Research article Special Issues

Theoretical analysis of induced MHD Sutterby fluid flow with variable thermal conductivity and thermal slip over a stretching cylinder

  • Received: 10 September 2022 Revised: 01 January 2023 Accepted: 18 January 2023 Published: 24 February 2023
  • MSC : 76A05, 76W99, 80M25, 93A30

  • In the current analysis, steady incompressible Sutterby fluid flows over a stretching cylinder are studied. The influence of variable thermal conductivity is considered in the presence of thermal slip, Darcy resistance, and sponginess. The impact of the induced magnetic field is considered to analyze the results at the cylindrical surface. The governing equations are established as partial differential equations using the boundary layer approximation. Appropriate transformations are used to convert partial differential equations into ordinary differential equations. The numerical technique, namely (bvp4c), is applied to ordinary differential equations to develop the results. The numerical results, such as heat transfer rate and skin friction, are revealed by tabular form to demonstrate the physical impact of governing factors. The physical impact of governing factors on induced magnetic hydrodynamic, velocity, and temperature profiles is presented through various graphs. The velocity function deteriorated due to the augmentation of the Sutterby fluid parameter.

    Citation: Nadeem Abbas, Wasfi Shatanawi, Taqi A. M. Shatnawi, Fady Hasan. Theoretical analysis of induced MHD Sutterby fluid flow with variable thermal conductivity and thermal slip over a stretching cylinder[J]. AIMS Mathematics, 2023, 8(5): 10146-10159. doi: 10.3934/math.2023513

    Related Papers:

  • In the current analysis, steady incompressible Sutterby fluid flows over a stretching cylinder are studied. The influence of variable thermal conductivity is considered in the presence of thermal slip, Darcy resistance, and sponginess. The impact of the induced magnetic field is considered to analyze the results at the cylindrical surface. The governing equations are established as partial differential equations using the boundary layer approximation. Appropriate transformations are used to convert partial differential equations into ordinary differential equations. The numerical technique, namely (bvp4c), is applied to ordinary differential equations to develop the results. The numerical results, such as heat transfer rate and skin friction, are revealed by tabular form to demonstrate the physical impact of governing factors. The physical impact of governing factors on induced magnetic hydrodynamic, velocity, and temperature profiles is presented through various graphs. The velocity function deteriorated due to the augmentation of the Sutterby fluid parameter.



    加载中


    [1] M. F. Romig, The influence of electric and magnetic fields on heat transfer to electrically conducting fluids, Adv. Heat Transf., 1 (1964), 267−354. https://doi.org/10.1016/S0065-2717(08)70100-X doi: 10.1016/S0065-2717(08)70100-X
    [2] H. S. Takhar, M. Ali, A. S. Gupta, Stability of magnetohydrodynamic flow over a stretching sheet, In: Liquid Metal Magnetohydrodynamics, Dordrecht: Springer, 1989. https://doi.org/10.1007/978-94-009-0999-1_57
    [3] J. L. Phillips, W. Haggren, W. J. Thomas, T. Ishida-Jones, W. Ross Adey, Magnetic field-induced changes in specific gene transcription, Biochim. Biophys. Acta Gene Struct. Expression, 1132 (1992), 140−144. https://doi.org/10.1016/0167-4781(92)90004-J doi: 10.1016/0167-4781(92)90004-J
    [4] T. Heine, R. Islas, G. Merino, σ and π contributions to the induced magnetic field: Indicators for the mobility of electrons in molecules, J. Comput. Chem., 28 (2007), 302−309. https://doi.org/10.1002/jcc.20548 doi: 10.1002/jcc.20548
    [5] S. K. Ghosh, O. Anwar Bég, J. Zueco, Hydromagnetic free convection flow with induced magnetic field effects, Meccanica, 45 (2010), 175−185. https://doi.org/10.1007/s11012-009-9235-x doi: 10.1007/s11012-009-9235-x
    [6] C. S. K. Raju, N. Sandeep, S. Saleem, Effects of induced magnetic field and homogeneous-heterogeneous reactions on stagnation flow of a Casson fluid, Eng. Sci. Technol. Int. J., 19 (2016), 875−887. https://doi.org/10.1016/j.jestch.2015.12.004 doi: 10.1016/j.jestch.2015.12.004
    [7] A. M. Al-Hanaya, F. Sajid, N. Abbas, S. Nadeem, Effect of SWCNT and MWCNT on the flow of micropolar hybrid nanofluid over a curved stretching surface with induced magnetic field, Sci. Rep., 10 (2020), 8488. https://doi.org/10.1038/s41598-020-65278-5 doi: 10.1038/s41598-020-65278-5
    [8] M. N. Khan, S. Nadeem, N. Abbas, A. M. Zidan, Heat and mass transfer investigation of a chemically reactive Burgers nanofluid with an induced magnetic field over an exponentially stretching surface, P. I. Mech. Eng. E-J. Pro., 235 (2021), 2189−2200. https://doi.org/10.1177/09544089211034941 doi: 10.1177/09544089211034941
    [9] N. Abbas, S. Nadeem, A. Saleem, M. Y. Malik, A. Issakhov, F. M. Alharbi, Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder, Chin. J. Phys., 69 (2021), 109−117. https://doi.org/10.1016/j.cjph.2020.11.019 doi: 10.1016/j.cjph.2020.11.019
    [10] M. I. Anwar, H. Firdous, A. A. Zubaidi, N. Abbas, S. Nadeem, Computational analysis of induced magnetohydrodynamic non-Newtonian nanofluid flow over nonlinear stretching sheet, Prog. React. Kinet., 47 (2022). https://doi.org/10.1177/14686783211072712 doi: 10.1177/14686783211072712
    [11] N. Abbas, S. Nadeem, M. N. Khan, Numerical analysis of unsteady magnetized micropolar fluid flow over a curved surface, J. Therm. Anal. Calorim., 147 (2022), 6449−6459. https://doi.org/10.1007/s10973-021-10913-0 doi: 10.1007/s10973-021-10913-0
    [12] J. L. Sutterby, Laminar converging flow of dilute polymer solutions in conical sections. Ⅱ, Trans. Soc. Rheol., 9 (1965), 227−241. https://doi.org/10.1122/1.549024 doi: 10.1122/1.549024
    [13] J. L. Sutterby, Laminar converging flow of dilute polymer solutions in conical sections: Part Ⅰ. Viscosity data, new viscosity model, tube flow solution, AIChE J., 12 (1966), 63−68. https://doi.org/10.1002/aic.690120114 doi: 10.1002/aic.690120114
    [14] T. Fujii, O. Miyatake, M. Fujii, H. Tanaka, K. Murakami, Natural convective heat transfer from a vertical isothermal surface to a non-Newtonian Sutterby fluid, Int. J. Heat Mass Transf., 16 (1973), 2177−2187. https://doi.org/10.1016/0017-9310(73)90005-7 doi: 10.1016/0017-9310(73)90005-7
    [15] R. L. Batra, M. Eissa, Laminar forced convection heat transfer of a Sutterby model fluid in an eccentric annulus, Mech. Res. Commun., 21 (1994), 147−152. https://doi.org/10.1016/0093-6413(94)90087-6 doi: 10.1016/0093-6413(94)90087-6
    [16] N. S. Akbar, S. Nadeem, Nano Sutterby fluid model for the peristaltic flow in small intestines, J. Comput. Theor. Nanosci., 10 (2013), 2491−2499. https://doi.org/10.1166/jctn.2013.3238 doi: 10.1166/jctn.2013.3238
    [17] T. Hayat, H. Zahir, M. Mustafa, A. Alsaedi, Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: A numerical study, Results Phys., 6 (2016), 805−810. https://doi.org/10.1016/j.rinp.2016.10.015 doi: 10.1016/j.rinp.2016.10.015
    [18] S. Ahmad, M. Farooq, M. Javed, A. Anjum, Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection, Results Phys., 8 (2018), 1250−1259. https://doi.org/10.1016/j.rinp.2018.01.043 doi: 10.1016/j.rinp.2018.01.043
    [19] N. Imran, M. Javed, M. Sohail, P. Thounthong, Z. Abdelmalek, Theoretical exploration of thermal transportation with chemical reactions for sutterby fluid model obeying peristaltic mechanism, J. Mater. Res. Technol., 9 (2020), 7449−7459. https://doi.org/10.1016/j.jmrt.2020.04.071 doi: 10.1016/j.jmrt.2020.04.071
    [20] Z. Sabir, A. Imran, M. Umar, M. Zeb, M. Shoaib, M. A. Z. Raja, A numerical approach for 2-D Sutterby fluid-flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts, Therm. Sci., 25 (2021), 1975−1987. https://doi.org/10.2298/TSCI191207186S doi: 10.2298/TSCI191207186S
    [21] S. Abdal, I. Siddique, S. Afzal, S. Sharifi, M. Salimi, A. Ahmadian, An analysis for variable physical properties involved in the nano-biofilm transportation of Sutterby fluid across shrinking/stretching surface, Nanomaterials, 12 (2022), 599. https://doi.org/10.3390/nano12040599 doi: 10.3390/nano12040599
    [22] S. Bilal, I. A. Shah, A. Akgül, M. T. Tekin, T. Botmart, E. S. Yousef, et al., A comprehensive mathematical structuring of magnetically effected Sutterby fluid flow immersed in dually stratified medium under boundary layer approximations over a linearly stretched surface, Alex. Eng. J., 61 (2022), 11889−11898. https://doi.org/10.1016/j.aej.2022.05.044 doi: 10.1016/j.aej.2022.05.044
    [23] R. J. Krane, Discussion:"Perturbation solution for convecting fin with variable thermal conductivity", J. Heat Transfer., 98 (1976), 685. https://doi.org/10.1115/1.3450625 doi: 10.1115/1.3450625
    [24] E. Abu-Nada, Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection, Int. J. Heat Fluid Flow, 30 (2009), 679−690. https://doi.org/10.1016/j.ijheatfluidflow.2009.02.003 doi: 10.1016/j.ijheatfluidflow.2009.02.003
    [25] R. Roslan, H. Saleh, I. Hashim, Buoyancy-driven heat transfer in nanofluid-filled trapezoidal enclosure with variable thermal conductivity and viscosity, Numer. Heat Transf. A, 60 (2011), 867−882. https://doi.org/10.1080/10407782.2011.616778 doi: 10.1080/10407782.2011.616778
    [26] Y. H. Lin, L. C. Zheng, X. X. Zhang, Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity, Int. J. Heat Mass Transf., 77 (2014), 708−716. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.028 doi: 10.1016/j.ijheatmasstransfer.2014.06.028
    [27] J. A. Gbadeyan, E. O. Titiloye, A. T. Adeosun, Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip, Heliyon, 6 (2020), e03076. https://doi.org/10.1016/j.heliyon.2019.e03076 doi: 10.1016/j.heliyon.2019.e03076
    [28] F. Mabood, A. Rauf, B. C. Prasannakumara, M. Izadi, S. A. Shehzad, Impacts of Stefan blowing and mass convention on flow of Maxwell nanofluid of variable thermal conductivity about a rotating disk, Chin. J. Phys., 71 (2021), 260−272. https://doi.org/10.1016/j.cjph.2021.03.003 doi: 10.1016/j.cjph.2021.03.003
    [29] S. Ahmad, M. Naveed Khan, S. Nadeem, Unsteady three dimensional bioconvective flow of Maxwell nanofluid over an exponentially stretching sheet with variable thermal conductivity and chemical reaction, Int. J. Ambient Energy, 43 (2022), 6542−6552. https://doi.org/10.1080/01430750.2022.2029765 doi: 10.1080/01430750.2022.2029765
    [30] M. Ramzan, N. Shahmir, H. A. S. Ghazwani, Stefan blowing impact on bioconvective Maxwell nanofluid flow over an exponentially stretching cylinder with variable thermal conductivity, Wave Random Complex, 2022. https://doi.org/10.1080/17455030.2022.2102269 doi: 10.1080/17455030.2022.2102269
    [31] H. Waqas, A. Kafait, M. Alghamdi, T. Muhammad, A. S. Alshomrani, Thermo-bioconvectional transport of magneto-Casson nanofluid over a wedge containing motile microorganisms and variable thermal conductivity, Alex. Eng. J., 61 (2022), 2444−2454. https://doi.org/10.1016/j.aej.2021.07.006 doi: 10.1016/j.aej.2021.07.006
    [32] D. O. Soumya, B. J. Gireesha, P. Venkatesh, Planar Couette flow of power law nanofluid with chemical reaction, nanoparticle injection and variable thermal conductivity, Proc. Inst. Mech. Eng. C-J. Mech. Eng. Sci., 236 (2022), 5257−5268. https://doi.org/10.1177/09544062211059071 doi: 10.1177/09544062211059071
    [33] Y. Nawaz, M. S. Arif, K. Abodayeh, M. Bibi, Finite element method for non-newtonian radiative Maxwell nanofluid flow under the influence of heat and mass transfer, Energies, 15 (2022), 4713. https://doi.org/10.3390/en15134713 doi: 10.3390/en15134713
    [34] Y. Nawaz, M. S. Arif, K. Abodayeh, A third-order two-stage numerical scheme for fractional Stokes problems: A comparative computational study, J. Comput. Nonlinear Dynam., 17 (2022), 101004. https://doi.org/10.1115/1.4054800 doi: 10.1115/1.4054800
    [35] Y. Nawaz, M. S. Arif, K. Abodayeh, Predictor-Corrector scheme for electrical Magnetohydrodynamic (MHD) Casson nanofluid flow: A computational study, Appl. Sci., 13 (2023), 1209. https://doi.org/10.3390/app13021209 doi: 10.3390/app13021209
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1440) PDF downloads(101) Cited by(21)

Article outline

Figures and Tables

Figures(12)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog