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Abstract: This article aims to demonstrate the formation of entropy due to variable thermal conductivity, 

radiation, and fluid friction irreversibilities for a three-dimensional upper-convected Maxwell (UCM) 

fluid. The fluid motion occurs as a result of exponential stretching sheets. Separate discussions are held 

regarding the entropy generation related to the prescribed surface temperature and prescribed surface 

heat flux. Additionally, the heat transport mechanism is examined in the presence of thermal radiation. 

The governing physical situation is first modeled and then solved by using the homotopy analysis 

method to acquire the solution. The physical importance of relevant flow parameters is shown 

graphically and in tabular form. It is noted that the entropy generated is reduced with an increase in the 

thermal radiation parameter. Streamline patterns are also drawn for two- and three-dimensional UCM 

fluid models. Finally, the current analytical solution is found to be in agreement with the solutions in the 

literature. 

Keywords: entropy generation; variable thermal conductivity; thermal radiation; upper-convected 
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Abbreviations:  : Stretching ratio;  : Relaxation time; L: Reference length; Pr: Prandtl number; Re : 

Reynolds number; β: Deborah number; ν: Kinematic viscosity; Br : Brinkman number;  : Viscous 

dissipation; µ: Dynamic viscosity; k: Thermal conductivity; Rn: Radiation parameter; σ∗ : Stefan-

Boltzmann constant; A, B: Temperature exponents; G
E

: Entropy generation number; k ∗ : Mean 

absorption coefficient; 


: Finite temperature difference; cp: Specific heat at constant pressure; θ: 

Dimensionless temperature in PST; 


: Dimensionless temperature in PSHF;    Temperature-dependent 

thermal conductivity 

1. Introduction 

The primary issue that is emerging in any industry these days is the effective transport of energy. In 

this modern era of science and technology, almost all mechanical machines that work with thermo-

fluidic systems face this energy loss. Basically, all thermo-fluidic structures bring in irreversibilities, 

resulting in an energy drop. This loss of thermal energy reduces the system's capacity for thermal 

competence. In 1850, the German physicist Rudolf Clausius initially introduced his theory of this 

energy/efficiency loss as "entropy." Clausius' concept of entropy was like a candle in a dark room for the 

scientists of the 19th century. The second law mechanism is a splendid and productive guideline to 

figure out the entropy of any engineering machine. Actually, entropy is linked to several energy-related 

fields, including geothermal power generation, the cooling of cutting-edge electronics, and solar energy 

generation. Initially, Bejan [1] presented entropy as a philosophical concept. Bejan analyzed the effects 

of heat transfer and viscous dissipation on entropy formation. Rashidi et al. [2] investigated the entropy 

production that occurs due to fluid friction and the irreversibility of Joule dissipation when it passes 

through a porous duct. Aksoy [3] studied entropy formation due to fully developed flow in a rectangular 

porous duct. In their paper, Abrar et al. [4] explore the entropy production that occurs as a result of heat 

transport, viscosity, and magnetic irreversibility. Kamran et al. [5] numerically studied the entropy 

formation of Casson fluid flow over a slip boundary. Rashid and Mustafa's [6] study focused on the flow 

of a Reiner-Rivlin fluid across a stretchable, rotating surface, as well as its effects on viscous heating. 

Recently, Abrar et al. [7−11] conducted many studies related to entropy with multiple physical 

constraints of interest.  

There have been remarkable advancements in scientific research and technological development 

due to an approach known as boundary layer flow over moving surfaces with heat transfer. Various 

applications, such as crystal growth, glass fiber production, paper-making, continuous casting, 

metallurgical operations, the cooling of metallic sheets in cooling baths, and plastic film design, have 

benefited from this approach. The pioneering study on stretching surfaces was initially proposed by 

Sakiadis [12]. After this fundamental approach, many researchers have contributed to demonstrating 

two-dimensional flows over a stretching surface with different aspects due to their demanding 

applications. However, three-dimensional flows for such cases have not been extensively examined yet 

due to their complex mathematical nature. A few recent studies for three-dimensional flows via different 
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flow assumptions include the following: Singh [13] analytically solved the double-diffusive boundary 

layer analysis for Newtonian fluids, Razzaq et al. [14] presented the flow of a magnetized nanofluid over 

a stretching plate by using a non-similar approach, Razzaq and Farooq [15] investigated convection 

analysis for the Oldroyd-B model past a stretching surface, Cui et al. [16] studied the consequences of 

magnetic dissipation, viscous dissipation, and chemical reaction in the flow, temperature, and 

concentration fields, Umer et al. [17] and Farooq et al. [18] separately discussed computational analyses 

for forced and mixed convection, and Talat et al. [19] explored the flow over a rotating porous disk. 

Qaiser et al. [20] numerically addressed the mixed convection flow of a nanofluid across a stretched 

surface, Khan et al. [21] explored the properties of a Maxwell bio-nanofluid in the presence of solar 

radiation, Cui et al. [22−24] discussed heat transport analysis in a biconvection model with different 

body forces, Khan et al. [25] discussed the Marangoni convection flow due to a rotating disk, Guo et al. [26] 

examined entropy analysis for a radiative nanofluid, Ali et al. [27,28] examined heat and mass transport 

for three-dimensional nanofluids over a stretching sheet, Khattak et al. [29] numerically examined the 

heat flux model past a nonlinear stretching surface, and Khan et al. [30] analyzed the entropy generation 

for micro-rotating Casson fluid flow. 

Motivated by the above-cited literature review, this study was purposed to examine the entropy 

formation due to temperature-dependent thermal conductivity for a three-dimensional flow of a Maxwell 

fluid past an exponentially stretching sheet. Furthermore, a heat transport investigation was performed 

under two different heat circumstances, i.e., a prescribed surface temperature (PST) and prescribed 

surface heat flux (PSHF). Series solutions were produced for velocity and temperature profiles by using 

a semi-analytical approach called the homotopy analysis method (HAM). In the forthcoming section, the 

authors disclose the problem formulation. Section 3 formulates the formula for the entropy formation in 

the presence of a PST and PSHF. In Section 4, the authors address the series solution of the governed 

mathematical model. Section 5 presents to present the physical importance of the governed model 

through plots and tables. The last section reflects the concluding remarks of the study. 

2. Problem formulation 

In this study, consideration has been given to the three-dimensional flow of a Maxwell fluid 

bounded past an exponentially stretching sheet. Using the Cartesian coordinate system, x  and y  axes 

were selected to be parallel to the direction of motion along the sheet, whereas the z- axis was chosen to 

be perpendicular to the axis of motion. The driving force for the fluid is the stretching sheet at 0=z , Uw 

and Vw represents the fluid stretching velocities in the x and y  directions, respectively. Figure 1 reflects 

the systematic view of the physical model. 
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Figure 1. Position and orientation. 

The flow is governed by the following relations: 

 
𝜕𝑢
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) + 2𝜆 (𝑢𝑣

𝜕2𝑣
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+ 𝑣𝑤

𝜕2𝑣

𝜕𝑦𝜕𝑧
+ 𝑢𝑤

𝜕2𝑣

𝜕𝑥𝜕𝑧
), (3) 

and the supported boundary conditions for the assumed physical situation are as follows: 

 𝑢 = 𝑈𝑤,    𝑣 = 𝑉𝑤,    𝑤 = 0,    𝑎𝑡   𝑧 = 0 and 𝑢 → 0,     𝑣 → 0,    𝑎𝑠   𝑧 → ∞; (4) 

Let us introduce the convenient variables:  

 𝜂 = √
𝑈0

2𝐿𝜐
𝑒
𝑥+𝑦

2𝐿 𝑧, 𝑢 = 𝑈0𝑒
𝑥+𝑦

𝐿 𝑓′(𝜂),  𝑣 = 𝑈0𝑒
𝑥+𝑦

𝐿 𝑔′(𝜂)  

 𝑤 = −√
𝜐𝑈0

2𝐿
𝑒
𝑥+𝑦

2𝐿 (𝑓(𝜂) + 𝑔(𝜂) + 𝜂(𝑓′(𝜂) + 𝑔′(𝜂))). (5) 

As a result, (2) and (3) simplify to (1), and (1) is satisfied automatically. 

 𝑓′′′ − 2(𝑓′ + 𝑔′)𝑓′ + (𝑓 + 𝑔)𝑓′′ − 𝛽 (2(𝑓′ + 𝑔′)2𝑓′ −
𝜂

2
(𝑓′ + 𝑔′)2𝑓′′) 

 −𝛽 (
1

2
(𝑓 + 𝑔)2𝑓′′′ − 3𝑓(𝑓′ + 𝑔′)𝑓′′ − 3𝑔(𝑓′ + 𝑔′)𝑓′′) = 0, (6) 

  𝑔′′′ − 2(𝑓′ + 𝑔′)𝑔′ + (𝑓 + 𝑔)𝑔′′ − 𝛽 (2(𝑓′ + 𝑔′)2𝑔′ −
𝜂

2
(𝑓′ + 𝑔′)2𝑔′′) 
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 −𝛽 (
1

2
(𝑓 + 𝑔)2𝑔′′′ − 3𝑓(𝑓′ + 𝑔′)𝑔′′ − 3𝑔(𝑓′ + 𝑔′)𝑔′′) = 0, (7) 

where the appropriate boundary conditions are as follows: 

 𝑓 = 0,    𝑓′ = 1,    𝑔 = 0,    𝑔′ = 𝛼,    𝑎𝑡   𝜂 = 0 and  

 𝑓′ → 0,   𝑔′ → 0,    𝑎𝑠   𝜂 → ∞; (8) 

here 𝛽 =
𝜆𝑈𝑚

2𝐿
 represents the Deborah number, where 𝑈𝑚  is of 𝑂 (𝑈0𝑒

𝑥+𝑦
𝐿⁄ ) and 𝛼 = (

𝑉0

𝑈0
) represents 

the stretching ratio parameter. Note that, for 𝛼 = 0 , the three-dimensional flow becomes two-

dimensional flow (i.e.,  𝑔 = 0) which is: 

 𝑓′′′ − 2𝑓′2 + 𝑓𝑓′′ − 𝛽 (2𝑓′3 −
𝜂

2
𝑓′′𝑓′2 +

1

2
𝑓2𝑓′′′ − 3𝑓𝑓′𝑓′′) = 0,  (9) 

 𝑓 = 0,    𝑓′ = 1,    𝑎𝑠   𝜂 = 0 and 𝑓′ → 0   𝑎𝑠   𝜂 → ∞; (10) 

also, when we set 𝛼 = 1, one can reach the axisymmetric flow (i.e., 𝑓 = 𝑔) with similar boundary 

conditions as (10). 

2.1. Heat transfer mechanism 

The heat transport equation with the thermal radiation phenomenon has the following form: 

  𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
=

1

𝜌𝑐𝑝

𝜕

𝜕𝑧
((𝑘(𝑇) +

16𝑇∞
3𝜎∗

3𝑘∗
)
𝜕𝑇

𝜕𝑧
),  (11) 

and the wall conditions for the PST and PSHF circumstances are as follows:  

𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒
𝐴(𝑥+𝑦)

2𝐿    𝑎𝑡  𝑧 = 0 and  𝑇 → 𝑇∞   𝑎𝑠  𝑧 → ∞, 

 −𝑘∞ (
𝜕𝑇

𝜕𝑧
)
𝑤
= 𝑇1𝑒

(𝐵+1)(𝑥+𝑦)

2𝐿    𝑎𝑡   𝑧 = 0 and  𝑇 → 𝑇∞   𝑎𝑠  𝑧 → ∞. (12) 

It may be shown that the thermal conductivity (k) is a function of temperature in the following way: 

PST case: 

𝑘 = 𝑘∞(1 + 𝛾. 𝜃(𝜂)); 

PSHF case: 

 𝑘 = 𝑘∞(1 + 𝛾. 𝜑(𝜂)); (13) 

a similarity transformation is introduced as  
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 𝑇 = 𝑇∞ + 𝑇0𝑒
𝐴(𝑥+𝑦)

2𝐿 𝜃(𝜂)   and 𝑇 = 𝑇∞ +
𝑇1

𝑘∞
√
2𝜐𝐿

𝑈0
𝑒
𝐵(𝑥+𝑦)

2𝐿 𝜑(𝜂) .   (14) 

Equation (11) reduces to the following forms after using (14):  

 (1 + 𝑅𝑛 + 𝛾𝜃)𝜃′′ + 𝑃𝑟(𝑓 + 𝑔) 𝜃′ − 𝐴. 𝑃𝑟(𝑓′ + 𝑔′) 𝜃 + 𝛾𝜃′2 = 0, (15) 

 (1 + 𝑅𝑛 + 𝛾𝜑)𝜑′′ + 𝑃𝑟(𝑓 + 𝑔)𝜑′ − 𝐵. 𝑃𝑟(𝑓′ + 𝑔′) 𝜑 + 𝛾𝜑′2 = 0; (16) 

The reduced boundary conditions are as follows: 

 𝜃 = 1,    𝜑′ = −
1

1+𝛾
,    𝑎𝑡   𝜂 = 0, and 𝜃 → 0,    𝜑 → 0,    𝑎𝑡   𝜂 → ∞, (17) 

where the Prandtl number and the radiation parameter are given as (𝑃𝑟 =
𝜇𝑐𝑝

𝑘∞
⁄ )  and  (𝑅𝑛 =

16𝜎 ∗ 𝑇∞
3

3𝑘∞𝑘 ∗
⁄ ) respectively. 

3. Second law analysis with a PST and PSHF 

The philosophy of the second law of thermodynamics offers a computational way by which one can 

compute the irreversibilities in any system. The volumetric entropy generation rate ( )
Gen

S  and viscous 

dissipation ( )  are a result of the following calculations [10]: 

 𝑆𝐺𝑒𝑛 =
𝑘(𝑇)

𝑇∞
2 {(

𝜕𝑇

𝜕𝑥
)
2

+ (
𝜕𝑇

𝜕𝑦
)
2

+ (
𝜕𝑇

𝜕𝑧
)
2

} +
16𝑇∞

3𝜎∗

3𝑘∗
{(
𝜕𝑇

𝜕𝑥
)
2

+ (
𝜕𝑇

𝜕𝑦
)
2

+ (
𝜕𝑇

𝜕𝑧
)
2

} +
𝜇

𝑇∞
𝛹,

   

(18) 

 𝛹 = {2 [(
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

] + (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)
2

}, (19) 

where ( )
gen

S  is the rate at which characteristic entropy is generated 

 𝑆𝑔𝑒𝑛 =
𝑘∞

𝑇∞
2 (

𝛥𝑇

𝐿
)
2

. (20) 

3.1. Incorporating the PST 

The dimensionless local generation entropy  (𝐸𝐺) is defined in the following way: 

 𝐸𝐺 =
𝑆𝐺𝑒𝑛

𝑆𝑔𝑒𝑛
=
(1+𝛾𝜃)

2
{(𝐴𝜃 + 𝜂𝜃′)2 + 𝑅𝑒 𝜃 ′2}⏟                  
𝐸𝐺  𝑑𝑢𝑒  𝑡𝑜 𝑃𝑆𝑇

+
𝑅𝑛

2
{(𝐴𝜃 + 𝜂𝜃′)2 + 𝑅𝑒 𝜃 ′2}⏟                

𝐸𝐺  𝑑𝑢𝑒  𝑡𝑜 𝑅𝑛

+ 𝐸𝛹⏟
𝐸𝐺  𝑑𝑢𝑒  𝑡𝑜  𝛹

 ,  (21)  
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( ) ( )  ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
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''''''''
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22
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22

2

2

22









+++++

−
+









+++++

−
+









++++++++




















++








+=



gfgfgf

gBr

gfgfgf

fBr

gfgf
Br

gfgf
Br

ggff
Br

E













  (22) 

Equation (22) clearly discloses the involvement of three diverse roots of entropy generation (i.e., 

entropy generation due to the PST  (𝐸𝑃𝑆𝑇), thermal radiation  (𝐸𝑅𝑛) and viscous dissipation (𝐸𝛹). 

3.2. For the case of PSHF 

The dimensionless locally generated entropy  (𝐸𝐺) is defined in the following way: 

 𝐸𝐺 =
𝑆𝐺𝑒𝑛

𝑆𝑔𝑒𝑛
=
(1+𝛾𝜑)

2
{(𝐵𝜑 + 𝜂𝜑′)2 + 𝑅𝑒𝜑 ′2}⏟                    
  𝐸𝐺 𝑑𝑢𝑒  𝑡𝑜 𝑃𝑆𝑇

+
𝑅𝑛

2
{(𝐵𝜑 + 𝜂𝜑′)2 + 𝑅𝑒𝜑 ′2}⏟                

𝐸𝐺  𝑑𝑢𝑒  𝑡𝑜 𝑅𝑛

+ 𝐸𝛹⏟
𝐸𝐺  𝑑𝑢𝑒  𝑡𝑜  𝛹

 .  (23)  

In the above equations, Re  is the local Reynolds number, Br  is the Brinkman number, and   is the 

finite temperature difference.
 

 𝑅𝑒 =
𝑈𝑤

𝜈
𝐿,   𝐵𝑟 =  

𝜇𝑈𝑤
2

𝑘∞𝛥𝑇
,   𝜉 =

𝛥𝑇

𝑇∞
,   𝛥𝑇 = 𝑇0𝑒

𝐴
(𝑥+𝑦)

2𝐿

 
(24) 

To calculate the irreversibility distribution (for the PST and PSHF cases), the Bejan number (Be) is 

given as: 

 

(25) 

 .


++
=

EEE

E
Be

RnPSHF

PSHF

  

(26) 

4. Series solution 

To establish the series solutions, we considered a very efficient technique, particularly, the HAM 

(see [31−33]). When (6), (7), (15) and (16) are subject to boundary conditions (8) and (9), the HAM is 

applied to obtain the corresponding analytical solutions (17). You may quickly and simply get at your 

initial guesses and the linear operator by doing the following: 

 𝑓0(𝜂) = 1 − 𝑒
−𝜂 ,   𝑔0(𝜂) = 𝛼(1 − 𝑒

−𝜂),   𝜃0(𝜂) = 𝑒
−𝜂 ,   𝜑0(𝜂) =

𝑒−𝜂

1+𝛾
, (27) 

 𝐿𝑓(𝑓) = 𝑓′′′ − 𝑓′,   𝐿𝑔(𝑔) = 𝑔′′′ − 𝑔′,  𝐿𝜃(𝜃) = 𝜃′′ − 𝜃,   𝐿𝜑(𝜑) = 𝜑′′ − 𝜑. (28) 

,


++
=

EEE

E
Be

RnPST

PST
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A MATHEMATICA code has been constructed for the defined problem in which we endorse 

(ℏ𝑓 ,  ℏ𝑔,   ℏ𝜃  and ℏ𝜑) as the auxiliary parameters for the unknown function (𝑓,   𝑔,   𝜃  and 𝜑), which 

gives the convergence region. To find the admissible values of (ℏ𝑓, ℏ𝑔 , ℏ𝜃  𝑎𝑛𝑑 ℏ𝜑 )and the so called ℏ − 

curves were developed as displayed for the 15th order of approximation in Figures 2 and 3. These figures 

show that the admissible values are −0.7 ≤ ℏ𝑓 ≤ −0.2, −0.6 ≤ ℏ𝑔 ≤ −0.2, −0.6 ≤ ℏ𝜃 ≤ −0.2 and −0.8 ≤ ℏ𝜑 ≤

−0.1. It is further noticed that the range of admissible values of ℏ increases by increasing the order of 

approximations. Figures 2 and 3 depict the values of (ℏ𝑓,  ℏ𝑔,  ℏ𝜃  and ℏ𝜑). 

  

Figure 2. ℏ-curves for the functions ℏ𝑓 & ℏ𝑔. Figure 3. ℏ-curves for the functions ℏ𝜃 & ℏ𝜑. 

Table 1 gives knowledge about the approximation order, which helps us in making a judgment 

about the orders of approximations that is sufficient for the convergence. It is noticed that convergent 

solutions up to the fifth decimal place are acquired at just the 16th and 20th order of estimation.  

Table 1: Approximations of different orders converge to the series solution when 𝛼 =
0.5,  𝛽 = 0.2,  𝛾 = 0.1,  𝑅𝑛 = 0.2, 𝑃𝑟 =1.0,  𝐴 = 0.2,  𝐵 = 0.2, ℏ𝑓 = ℏ𝑔 = ℏ𝜃 = ℏ𝜑 =

−0.4. 

Order of approximation −𝒇′′(𝟎) −𝒈′′(𝟎) −𝜽′(𝟎) 𝝋′′(𝟎) 

1 1.44813 .72406 .87333 .51570 

4 1.75472 .86584 .70194 .21325 

8 1.78138 .88897 .64558 .18583 

12 1.78208 .89124 .62985 .18581 

16 1.78303 .89148 .62395 .18618 

20 1.78303 .89148 .62135 .18634 

30 1.78303 .89148 .62135 .18634 

40 1.78303 .89148 .62135 .18634 
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5. Results and discussion 

In this section, several graphical illustrations and numerical tables are presented to show the 

rheology of various parameters. Figures 4 and 5 were developed to visualize the behavior of the 

viscoelastic fluid parameter (Deborah number) on 𝑓 and 𝑓′, respectively. By analyzing these numbers, 

we conclude that raising the Deborah number slows down the flow of the fluid. Physically, (𝛽 < 1) 

relates to fluids for which the relaxation time is less than the characteristic deformation time. This is the 

case for fluids with low viscosities. Thus, the non-Newtonian fluid behaves as a purely viscous fluid. On 

the other hand, when (𝛽 < 1), the fluid behaves as if it were an elastically solid substance. Figures 6 and 7 

visualize the response of the stretching ratio parameter on 𝑔(𝜂) and 𝑔′(𝜂), respectively. It is observed in 

these figures that the fluid velocity significantly increases with an enhancement in the stretching 

parameter. Physically, we can conclude that for 𝛼 = 0, the flow reduces to two-dimensional, whereas 

𝛼 > 0 corresponds to three-dimensional flow as is evident from Figure 6. Moreover, it is also observed 

that the flow is axisymmetric when 1.0 . Figure 8 demonstrates the consequences of temperature-

dependent thermal conductivity. A significant increase in the fluid energy is observed when is increased. 

The thermal boundary layer thickness accelerates fruitfully when is increased. Figure 9 shows the impact 

of 𝛾 on 𝜑. It is observed that as 𝜑 increases, the temperature of the fluid decreases. 

  

Figure 4. Influence of   on .f  Figure 5. Influence of   on .f   

  
Figure 6. Influence of   on .g  Figure 7. Influence of   on .g   
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Figure 8. Influence of   on   for PST. Figure 9. Influence of   on   for PSHF. 

Figures 10 and 11 illustrate the different values of the radiation parameter (Rn) throughout time. It 

is perceived that, with the increase of radiation there is an increase in both temperature profiles (i.e., PST 

and PSHF), which is obvious. The influence of the stretching ratio parameter for (Pr = 0.7 and 0.02) on 

the temperature profile is plotted in Figures 12 and 13, respectively. The temperature fields (PST and 

PSHF) demonstrate purposeful overshoots for a low Pr (liquid metal = 0.02), whereas, for a high Pr 

(air=0.02) the temperature variation was not that crucial. From a physical perspective, we can conclude 

that the reaction of the stretching ratio parameter is very impressive in the case of liquid metals because 

of a low viscosity, whereas for higher Pr values, the overshoot does not exist because a high Pr indicates 

a  more viscous fluid. 

  

Figure 10. Influence of Rn on   for PST. Figure 11. Influence of Rn on   for PSHF. 
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Figure 12. Comparison of results: Air vs 

liquid metals on  . 

Figure 13. Comparison of results: Air vs liquid 

metals on  . 

Figures 14−19 were sketched to illustrate the behavior of the entropy generation ( )
G

E  under the 

influence of various physical parameters, i.e., the Brinkman number ( ),Br  Prandtl number ( )Pr  and 

thermal radiation (𝑅𝑛)  as function of the PST and PSHF wall conditions. Figures 14 and 15 show the 

influence of G
E  with increasing values of 𝐵𝑟 for the PST and PSHF wall conditions, respectively. It can 

be seen that 𝐸𝐺 is the increasing function of 𝐵𝑟 for both (PST and PSHF) situations. Physically, an 

increase in 𝐸𝐺  is due to the fact that as 𝐵𝑟 increases, the fluid friction increases near the surface, which 

consequently increases the entropy of the system. The influence of increasing Pr on the entropy number 

is represented in Figure 16 (PST) and Figure 17 (PSHF). In these figures, we have plotted different 

ranges of Pr  (i.e., liquid metal, air, sea water and engine oil). It can be seen that the entropy of the 

system is frequently increasing for increasing values of the Prandtl number. Impact of Rn is observed 

in Figures 18 and 19 as a function of the entropy generation for the PST and PSHF conditions, 

respectively. It is noticed that an increase in the radiation parameter leads to a decrease in the entropy 

production. Physically, an increase in 𝑅𝑛  means a decrease in the buoyancy force, which subsequently 

decreases the entropy production. 

  

Figure 14. Influence of Br on G
E  for PST. Figure 15. Influence of Br on G

E for PSHF. 
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Figure 16. Influence of Pr on 
G

E  for PST. Figure 17. Influence of Pr on 
G

E  for PSHF. 

  

Figure 18. Influence of Rn on G
E  for PST. Figure 19. Influence of Rn on G

E  for PSHF. 

Figures 20−23 illustrate the physical sense of the Bejan number (𝐵𝑒) for increasing values of the 

Brinkman number (𝐵𝑟)and radiation parameter (𝑅𝑛).  It is observed that Be
 continuously decreases 

with increasing values of 𝐵𝑟,  which is due to the fact that heat transfer irreversibility is small as 

compared to the total irreversibility: see Figures 20 and 21. On the other hand, 𝐵𝑒 increases effectively 

with an enhancement in Rn for both the PST and PSHF wall conditions (see Figures 22 and 23). 
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Figure 20. Influence of Br on Be  for PST. Figure 21. Influence of Br on Be  for PSHF. 

  

Figure 22. Influence of Rn on Be  for PST. Figure 23. Influence of Rn on Be  for PSHF. 

Table 2 gives the comparison of velocity profiles. Consistency is found between the numerical and 

HAM results. Table 2 gives the numerical temperature dependent thermal conductivity for multiple 

values of 𝛼 and 𝑅𝑛 . Table 3 gives the numerical PST and PSHF wall conditions with respect to entropy 

for various values of the Brinkman number while other parameters remain fixed. It is noted that, as we 

increase the domain, i.e., (𝜂 → ∞), both wall conditions are becoming fully matured. 
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Table 2. Specific numerical values for the PST and PSHF for different values of 𝜂 and 

𝑃𝑟 =1.5,  𝛾 = 0.1,  𝐴 = 0.2,  𝐵 = 0.2. 

Table 3. Numerical values for the PST and PSHF with respect to the entropy number for 

various values of 𝜂  and 𝑃𝑟 =1.5,  𝛾 = 𝛼 = 0.2,  𝐴 = 𝐵 = 0.2,  𝛽 =  𝜉 = 0.1,  𝑅𝑒 =2.0, 𝑅𝑛 =

0.5. 

Figures 24 and 25 show the streamline behavior for two and three-dimensional Maxwell fluid 

models. It was found that the streamline for two and three-dimensional flows are quite interesting.  

Parameters Prescribed Surface Temperature Prescribed Surface Heat Flux 

  Rn  0.0=  5.2=  0.5=  0.0=  5.2=  0.5=  

0.0 5.0 1.00000 0.28385 0.03857 1.93112 0.34177 0.04194 

2.5  1.00000 0.16762 0.01665 1.70385 0.21745 0.02048 

5.0  1.00000 0.05138 -0.0052 1.47658 0.09312 -0.0009 

0.2 0.0 1.00000 0.06934 0.00313 1.00385 0.07065 0.00347 

 3.0 1.00000 0.19247 0.02334 1.54931 0.22736 0.02552 

 6.0 1.00000 0.31559 0.04355 2.09476 0.38406 0.04757 

Parameters PST against 𝑬𝑮 PSHF against 𝑬𝑮 

Br  
 

0.0 

 

2.5 

 

5.0 

 

0.2 

0.0=  0.3=  0.6=  0.0=  0.3=  0.6=  

1.339784 0.040114 0.000239 1.221426 0.014548 0.000239 

4.525782 55.59538 189.2253 4.436658 55.57690 189.2253 

7.577889 114.6446 391.3971 7.516286 114.6324 391.3971 

10.57192 181.2563 618.1717 10.53617 181.2496 618.1717 
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Figure 24. Stream lines for 2-D Maxwell fluid. Figure 25. Stream lines for 3-D Maxwell fluid. 

6. Conclusions 

The main ideas of the analysis are as follows:  

• The Deborah number retards the fluid velocity. 

• Three-dimensional flow reduces to two-dimensional flow for 𝛼 = 0. 
• The non-Newtonian fluid behaves as a purely viscous fluid when the Deborah number exceeds 1.  

• Temperature-dependent thermal conductivity has quite different effects in the PST and PSHF 

cases. 

•  The stretching ratio parameter has a greater over shoot for liquid metals (low Prandtl number).  

• It is noted from Table 3 that as the domain increases, the solution settles down for both PST and 

PSHF wall conditions. 

• In the case of the Bejan number, the magnitude of the PSHF is greater than the PST.  

• The Bejan number is directly proportional to the radiation parameter and inversely proportional to 

the Brinkman number. 

• It is noted from Table 3 that, as the domain increases, the solution settles down for both the PST 

and PSHF wall conditions. 
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