Research article Special Issues

Existence of solutions by fixed point theorem of general delay fractional differential equation with $ p $-Laplacian operator

  • Received: 07 October 2022 Revised: 02 February 2023 Accepted: 06 February 2023 Published: 24 February 2023
  • MSC : 45ND5, 34BB2, 26A33

  • In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear fractional differential equation (FDE) with fractional differential and fractional integral boundary conditions utilizing $ \phi_p $-Laplacian operator. To continue, we will apply Green's function to determine the suggested FDE's equivalent integral form. The Guo-Krasnosel'skii fixed point theorem and the properties of the $ p $-Laplacian operator are utilized to derive the existence results. Hyers-Ulam (HU) stability is additionally evaluated. Further, an application is presented to validate the effectiveness of the result.

    Citation: Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad. Existence of solutions by fixed point theorem of general delay fractional differential equation with $ p $-Laplacian operator[J]. AIMS Mathematics, 2023, 8(5): 10160-10176. doi: 10.3934/math.2023514

    Related Papers:

  • In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear fractional differential equation (FDE) with fractional differential and fractional integral boundary conditions utilizing $ \phi_p $-Laplacian operator. To continue, we will apply Green's function to determine the suggested FDE's equivalent integral form. The Guo-Krasnosel'skii fixed point theorem and the properties of the $ p $-Laplacian operator are utilized to derive the existence results. Hyers-Ulam (HU) stability is additionally evaluated. Further, an application is presented to validate the effectiveness of the result.



    加载中


    [1] I. Podlubny, Fractional differential equations, Academic Press, 1998.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 2006.
    [3] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus, Springer 2007. https://doi.org/10.1007/978-1-4020-6042-7
    [4] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, 2010. https://doi.org/10.1142/p614
    [5] J. F. Gómez-Aguila, A. Atangana, Fractional Hunter-Saxton equation involving partial operators with bi-order in Riemann-Liouville and Liouville-Caputo sense, Eur. Phys. J. Plus, 132 (2017) 100. https://doi.org/10.1140/epjp/i2017-11371-6 doi: 10.1140/epjp/i2017-11371-6
    [6] S. W. Vong, Positive solutions of singular fractional differential equations with integral boundary conditions, Math. Comput. Modell., 57 (2013), 1053–1059. https://doi.org/10.1016/j.mcm.2012.06.024 doi: 10.1016/j.mcm.2012.06.024
    [7] K. M. Saad, M. M. Khader, J. F. Gómez-Aguilar, D. Baleanu, Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods, Chaos Int. J. Nonlinear Sci., 29 (2019), 023116. https://doi.org/10.1063/1.5086771 doi: 10.1063/1.5086771
    [8] T. A. Maraaba, F. Jarad, D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A, 51 (2008), 1775–1786. https://doi.org/10.1007/s11425-008-0068-1 doi: 10.1007/s11425-008-0068-1
    [9] T. Abdeljawad, J. Alzabut, On Riemann-Liouville fractional $q$-difference equations and their application to retarded logistic type model, Math. Meth. Appl. Sci., 41 (2018), 8953–8962. https://doi.org/10.1002/mma.4743 doi: 10.1002/mma.4743
    [10] J. G. Liu, X. J. Yang, Y. Y. Feng, On integrability of the time fractional nonlinear heat conduction equation, J. Geom. Phys., 144 (2019), 190–198. https://doi.org/10.1016/j.geomphys.2019.06.004 doi: 10.1016/j.geomphys.2019.06.004
    [11] J. G. Liu, X. J. Yang, Y. Y. Feng, Analytical solutions of some integral fractional differential-difference equations, Mod. Phys. Lett. B, 34 (2020), 02050009. https://doi.org/10.1142/S0217984920500098 doi: 10.1142/S0217984920500098
    [12] H. Jafari, D. Baleanu, H. Khan, R. A. Khan, A. Khan, Existence criterion for the solutions of fractional order $p$-Laplacian boundary value problems, Boundary Value Probl., 2015 (2015), 164. https://doi.org/10.1186/s13661-015-0425-2 doi: 10.1186/s13661-015-0425-2
    [13] C. Bai, Existence and uniqueness of solutions for fractional boundary value problems with $p$-Laplacian operator, Adv. Differ. Equations, 2018 (2018), 135. https://doi.org/10.1186/s13662-017-1460-3 doi: 10.1186/s13662-017-1460-3
    [14] R. Yan, S. Sun, H. Lu, Y. Zhao, Existence of solutions for fractional differential equations with integral boundary conditions, Adv. Differ. Equations, 2014 (2014), 1–13. https://doi.org/10.1186/1687-1847-2014-25 doi: 10.1186/1687-1847-2014-25
    [15] Y. Li, Existence of positive solutions for fractional differential equation involving integral boundary conditions with $p$-Laplacian operator, Adv. Differ. Equations, 2017 (2017), 15. https://doi.org/10.1186/s13662-017-1172-8 doi: 10.1186/s13662-017-1172-8
    [16] T. Chen, W. B. Liu, Z. G. Hu, A boundary value problem for fractional differential equation with $p$-Laplacian operator at resonance, Nonlinear Anal., 75 (2012), 3210–3217. https://doi.org/10.1016/j.na.2011.12.020 doi: 10.1016/j.na.2011.12.020
    [17] J. J. Tan, M. Li, Solutions of fractional differential equations with $p$-Laplacian operator in Banach spaces, Boundary Value Probl., 2018 (2018), 15. https://doi.org/10.1186/s13661-018-0930-1 doi: 10.1186/s13661-018-0930-1
    [18] H. Lu, Z. Han, S. Sun, J. Liu, Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with $p$-Laplacian, Adv, Differ, Equations, 2013 (2013), 30. https://doi.org/10.1186/1687-1847-2013-30 doi: 10.1186/1687-1847-2013-30
    [19] H. Khan, F. Jarad, T. Abdeljawad, A. Khan, A singular ABC-fractional differential equation with $p$-Laplacian operator, Chaos Solitons Fract., 129 (2019), 56–61. https://doi.org/10.1016/j.chaos.2019.08.017 doi: 10.1016/j.chaos.2019.08.017
    [20] H. Khan, W. Chen, H. G. Sun, Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with $p$-Laplacian in Banach space, Math. Meth. Appl. Sci., 41 (2018), 3430–3440. https://doi.org/10.1002/mma.4835 doi: 10.1002/mma.4835
    [21] H. Khan, Y. Li, H. Suna, A. Khan, Existence of solution and Hyers-Ulam stability for a coupled system of fractional differential equations with $p$-Laplacian operator, Boundary Value Probl., 2017 (2017), 157. https://doi.org/10.1186/s13661-017-0878-6 doi: 10.1186/s13661-017-0878-6
    [22] H. Khan, C. Tunç, A. Khan, Green function's properties and existence theorem for nonlinear delay-fractional differential equations, Discrete Cont. Dyn. Syst., 13 (2020), 2475–2487. https://doi.org/10.3934/dcdss.2020139 doi: 10.3934/dcdss.2020139
    [23] R. Rizwan, A. Zada, X. Wang, Stability analysis of nonlinear implicit fractional Langevin equation with non instantaneous impulses, Adv. Differ. Equations, 2019 (2019), 85. https://doi.org/10.1186/s13662-019-1955-1 doi: 10.1186/s13662-019-1955-1
    [24] D. H. Hyers, On the stability of the linear functional equations, Proc. Natl. Acad. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [25] M. A. Krasnoselsky, Two remarks on the method of successive approximation, Usp. Mat. Nauk, 10 (1955), 123–127.
    [26] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, 2014.
    [27] A. Alkhazzan, P. Jiang, D. Baleanu, H. Khan, A. Khan, Stability and existence results for a class of nonlinear fractional differential equations with singularity, Math. Meth. Appl. Sci., 41 (2018), 9321–9334. https://doi.org/10.1002/mma.5263 doi: 10.1002/mma.5263
    [28] T. Maraaba, D. Baleanu, F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507. https://doi.org/10.1063/1.2970709 doi: 10.1063/1.2970709
    [29] A. Devi, A. Kumar, D. Baleanu, A. Khan, On stability analysis and existence of positive solutions for a general non-linear fractional differential equations, Adv. Differ. Equations, 2020 (2020), 300. https://doi.org/10.1186/s13662-020-02729-3 doi: 10.1186/s13662-020-02729-3
    [30] H. Khan, T. Abdeljawad, M. Aslam, R. A. Khan, A. Khan, Existence of positive solution and Hyers-Ulam stability for a nonlinear singular-delay-fractional differential equation, Adv. Differ. Equations, 2019 (2019), 104. https://doi.org/10.1186/s13662-019-2054-z doi: 10.1186/s13662-019-2054-z
    [31] M. Aslam, J. F. Gómez‐Aguilar, G. Ur-Rahman, R. Murtaza, Existence, uniqueness, and Hyers-Ulam stability of solutions to nonlinear $p$‐Laplacian singular delay fractional boundary value problems, Math. Meth. Appl. Sci., 2021. https://doi.org/10.1002/mma.7608 doi: 10.1002/mma.7608
    [32] H. Khan, W. Chen, H. Sun, Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with $p$‐Laplacian in Banach space, Math. Meth. Appl. Sci., 41 (2018), 3430–3440. https://doi.org/10.1002/mma.4835 doi: 10.1002/mma.4835
    [33] A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Meth. Appl. Sci., 40 (2017), 5502–5514. https://doi.org/10.1002/mma.4405 doi: 10.1002/mma.4405
    [34] A. Zada, S. Faisal, Y. Li, On the Hyers-Ulam stability of first-order impulsive delay differential equations, J. Funct. Spaces, 2016 (2016), 8164978. https://doi.org/10.1155/2016/8164978 doi: 10.1155/2016/8164978
    [35] M. Ahmad, A. Zada, J. Alzabut, Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with $p$-Laplacian, Adv. Differ. Equations, 2019 (2019), 436. https://doi.org/10.1186/s13662-019-2367-y doi: 10.1186/s13662-019-2367-y
    [36] A. Deep, Deepmala, C. Tunç, On the existence of solutions of some non-linear functional integral equations in Banach algebra with applications, Arab J. Basic Appl. Sci., 27 (2020), 279–286. https://doi.org/10.1080/25765299.2020.1796199 doi: 10.1080/25765299.2020.1796199
    [37] H. Khan, C. Tunç, A. Khan, Stability results and existence theorems for nonlinear delay-fractional differential equations with $\varphi^* _p $-operator, J. Appl. Anal. Comput., 10 (2020), 584–597. https://doi.org/10.11948/20180322 doi: 10.11948/20180322
    [38] M. Bohner, O. Tunç, C. Tunç, Qualitative analysis of Caputo fractional integro-differential equations with constant delays, Comput. Appl. Math., 40 (2021), 214. https://doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
    [39] H. V. S. Chauhan, B. Singh, C. Tunç, On the existence of solutions of non-linear 2D Volterra integral equations in a Banach space, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 116 (2022), 101. https://doi.org/10.1007/s13398-022-01246-0 doi: 10.1007/s13398-022-01246-0
    [40] A. Nazir, G. Rahman, A. Ali, S. Naheed, K. S. Nisar, W. Albalawi, On generalized fractional integral with multivariate Mittag-Leffler function and its applications, Alex. Eng. J., 61 (2022), 9187–9201. https://doi.org/10.1016/j.aej.2022.02.044 doi: 10.1016/j.aej.2022.02.044
    [41] A. Hussain, G. Rahman, J. A. Younis, M. Samraiz, M. Iqbal, Fractional integral inequalities concerning extended Bessel function in the Kernel, J. Math., 2021. https://doi.org/10.1155/2021/7325102 doi: 10.1155/2021/7325102
    [42] H. Waheed, A. Zada, R. Rizwan, I. L. Popa, Hyers-Ulam stability for a coupled system of fractional differential equation with $p$-Laplacian operator having integral boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 92. https://doi.org/10.1007/s12346-022-00624-8 doi: 10.1007/s12346-022-00624-8
    [43] K. Mahreen, Q. T. Ain, G. Rahman, B. Abdalla, K. Shah, T. Abdeljawad, Approximate solution for the nonlinear fractional order mathematical model, AIMS Math., 7 (2022), 19267–19286. https://doi.org/10.3934/math.20221057 doi: 10.3934/math.20221057
    [44] F. A. Rihan, Numerical modeling of fractional-order biological systems, Abstr. Appl. Anal., 2013 (2013), 816803. https://doi.org/10.1155/2013/816803 doi: 10.1155/2013/816803
    [45] F. A. Rihan, Computational methods for delay parabolic and time‐fractional partial differential equations, Numer. Meth. Part. Differ. Equations, 26 (2010), 1556–1571. https://doi.org/10.1002/num.20504 doi: 10.1002/num.20504
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1319) PDF downloads(121) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog