semi-porous channel with OHAM and DTM, Appl. Bionics Biomech., 11 (2014), 47-60. https://doi.org/10.3233/ABB-140086 doi: 10.3233/ABB-140086 |
[3] | Y. Aksoy, Effects of couple stresses on the heat transfer and entropy generation rates for a flow between parallel plates with constant heat flux, Int. J. Therm. Sci., 107 (2016), 1-12. https://doi.org/10.1016/j.ijthermalsci.2016.03.017 doi: 10.1016/j.ijthermalsci.2016.03.017 |
[4] | M. N. Abrar, R. Ul Haq, M. Awais, I. Rashid, Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field, Nucl. Eng. Technol., 49 (2017) 1680-1688. https://doi.org/10.1016/j.net.2017.09.007 doi: 10.1016/j.net.2017.09.007 |
[5] | A. Kamran, S. Hussain, M. Sagheer, N. Akmal, A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions, Results phys., 7 (2017), 3037-3048. https://doi.org/10.1016/j.rinp.2017.08.004 doi: 10.1016/j.rinp.2017.08.004 |
[6] | M. U. Rashid, M. Mustafa, A study of heat transfer and entropy generation in von Karman flow of Reiner-Rivlin fluid due to a stretchable disk, Ain Shams Eng. J., 12 (2021), 875-883. https://doi.org/10.1016/j.asej.2020.06.017 doi: 10.1016/j.asej.2020.06.017 |
[7] | M. N. Abrar, M. Sagheer, S. Hussain, Entropy analysis of Hall current and thermal radiation influenced by cilia with single-and multi-walled carbon nanotubes, Bull. Mater. Sci., 42 (2019), 250. https://doi.org/10.1007/s12034-019-1822-4 doi: 10.1007/s12034-019-1822-4 |
[8] | M. N. Abrar, M. Sagheer, S. Hussain, Entropy analysis of SWCNT & MWCNT flow induced by collecting beating of cilia with porous medium, J. Cent. South Univ., 26 (2019), 2109-2118. https://doi.org/10.1007/s11771-019-4158-8 doi: 10.1007/s11771-019-4158-8 |
[9] | M. N. Abrar, M. Sagheer, S. Hussain, Entropy formation analysis for the peristaltic motion of ferrofluids in the presence of Joule heating and fluid friction phenomena in a plumb duct, J. Nanofluids, 8 (2019), 1305-1313. https://doi.org/10.1166/jon.2019.1672 doi: 10.1166/jon.2019.1672 |
[10] | M. N. Abrar, M. Sagheer, S. Hussain, Thermodynamics analysis of Joule heating and internal heat source over an inclined ciliated tube, Physica A, 549 (2020), 123983. https://doi.org/10.1016/j.physa.2019.123983 doi: 10.1016/j.physa.2019.123983 |
[11] | M. N. Abrar, M. Sagheer, S. Hussain, Entropy generation during peristaltically flowing nanofluid in an axisymmetric channel with flexible walls, Phys. Scr., 95 (2020), 035206. https://doi.org/10.1088/1402-4896/ab4aab doi: 10.1088/1402-4896/ab4aab |
[12] | B. C. Sakiadis, Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow, AIChE J., 7 (1961), 26-28. https://doi.org/10.1002/aic.690070108 doi: 10.1002/aic.690070108 |
[13] | A. J. Singh, Three-dimensional flow of a viscous fluid with heat and mass transfer, Int. Commun. Heat Mass, 32 (2005), 1420-1429. https://doi.org/10.1002/fld.2252 |
[14] | R. Razzaq, U. Farooq, J. Cui, T. Muhammad, Non-similar solution for magnetized flow of Maxwell nanofluid over an exponentially stretching surface, Math. Probl. Eng., 2021 (2021), 5539542. https://doi.org/10.1155/2021/5539542 doi: 10.1155/2021/5539542 |
[15] | R. Razzaq, U. Farooq, Non-similar forced convection analysis of Oldroyd-B fluid flow over an exponentially stretching surface, Adv. Mech. Eng., 13 (2021). https://doi.org/10.1177/16878140211034604 doi: 10.1177/16878140211034604 |
[16] | J. Cui, R. Razzaq, U. Farooq, W. A. Khan, F. B. Farooq, T. Muhammad, Impact of non-similar modeling for forced convection analysis of nano-fluid flow over stretching sheet with chemical reaction and heat generation, Alex. Eng. J., 61 (2022), 4253-4261. https://doi.org/10.1016/j.aej.2021.09.045 doi: 10.1016/j.aej.2021.09.045 |
[17] | U. Umer, R. Razzaq, M. I. Khan, Yu-M. Chu, D. C. Lu, Modeling and numerical computation of nonsimilar forced convective flow of viscous material towards an exponential surface, Int. J. Mod. Phys. B, 35 (2021), 2150118. https://doi.org/10.1142/S0217979221501186 doi: 10.1142/S0217979221501186 |
[18] | U. Farooq, D. C. Lu, S. Ahmed, M. Ramzan, J. D. Chung, F. A. Chandio, Computational analysis for mixed convective flows of viscous fluids with nanoparticles, J. Therm. Sci. Eng., 11 (2019), 021013. https://doi.org/10.1115/1.4043092 doi: 10.1115/1.4043092 |
[19] | R, Talat, M. Mustafa, M. Asif Farooq, Modeling heat transfer in fluid flow near a decelerating rotating disk with variable fluid properties, Int. Commun. Heat Mass, 116 (2020), 104673. https://doi.org/10.1016/j.icheatmasstransfer.2020.104673 doi: 10.1016/j.icheatmasstransfer.2020.104673 |
[20] | D. Qaiser, Z. Zheng, M. R. Khan, Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer, Therm. Sci. Eng. Prog., 22 (2021), 100801. https://doi.org/10.1016/j.tsep.2020.100801 doi: 10.1016/j.tsep.2020.100801 |
[21] | M. N. Khan, N. Ullah, J. Z. Khan, D. Qaiser, M. R. Khan, Analysis of Maxwell bioconvective nanofluids with surface suction and slip conditions in the presence of solar radiations, J. Phys. Commun., 5 (2021), 115014. https://doi.org/10.1088/2399-6528/ac36b4 doi: 10.1088/2399-6528/ac36b4 |
[22] | J. Cui, S. Munir, U. Farooq, M. E. A. Rabie, T. Muhammad, R. Razzaq, On numerical thermal transport analysis of three dimensional bioconvective nanofluid flow, J. Math., 2021 (2021), 5931989. https://doi.org/10.1155/2021/5931989 doi: 10.1155/2021/5931989 |
[23] | J. Cui, S. Munir, S. F. Raies, U. Farooq, R. Razzaq, Non-similar aspects of heat generation in bioconvection from flat surface subjected to chemically reactive stagnation point flow of Oldroyd-B fluid, Alex. Eng. J., 61 (2022), 5397-5411. https://doi.org/10.1016/j.aej.2021.10.056 doi: 10.1016/j.aej.2021.10.056 |
[24] | J. Cui, M. Safeeer, U. Farooq, M. E. A. Rabie, T. Muhammad, Significance of non-similar modeling in the entropy analysis of chemically reactive magnetized flow of nanofluid subjected to thermal radiations and melting heat condition, AIP Adv., 11 (2021), 085018. https://doi.org/10.1063/5.0058491 doi: 10.1063/5.0058491 |
[25] | M. I. Khanb, S. Qayyum, Yu-M. Chu, N. B. Khan, S. Kadry, Transportation of Marangoni convection and irregular heat source in entropy optimized dissipative flow, Int. Commun. Heat Mass, 120 (2021), 105031. https://doi.org/10.1016/j.icheatmasstransfer.2020.105031 doi: 10.1016/j.icheatmasstransfer.2020.105031 |
[26] | G, Bing, S. A. Khan, M. I. Khan, E. R. El-Zahar, M. Y. Malik, A. S. Alqahtani, et al., Entropy optimized analysis for the radiative flow of a nanofluid: the Darcy-Forchheimer model, Wave Random Complex, 2022. https://doi.org/10.1080/17455030.2022.2061082 doi: 10.1080/17455030.2022.2061082 |
[27] | A. Ali, K. Shehzadi, M. Sulaiman, S. Asghar, Heat and mass transfer analysis of 3D Maxwell nanofluid over an exponentially stretching surface, Phys. Scripta, 94 (2019), 065206. https://doi.org/10.1088/1402-4896/ab07cf doi: 10.1088/1402-4896/ab07cf |
[28] | A. Ali, J. Akhtar, H. J. Anjum, M. Awais, Z. Shah, P. Kumam, 3D nanofluid flow over exponentially expanding surface of Oldroyd-B fluid, Ain Shams Eng. J., 12 (2021), 3939-3946. https://doi.org/10.1016/j.asej.2021.01.026 doi: 10.1016/j.asej.2021.01.026 |
[29] | S. Khattak, M. Ahmed, M. N. Abrar, S. Uddin, M. Sagheer, M. F. Javeed, Numerical simulation of Cattaneo-Christov heat flux model in a porous media past a stretching sheet, Wave Random Complex, 2022. https://doi.org/10.1080/17455030.2022.2030503 doi: 10.1080/17455030.2022.2030503 |
[30] | A. S. Khan, M. N. Abrar, S. Uddin, M. Awais, I. Usman, Entropy generation due to micro-rotating Casson's nanofluid flow over a nonlinear stretching plate: numerical treatment, Wave Random Complex, 2022. https://doi.org/10.1080/17455030.2022.2067376 doi: 10.1080/17455030.2022.2067376 |
[31] | T. Liu, Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method, Chaos Soliton Fract., 158 (2022), 112007. https://doi.org/10.1016/j.chaos.2022.112007 doi: 10.1016/j.chaos.2022.112007 |
[32] | T. Liu, Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation, J. Comput. Appl. Math., 413 (2022), 114393. https://doi.org/10.1016/j.cam.2022.114393 doi: 10.1016/j.cam.2022.114393 |
[33] | M. Sajid, M. Awais, S. Nadeem, T. Hayat, The influence of slip condition on thin film flow of a fourth-grade fluid by the homotopy analysis method, Comput. Math. Appl., 56 (2008), 2019-2026. https://doi.org/10.1016/j.camwa.2008.04.022 doi: 10.1016/j.camwa.2008.04.022 |