LTs | T-SPFNs |
Very suitable | 0.800, 0.100, 0.050 |
Suitable | 0.650, 0.150, 0.100 |
Medium suitable | 0.550, 0.200, 0.150 |
Un-suitable | 0.300, 0.300, 0.200 |
Very un-suitable | 0.100, 0.400, 0.400 |
T-spherical fuzzy sets (T-SPFSs) have gained popularity because of their ability to account for uncertainty more effectively and spanning a larger domain. The sum of the t-th power of membership grades in T-SPFSs is close to a unit interval, allowing for greater uncertainty. As a result, this set outperforms traditional fuzzy structures. The "multi-criteria decision-making" (MCDM) approach is a widely used technique that requires the use of some aggregation tools, and various such aggregation operators (AOs) have been developed over the years to achieve this purpose. The purpose of this paper is to propose some new operational laws and AOs for use in a T-spherical fuzzy environment. In this regard, we presented some new neutral or fair operational rules that combine the concept of proportional distribution to provide a neutral or fair solution to the membership, abstinence, and non-membership of T-spherical fuzzy numbers (T-SPFNs). Based on the obtained operational rules, we presented the "T-spherical fuzzy fairly weighted average operator" and the "T-spherical fuzzy fairly ordered weighted averaging operator". Compared to earlier methodologies, the proposed AOs provide more generalised, reliable, and accurate information. In addition, under T-SPFSs, an MCDM approach is developed employing suggested AOs with several decision-makers (DMs) and partial weight details. Finally, to demonstrate the applicability of the innovative technique, we give an actual case study of "food waste treatment technology" (FWTT) selection under T-SPFSs scenarios. A comparison with an existing model has also been undertaken to confirm the validity and robustness of the acquired results.
Citation: Hafiz Muhammad Athar Farid, Muhammad Riaz, Gustavo Santos Garcia. T-spherical fuzzy information aggregation with multi-criteria decision-making[J]. AIMS Mathematics, 2023, 8(5): 10113-10145. doi: 10.3934/math.2023512
[1] | Muhammad Naeem, Aziz Khan, Shahzaib Ashraf, Saleem Abdullah, Muhammad Ayaz, Nejib Ghanmi . A novel decision making technique based on spherical hesitant fuzzy Yager aggregation information: application to treat Parkinson's disease. AIMS Mathematics, 2022, 7(2): 1678-1706. doi: 10.3934/math.2022097 |
[2] | Muhammad Qiyas, Muhammad Naeem, Saleem Abdullah, Neelam Khan . Decision support system based on complex T-Spherical fuzzy power aggregation operators. AIMS Mathematics, 2022, 7(9): 16171-16207. doi: 10.3934/math.2022884 |
[3] | Muhammad Akram, Sumera Naz, Feng Feng, Ghada Ali, Aqsa Shafiq . Extended MABAC method based on 2-tuple linguistic T-spherical fuzzy sets and Heronian mean operators: An application to alternative fuel selection. AIMS Mathematics, 2023, 8(5): 10619-10653. doi: 10.3934/math.2023539 |
[4] | Muhammad Naeem, Muhammad Qiyas, Lazim Abdullah, Neelam Khan, Salman Khan . Spherical fuzzy rough Hamacher aggregation operators and their application in decision making problem. AIMS Mathematics, 2023, 8(7): 17112-17141. doi: 10.3934/math.2023874 |
[5] | Ashraf Al-Quran . T-spherical linear Diophantine fuzzy aggregation operators for multiple attribute decision-making. AIMS Mathematics, 2023, 8(5): 12257-12286. doi: 10.3934/math.2023618 |
[6] | Muhammad Ali Khan, Saleem Abdullah, Alaa O. Almagrabi . Analysis of deep learning technique using a complex spherical fuzzy rough decision support model. AIMS Mathematics, 2023, 8(10): 23372-23402. doi: 10.3934/math.20231188 |
[7] | Muhammad Qiyas, Muhammad Naeem, Neelam Khan . Fractional orthotriple fuzzy Choquet-Frank aggregation operators and their application in optimal selection for EEG of depression patients. AIMS Mathematics, 2023, 8(3): 6323-6355. doi: 10.3934/math.2023320 |
[8] | Khawlah Alhulwah, Muhammad Azeem, Mehwish Sarfraz, Nasreen Almohanna, Ali Ahmad . Prioritized aggregation operators for Schweizer-Sklar multi-attribute decision-making for complex spherical fuzzy information in mobile e-tourism applications. AIMS Mathematics, 2024, 9(12): 34753-34784. doi: 10.3934/math.20241655 |
[9] | Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki, Fawad Hussain . q-Spherical fuzzy rough sets and their usage in multi-attribute decision-making problems. AIMS Mathematics, 2023, 8(4): 8210-8248. doi: 10.3934/math.2023415 |
[10] | Shahid Hussain Gurmani, Zhao Zhang, Rana Muhammad Zulqarnain . An integrated group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information and its application to the selection of cloud storage provider. AIMS Mathematics, 2023, 8(9): 20223-20253. doi: 10.3934/math.20231031 |
T-spherical fuzzy sets (T-SPFSs) have gained popularity because of their ability to account for uncertainty more effectively and spanning a larger domain. The sum of the t-th power of membership grades in T-SPFSs is close to a unit interval, allowing for greater uncertainty. As a result, this set outperforms traditional fuzzy structures. The "multi-criteria decision-making" (MCDM) approach is a widely used technique that requires the use of some aggregation tools, and various such aggregation operators (AOs) have been developed over the years to achieve this purpose. The purpose of this paper is to propose some new operational laws and AOs for use in a T-spherical fuzzy environment. In this regard, we presented some new neutral or fair operational rules that combine the concept of proportional distribution to provide a neutral or fair solution to the membership, abstinence, and non-membership of T-spherical fuzzy numbers (T-SPFNs). Based on the obtained operational rules, we presented the "T-spherical fuzzy fairly weighted average operator" and the "T-spherical fuzzy fairly ordered weighted averaging operator". Compared to earlier methodologies, the proposed AOs provide more generalised, reliable, and accurate information. In addition, under T-SPFSs, an MCDM approach is developed employing suggested AOs with several decision-makers (DMs) and partial weight details. Finally, to demonstrate the applicability of the innovative technique, we give an actual case study of "food waste treatment technology" (FWTT) selection under T-SPFSs scenarios. A comparison with an existing model has also been undertaken to confirm the validity and robustness of the acquired results.
In practise, as a system becomes more sophisticated, it becomes more difficult for DMs to determine the best choice from a collection of feasible possibilities. It is challenging to convey how tough it is to achieve a single objective, yet it is not unattainable. Numerous organisations wrestled with the complexity of motivating employees, achievement, and worldview development. As a result, organizational choices, whether made by people or committees, include a number of concurrent objectives. Using optionally solved criteria, each DM should be confined to producing the optimal solution for each practical implication in actual issues. As a result, the decision maker is more concerned with developing more realistic and reliable methods for finding the best options.
MCDM is a widely used intellectual process. Its key feature is to help DMs choose the best possibility out of a limited number of choices by using their expert assessment. To solve these kinds of complications, Zadeh [1] was the first person to come up with the concept of "fuzzy set" (FS), which is a mathematical framework for expressing imprecision. Atanasov [2] took this unique initiative of FS and turned it into the theory of "intuitionistic fuzzy sets" (IFS). It is essential to remember that FS can be described in aspects of "membership functionalities" and IFS can be described in aspects of both "membership and non-membership functionalities". IFSs have been utilized a lot to solve big complications, but there are some situations that they can't handle. Assume that when it comes to voting, the human perspective contains more answers like "yes", "no", "don't know", and "refuse" that traditional FS and IFS can't fully represent. Cuong [3,4] intoduced the idea of "picture fuzzy set" (PFS) to fix these issues.
Cuong and Hai [5] defined some basics for PFSs. Cuong [6] examined many technique for evaluating the distance between PFSs. Wei et al. introduced the "projection model" [8], "generalized dice similarity measures" [9] and "similarity measures" [10] for PFS. Singh [11] proposed some "correlation coefficients" and Son [12] defined "distributed picture fuzzy clustering method" for PFSs. Riaz et al. [13] revised several fundamental PFS operations. Phong et al. [7] investigated several PF-relation setups.
In recent eras, there has been a focus on the synthesis of knowledge and improved AOs. The effectiveness and limits of AOs are now a fundamental component of selection. It is evident that AO provides many principles for combining a finite set of fuzzy values into a single fuzzy value. Data analysis is crucial in the selection, business, medical, architecture, and surveillance domains. On PFSs, several AOs have been established in terms of their roles and operating regulations. Garg [14] advocated several averaging AOs for PFNs. Wei [15] and Jana et al. [15] introduced the notion of "Hamacher AOs", whereas Jana et al. [16] recommended "Dombi AOs" for PFNs. Tian et al. [17] gave the notion of "picture fuzzy power Choquet ordered geometric AOs" & "power shapley Choquet ordered AOs". Wang et al. [18] offered the selection of a hotel energy performance conversion project under PFSs. Wang et al. [19] proposed "Muirhead mean AOs" for PFNs.
Li et al. [20] introduced the unique concept of broadly applied, simplified neutrosophic Einstein AOs. Modified Einstein interacting geometric AOs for "q-rung orthopair fuzzy numbers" were provided by Farid & Riaz [23]. Many AOs for "linear diophantine fuzzy numbers" are given in [21,22]. Ashraf et al. suggested a distance metric for fuzzy collections of cubic picture fuzzy set [24,25]. Saha et al. [26,27] provided the novel hybrid weighted AOs for some extensions of fuzzy. Wei and Zhang [28] selected important providers using single-valued neutrosophic Bonferroni power AOs. Some extra-ordinary work related to proposed work is given in [29,30,31,32]. Cao et al. [33] proposed decision-making method for power grid enterprizes. Liu et al. [34] introduced detection approach for thermal defects.
In everyday reality, we may meet many scenarios that cannot be addressed by PFS, including when the sum of PMD, NuMD and NgMD > 1. In just such a case, PFS has been unable to deliver an appropriate conclusion. In [35,36] authors proposed the idea of "spherical fuzzy sets" (SFSs) independently in their articles. Mahmood et al. [37] defined T-SPFSs as an extension of SFSs. In T-SPFSs, the sum of the t-th power of membership grades is close to a unit interval, providing for higher uncertainty. As a result, this set outperforms conventional fuzzy structures. Munir et al. [38] developed the Einstein hybrid AOs for T-SPFSs with applications to MCDM. Zeng et al. [39] defined some Einstein interactive AOs for T-SPFSs with application to selection of photovoltaic cells. Liu et al. [40] proposed novel power Muirhead mean AOs for T-SPFSs. Kifayat-Ullah et al. [41] gave the notion of T-SPF Hamacher AOs with MCDM. Khan et al. [42] introduced the Schweizer-Sklar power Heronian mean AOs in the domain of T-SPFSs. More work related to MCDM is given in [43,44,45]. Some work related to AOs and graph structures can be seen in [46,47]. Feng et al. [48] proposed some novel score functions related to orthopair fuzzy set. Senapati and Yager proposed "Fermatean fuzzy set" as the extension of IFS [49]. Smarandache proposed a novel idea of "neutrosophic set" [50,51].
In literature many AOs [37,38,40,41] are there to solve MCDM problem in the framework of T-SPF, one can see the unbiased nature of aggregation process while dealing equal "membership degree" (MSD), "abstinence degree" (AD) and "non-membership degree" (N-MSD). For example, in the scenario where a DM directs a comparison work to all MSD, AD, and N-MSD, the values acquired by AOs which previously existent in the literature cannot be distinguished [37,38,40,41]. This indicates that the ultimate conclusion is unquestionably biassed. Consequently, several new procedures are necessary to handle MSD, AD, and N-MSD properly and to ensure the fair or neutral operation of T-SPFN. To attain actual satisfaction while assessing positive, abstinence, and negative membership, we provide two neutral or fair procedures based on the notion of proportionate distribution constraints for all functions.
The "Fermatean fuzzy Heronian mean" AOs and the "method based on the removal effects of criteria" (MEREC) approach were suggested by Rani et al. [52] with applications towards the selection of FWTT. Through the use of a spherical fuzzy technique, Buyuk and Temur [53] presented a new method for selecting treatment options for food waste. Rani et al. [54] was the one who came up with the idea of employing a single-valued neutrosophic framework to identify the best treatment procedure for multi-criteria food waste. Chen et al. [55] suggested a hybrid fuzzy evaluation approach for the purpose of safely evaluating food waste as a feed ingredient, with the method being based on entropy methods. The synthesis of the waste-water treatment process and the selection of suppliers were both introduced by Ho et al. [56] using fuzzy techniques.
This format is maintained for the rest of the article. In the second part, we will go through the fundamental notions of T-SPFS. In Section 3, we looked at a few different T-SPFN approaches. The appropriate AOs for T-SPFNs are provided in Section 4. In Section 5, an MCDM framework is shown for the suggested AOs, and in Section 6, a numerically comprehensive test case is provided. The most important conclusions from the research are discussed in the seventh part.
Some key principles connected with T-SPFSs have just been addressed in this portion of the manuscript.
Definition 2.1. [37] A "T-spherical fuzzy set" (T-SPFS) in X is defined as
χ={⟨˘⋎,ℷμχ(˘⋎),ℷνχ(˘⋎),ℷτχ(˘⋎)|˘⋎∈X⟩} | (2.1) |
where ℷμχ(˘⋎),ℷνχ(˘⋎),ℷτχ(˘⋎)∈[0,1], such that 0≤ℷμtχ(˘⋎)+ℷνtχ(˘⋎)+ℷτtχ(˘⋎)≤1 for all ˘⋎∈X. ℷμχ(˘⋎),ℷνχ(˘⋎),ℷτχ(˘⋎) denote "membership degree (MSD), abstinence degree (AD) and non-membership degree (N-MSD)" respectively for some ˘⋎∈X.
we denote this pair as ℶ=(ℷμℶ,ℷνℶ,ℷτℶ), throughout this article, and called as T-SPFN with the conditions ℷμℶ,ℷνℶ,ℷτℶ∈[0,1] and ℷμtℶ+ℷνtℶ+ℷτtℶ≤1.
Definition 2.2. [37] When implementing T-SPFNs to actual situations, it is crucial to categorize them. For this, "score function" (SF) corresponding to T-SPFN ℶ=(ℷμℶ,ℷνℶ,ℷτℶ) be defined as
S(ℶ)=ℷμtℶ−ℷτtℶ. | (2.2) |
In many instances, however, the aforesaid function is inadequate of categorizing T-SPFNs under various settings, making it difficult to tell which is better. This is accomplished by defining an "accuracy function" H of ℶ as
˘Θζ(ℶ)=ℷμtℶ+ℷνtℶ+ℷτtℶ. | (2.3) |
We shall provide operational principles for aggregating T-SPFNs.
Definition 2.3. [40] Let ℶ1=⟨ℷμ1,ℷν1,ℷτ1⟩ and ℶ2=⟨ℷμ2,ℷν2,ℷτ2⟩ be two T-SPFNs, then
ℶc1=⟨ℷτ1,ℷν1,ℷμ1⟩ | (2.4) |
ℶ1∨ℶ2=⟨max{ℷμ1,ℷμ2},min{ℷν1,ℷν2},min{ℷτ1,ℷτ2}⟩ | (2.5) |
ℶ1∧ℶ2=⟨min{ℷμ1,ℷμ2},max{ℷν1,ℷν2},max{ℷτ1,ℷτ2}⟩ | (2.6) |
ℶ1⊕ℶ2=⟨t√ℷμt1+ℷμt2−ℷμt1ℷμt2,ℷν1ℷν2,ℷτ1ℷτ2⟩ | (2.7) |
ℶ1⊗ℶ2=⟨ℷμ1ℷμ2,t√ℷνt1+ℷνt2−ℷνt1ℷνt2,t√ℷτt1+ℷτt2−ℷτt1ℷτt2⟩ | (2.8) |
σℶ1=⟨t√1−(1−ℷμt1)σ,ℷνσ1,ℷτσ1⟩ | (2.9) |
ℶσ1=⟨ℷμσ1,t√1−(1−ℷνt1)σ,t√1−(1−ℷτt1)σ⟩. | (2.10) |
Definition 2.4. Let ℶ1=⟨ℷμ1,ℷν1,ℷτ1⟩ and ℶ2=⟨ℷμ2,ℷν2,ℷτ2⟩ be two T-SPFNs and Yγ,Yγ1,Yγ2>0 be the real numbers, then we have
(1) ℶ1⊕ℶ2=ℶ2⊕ℶ1
(2) ℶ1⊗ℶ2=ℶ2⊗ℶ1
(3) Yγ(ℶ1⊕ℶ2)=(Yγℶ1)⊕(Yγℶ2)
(4) (ℶ1⊗ℶ2)Yγ=ℶYγ1⊗ℶYγ2
(5) (Yγ1+Yγ2)ℶ1=(Yγ1ℶ1)⊕(Yγ2ℶ2)
(6) ℶYγ1+Yγ21=ℶYγ11⊗ℶYγ22.
If ℷμℶ1=ℷνℶ1 and ℷμℶ2=ℷνℶ2 then from Definition 2.3 we get, ℷμℶ1⊕ℶ2≠ℷνℶ1⊕ℶ2,ℷμℶ1⊗ℶ2≠ℷνℶ1⊗ℶ2,ℷμYγℶ1≠ℷνYγℶ1,ℷμℶYγ1≠ℷνℶYγ1. Thus none of the operations ℶ1⊕ℶ2,ℶ1⊗ℶ2,Yγℶ1,ℶYγ1 found to be neutral or fair indeed. Consequently, our focus must first be on developing fair operations amongst T-SPFNs.
In this part, we construct several basic operations involving T-SPFNs and investigate their fundamental features.
Definition 3.1. Consider ℶ1=⟨ℷμℶ1,ℷνℶ1,ℷτℶ1⟩ and ℶ2=⟨ℷμℶ2,ℷνℶ2,ℷτℶ2⟩ be the two T-SPFNs and Yγ>0. Then we define
ℶ1˜⊕ℶ2=(t√(ℷμtℶ1ℷμtℶ2ℷμtℶ1ℷμtℶ2+ℷνtℶ1ℷνtℶ2+ℷτtℶ1ℷτtℶ2)×(1−(1−ℷμtℶ1−ℷνtℶ1−ℷτtℶ1)(1−ℷμtℶ2−ℷνtℶ2−ℷτtℶ2)),t√(ℷνtℶ1ℷνtℶ2ℷμtℶ1ℷμtℶ2+ℷνtℶ1ℷνtℶ2+ℷτtℶ1ℷτtℶ2)×(1−(1−ℷμtℶ1−ℷνtℶ1−ℷτtℶ1)(1−ℷμtℶ2−ℷνtℶ2−ℷτtℶ2)),t√(ℷτtℶ1ℷτtℶ2ℷμtℶ1ℷμtℶ2+ℷνtℶ1ℷνtℶ2+ℷτtℶ1ℷτtℶ2)×(1−(1−ℷμtℶ1−ℷνtℶ1−ℷτtℶ1)(1−ℷμtℶ2−ℷνtℶ2−ℷτtℶ2))) |
Yγ∗ℶ1=(t√(ℷμtYγℶ1ℷμtYγℶ1+ℷνtYγℶ1+ℷτtYγℶ1)×(1−(1−ℷμtℶ1−ℷνtℶ1−ℷτtℶ1)Yγ),t√(ℷνtYγℶ1ℷμtYγℶ1+ℷνtYγℶ1+ℷτtYγℶ1)×(1−(1−ℷμtℶ1−ℷνtℶ1−ℷτtℶ1)Yγ),t√(ℷτtYγℶ1ℷμtYγℶ1+ℷνtYγℶ1+ℷτtYγℶ1)×(1−(1−ℷμtℶ1−ℷνtℶ1−ℷτtℶ1)Yγ)). |
It can be easily verified that ℶ1˜⊕ℶ2,Yγ∗ℶ1 are the T-SPFNs.
Theorem 3.2. Consider ℶ1=<ℷμℶ1,ℷνℶ1,ℷτℶ1> and ℶ2=<ℷμℶ2,ℷνℶ2,ℷτℶ2> are the T-SPFNs. If ℷμℶ1=ℷνℶ1, ℷμℶ2=ℷνℶ2 and ℷτℶ2=ℷτℶ2 then we have
(i) ℷμℶ1˜⊕ℶ2=ℷνℶ1˜⊕ℶ2=ℷτℶ1˜⊕ℶ2.
(ii) ℷμYγ∗ℶ1=ℷνYγ∗ℶ1=ℷτYγ∗ℶ1.
Proof. (ⅰ) As given ℷμℵ1=ℷνℵ1, ℷμℵ2=ℷνℵ2 and ℷτℵ2=ℷτℵ2
ℷμℵ1˜⊕ℵ2ℷνℵ1˜⊕ℵ2=t√(ℷμtℵ1ℷμtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2))t√(ℷνtℵ1ℷνtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2))=1 |
and
ℷνℵ1˜⊕ℵ2ℷτℵ1˜⊕ℵ2=t√(ℷνtℵ1ℷνtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2))t√(ℷτtℵ1ℷτtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2))=1. |
Consequently, ℷμℵ1˜⊕ℵ2=ℷνℵ1˜⊕ℵ2=ℷτℵ1˜⊕ℵ2. If ℷμℵ1=ℷνℵ1, ℷμℵ2=ℷνℵ2 and ℷτℵ2=ℷτℵ2.
(ⅱ)
ℷμYγ∗ℵ1ℷνYγ∗ℵ1=t√(ℷμtYγℵ1ℷμtYγℵ1+ℷνtYγℵ1+ℷτtYγℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)Yγ)t√(ℷνtYγℵ1ℷμtYγℵ1+ℷνtYγℵ1+ℷτtYγℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)Yγ)=1 |
and
ℷνYγ∗ℵ1ℷτYγ∗ℵ1=t√(ℷνtYγℵ1ℷμtYγℵ1+ℷνtYγℵ1+ℷτtYγℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)Yγ)t√(ℷτtYγℵ1ℷμtYγℵ1+ℷνtYγℵ1+ℷτtYγℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)Yγ)=1. |
Consequently, ℷμYγ∗ℵ1=ℷνYγ∗ℵ1=ℷτYγ∗ℵ1. If ℷμℵ1=ℷνℵ1, ℷμℵ2=ℷνℵ2 and ℷτℵ2=ℷτℵ2.
This theorem reveled that the operations ℶ1˜⊕ℶ2,Yγ∗ℶ1 show the fairly or neutral nature to the DMs, when MSD, AD and N-MSD are equal initially. This is why we call the operations ˜⨁, * fairly operations.
Theorem 3.3. Consider ℶ1=<ℷμℶ1,ℷνℶ1,ℷτℶ1> and ℶ2=<ℷμℶ2,ℷνℶ2,ℷτℶ2> are the T-SPFNs and ℧,℧1 and ℧2 are any three real numbers, then we have
(i) ℶ1˜⊕ℶ2=ℶ2˜⊕ℶ1
(ii) ℧∗(ℶ1˜⊕ℶ2)=(℧∗ℶ1)˜⊕(℧∗ℶ2)
(iii) (℧1+℧2)∗ℶ1=(℧1∗ℶ1)˜⊕(℧2∗ℶ1).
Proof. (ⅰ) This one is trivial.
(ⅱ) ℧∗(ℵ1˜⊕ℵ2)
=(t√(ℷμtℵ1ℷμtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧(ℷμtℵ1ℷμtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧+(ℷνtℵ1ℷνtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧+(ℷτtℵ1ℷτtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧×(1−(1−(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)))℧),t√(ℷνtℵ1ℷνtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧(ℷμtℵ1ℷμtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧+(ℷνtℵ1ℷνtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧+(ℷτtℵ1ℷτtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧×(1−(1−(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)))℧),t√(ℷτtℵ1ℷτtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧(ℷμtℵ1ℷμtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧+(ℷνtℵ1ℷνtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧+(ℷτtℵ1ℷτtℵ2ℷμtℵ1ℷμtℵ2+ℷνtℵ1ℷνtℵ2+ℷτtℵ1ℷτtℵ2)℧×(1−(1−(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)))℧)) |
=(t√ℷμt℧ℵ1ℷμt℧ℵ2ℷμt℧ℵ1ℷμt℧ℵ2+ℷνt℧ℵ1ℷνt℧ℵ2+ℷτt℧ℵ1ℷτt℧ℵ2(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧),t√ℷνt℧ℵ1ℷνt℧ℵ2ℷμt℧ℵ1ℷμt℧ℵ2+ℷνt℧ℵ1ℷνt℧ℵ2+ℷτt℧ℵ1ℷτt℧ℵ2(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧),t√ℷτt℧ℵ1ℷτt℧ℵ2ℷμt℧ℵ1ℷμt℧ℵ2+ℷνt℧ℵ1ℷνt℧ℵ2+ℷτt℧ℵ1ℷτt℧ℵ2(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧),) |
and
(℧∗ℵ1)˜⊕(℧∗ℵ2)=(t√(ℷμt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧),t√(ℷνt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧),t√(ℷτt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧)˜⊕t√(ℷμt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2)×(1−(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧),t√(ℷνt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2)×(1−(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧),t√(ℷτt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2)×(1−(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧))=(t√ℷμt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷμt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2ℷμt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷμt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2+ℷνt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷνt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2+ℷτt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷτt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2×(1−(1−(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧))×(1−(1−(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧))),t√ℷνt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷνt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2ℷμt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷμt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2+ℷνt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷνt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2+ℷτt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷτt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2×(1−(1−(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧))×(1−(1−(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧))),t√ℷτt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷτt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2ℷμt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷμt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2+ℷνt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷνt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2+ℷτt℧ℵ1ℷμt℧ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1×ℷτt℧ℵ2ℷμt℧ℵ2+ℷνt℧ℵ2+ℷτt℧ℵ2×(1−(1−(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧))×(1−(1−(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧)))) |
=(t√ℷμt℧ℵ1ℷμt℧ℵ2ℷμt℧ℵ1ℷμt℧ℵ2+ℷνt℧ℵ1ℷνt℧ℵ2+ℷτt℧ℵ1ℷτt℧ℵ2(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧),t√ℷνt℧ℵ1ℷνt℧ℵ2ℷμt℧ℵ1ℷμt℧ℵ2+ℷνt℧ℵ1ℷνt℧ℵ2+ℷτt℧ℵ1ℷτt℧ℵ2(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧),t√ℷτt℧ℵ1ℷτt℧ℵ2ℷμt℧ℵ1ℷμt℧ℵ2+ℷνt℧ℵ1ℷνt℧ℵ2+ℷτt℧ℵ1ℷτt℧ℵ2(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧(1−ℷμtℵ2−ℷνtℵ2−ℷτtℵ2)℧)). |
Hence, ℧∗(ℵ1˜⊕ℵ2)=(℧∗ℵ1)˜⊕(℧∗ℵ2).
(ⅲ) (℧1∗ℵ1)˜⊕(℧2∗ℵ1)
=(t√(ℷμt℧1ℵ1ℷμt℧1ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧1),t√(ℷνt℧1ℵ1ℷμt℧1ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧1),t√(ℷτt℧1ℵ1ℷμt℧1ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧1)⟩˜⊕t√⟨(ℷμt℧2ℵ1ℷμt℧2ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧2),t√(ℷνt℧2ℵ1ℷμt℧2ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧2),t√(ℷτt℧2ℵ1ℷμt℧2ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧2)) |
=(t√(ℷμt℧1+℧2ℵ1ℷμt℧1+℧2ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧1+℧2),t√(ℷνt℧1+℧2ℵ1ℷμt℧1+℧2ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧1+℧2),t√(ℷτt℧1+℧2ℵ1ℷμt℧1+℧2ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧1+℧2)) |
and
(℧1+℧2)∗ℵ1=(t√(ℷμt℧1+℧2ℵ1ℷμt℧1+℧2ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧1+℧2),t√(ℷνt℧1+℧2ℵ1ℷμt℧1+℧2ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧1+℧2),t√(ℷτt℧1+℧2ℵ1ℷμt℧1+℧2ℵ1+ℷνt℧ℵ1+ℷτt℧ℵ1)×(1−(1−ℷμtℵ1−ℷνtℵ1−ℷτtℵ1)℧1+℧2)). |
Hence, (℧1+℧2)∗ℵ1=(℧1∗ℵ1)˜⊕(℧2∗ℵ1).
This section addresses the evolution of fair AOs for T-SPFNs and their respective properties.
Definition 4.1. Let ℶh=⟨ℷμh,ℷνh,ℷτh⟩ be the jumble of T-SPFNs, and T-SPFFWA: Rn→R, be the mapping. If
T-SPFFWA(ℶ1,ℶ2,…ℶe)=(ℸ1∗ℶ1˜⊕ℸ2∗ℶ2˜⊕…,˜⊕ℸe∗ℶe) | (4.1) |
then the mapping T-SPFFWA is called "T-spherical fuzzy fairly weighted averaging (T-SPFFWA) operator", here ℸi is the "weight vector" (WV) of ℶi with ℸi>0 and ∑ei=1ℸi=1.
We may also investigate T-SPFFWA using proposed operational rules, as demonstrated in the theorem that follows.
Theorem 4.2. Let ℶh=⟨ℷμh,ℷνh,ℷτh⟩ be the jumble of T-SPFNs, we can also find T-SPFFWA by
T-SPFFWA(ℶ1,ℶ2,…,ℶe)=(t√∏ei=1(ℷμti)ℸi∏ei=1(ℷμti)ℸi+∏ei=1(ℷνti)ℸi+∏ei=1(ℷτti)ℸi×(1−∏ei=1(1−ℷμti−ℷνti−ℷτti)ℸi),t√∏ei=1(ℷνti)ℸi∏ei=1(ℷμti)ℸi+∏ei=1(ℷνti)ℸi+∏ei=1(ℷτti)ℸi×(1−∏ei=1(1−ℷμti−ℷνti−ℷτti)ℸi),t√∏ei=1(ℷτti)ℸi∏ei=1(ℷμti)ℸi+∏ei=1(ℷνti)ℸi+∏ei=1(ℷτti)ℸi×(1−∏ei=1(1−ℷμti−ℷνti−ℷτti)ℸi)) |
where ℸi is the WV of ℶi with ℸi>0 and ∑ei=1ℸi=1.
Proof. We will start this prove using mathematical induction.
For e=1, we have ℵ1=⟨ℷμ1,ℷν1,ℷτ1⟩ and ℸ=1.
T-SPFFWA(ℵ1)=ℸ1∗ℵ1=(t√(ℷμt1)ℸ1(ℷμt1)ℸ1+(ℷνt1)ℸ1+(ℷτt1)ℸ1×(1−(1−ℷμt1−ℷνt1−ℷτt1)ℸ1),t√(ℷνt1)ℸ1(ℷμt1)ℸ1+(ℷνt1)ℸ1+(ℷτt1)ℸ1×(1−(1−ℷμt1−ℷνt1−ℷτt1)ℸ1),t√(ℷτt1)ℸ1(ℷμt1)ℸ1+(ℷνt1)ℸ1+(ℷτt1)ℸ1×(1−(1−ℷμt1−ℷνt1−ℷτt1)ℸ1)). |
Theorem is valid for e=1, now we consider this is valid for e=g, i.e.,
T-SPFFWA(ℵ1,ℵ2,…,ℵg)=(t√∏gi=1(ℷμti)ℸi∏gi=1(ℷμti)ℸi+∏gi=1(ℷνti)ℸi+∏gi=1(ℷτti)ℸi×(1−∏gi=1(1−ℷμti−ℷνti−ℷτti)ℸi),t√∏gi=1(ℷνti)ℸi∏gi=1(ℷμti)ℸi+∏gi=1(ℷνti)ℸi+∏gi=1(ℷτti)ℸi×(1−∏gi=1(1−ℷμti−ℷνti−ℷτti)ℸi),t√∏gi=1(ℷτti)ℸi∏gi=1(ℷμti)ℸi+∏gi=1(ℷνti)ℸi+∏gi=1(ℷτti)ℸi×(1−∏gi=1(1−ℷμti−ℷνti−ℷτti)ℸi)). |
We will prove for e=g+1.
T-SPFFWA(ℵ1,ℵ2,…,ℵg+1) = T-SPFFWA(ℵ1,ℵ2,…,ℵg)˜⊕(ℸg+1∗ℵg+1)
=(t√∏gi=1(ℷμti)ℸi∏gi=1(ℷμti)ℸi+∏gi=1(ℷνti)ℸi+∏gi=1(ℷτti)ℸi×(1−∏gi=1(1−ℷμti−ℷνti−ℷτti)ℸi),t√∏gi=1(ℷνti)ℸi∏gi=1(ℷμti)ℸi+∏gi=1(ℷνti)ℸi+∏gi=1(ℷτti)ℸi×(1−∏gi=1(1−ℷμti−ℷνti−ℷτti)ℸi),t√∏gi=1(ℷτti)ℸi∏gi=1(ℷμti)ℸi+∏gi=1(ℷνti)ℸi+∏gi=1(ℷτti)ℸi×(1−∏gi=1(1−ℷμti−ℷνti−ℷτti)ℸi))˜⊕(t√(ℷμtℸg+1ℵg+1ℷμtℸg+1ℵg+1+ℷνtℸg+1ℵg+1+ℷτtℸg+1ℵg+1)×(1−(1−ℷμtℵg+1−ℷνtℵg+1−ℷτtℵg+1)ℸg+1),t√(ℷνtℸg+1ℵg+1ℷμtℸg+1ℵg+1+ℷνtℸg+1ℵg+1+ℷτtℸg+1ℵg+1)×(1−(1−ℷμtℵg+1−ℷνtℵg+1−ℷτtℵg+1)ℸg+1),t√(ℷτtℸg+1ℵg+1ℷμtℸg+1ℵg+1+ℷνtℸg+1ℵg+1+ℷτtℸg+1ℵg+1)×(1−(1−ℷμtℵg+1−ℷνtℵg+1−ℷτtℵg+1)ℸg+1)) |
=(t√∏gi=1(ℷμti)ℸi×(ℷμtg+1)ℸg+1∏gi=1(ℷμti)ℸi×(ℷμtg+1)ℸg+1+∏gi=1(ℷνti)ℸi×(ℷνtg+1)ℸg+1+∏gi=1(ℷτti)ℸi(ℷτtg+1)ℸg+1×(1−g∏i=1(1−ℷμti−ℷνti−ℷτti)ℸi×(1−ℷμtg+1−ℷνtg+1−ℷτtg+1)ℸg+1),t√∏gi=1(ℷνti)ℸi×(ℷνtg+1)ℸg+1∏gi=1(ℷμti)ℸi×(ℷμtg+1)ℸg+1+∏gi=1(ℷνti)ℸi×(ℷνtg+1)ℸg+1+∏gi=1(ℷτti)ℸi(ℷτtg+1)ℸg+1×(1−g∏i=1(1−ℷμti−ℷνti−ℷτti)ℸi×(1−ℷμtg+1−ℷνtg+1−ℷτtg+1)ℸg+1),t√∏gi=1(ℷτti)ℸi×(ℷτtg+1)ℸg+1∏gi=1(ℷμti)ℸi×(ℷμtg+1)ℸg+1+∏gi=1(ℷνti)ℸi×(ℷνtg+1)ℸg+1+∏gi=1(ℷτti)ℸi(ℷτtg+1)ℸg+1×(1−g∏i=1(1−ℷμti−ℷνti−ℷτti)ℸi×(1−ℷμtg+1−ℷνtg+1−ℷτtg+1)ℸg+1))=(t√∏g+1i=1(ℷμti)ℸi∏g+1i=1(ℷμti)ℸi+∏g+1i=1(ℷνti)ℸi+∏g+1i=1(ℷτti)ℸi×(1−g+1∏i=1(1−ℷμti−ℷνti−ℷτti)ℸi),t√g+1∏i=1(ℷνti)ℸi∏g+1i=1(ℷμti)ℸi+∏g+1i=1(ℷνti)ℸi+∏g+1i=1(ℷτti)ℸi×(1−g+1∏i=1(1−ℷμti−ℷνti−ℷτti)ℸi),t√∏g+1i=1(ℷτti)ℸi∏g+1i=1(ℷμti)ℸi+∏g+1i=1(ℷνti)ℸi+∏g+1i=1(ℷτti)ℸi×(1−g+1∏i=1(1−ℷμti−ℷνti−ℷτti)ℸi)). |
Therefore, the result also stands for e=g+1. As a result, according to the principle of induction on 'e', the conclusion holds for any and all e.
Example 4.3. Consider ℶ1=⟨0.415,0.245,0.145⟩, ℶ2=⟨0.339,0.334,0.119⟩ and ℶ3=⟨0.474,0.144,0.109⟩ are three T-SPFNs with WV ℶ=(0.399,0.276,0.325), we take t=3, then
t√∏3i=1(ℷμti)ℸi∏3i=1(ℷμti)ℸi+∏3i=1(ℷνti)ℸi+∏3i=1(ℷτti)ℸi×(1−3∏i=1(1−ℷμti−ℷνti−ℷτti)ℸi)=0.426140t√∏3i=1(ℷνti)ℸi∏3i=1(ℷμti)ℸi+∏3i=1(ℷνti)ℸi+∏3i=1(ℷτti)ℸi×(1−3∏i=1(1−ℷμti−ℷνti−ℷτti)ℸi)=0.235385t√∏3i=1(ℷτti)ℸi∏3i=1(ℷμti)ℸi+∏3i=1(ℷνti)ℸi+∏3i=1(ℷτti)ℸi×(1−3∏i=1(1−ℷμti−ℷνti−ℷτti)ℸi)=0.132880. |
\begin{array}{l} \text{T-SPFFWA} ( \beth_1, \beth_2, \beth_3) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{aligned} = \left(\begin{array}{l} \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{3}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{3}\left(1-{{^{\gimel}\mu}^{t}}_{i} -{{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{3}\left(1-{{^{\gimel}\mu}^{t}}_{i} -{{^{\gimel}\nu}^{t}}_{i}- {{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}\right)} \end{array}\right) \end{aligned}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; = (0.426140, 0.235385, 0.132880) . \end{array} |
The proposed AO meets a few special requirements, which are presented in the context of the theorems underneath.
Theorem 4.4. Let \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle be the jumble of T-SPFNs and \beth_{\diamond} = \langle {^{\gimel}\mu}_{\diamond}, {^{\gimel}\nu}_{\diamond}, {^{\gimel}\tau}_{\diamond} \rangle be the T-SPFNs such that, \beth_{i} = \beth_{\diamond} \forall i . Then
\begin{equation} \text{T-SPFFWA} ( \beth_1, \beth_2, \ldots, \beth_e) = \beth_{\diamond}. \end{equation} | (4.2) |
Proof. Given that \aleph_{i} = \aleph_{\diamond} \forall i , by this, {^{\gimel}\mu}_{i} = {^{\gimel}\mu}_{\diamond}, \; \; {^{\gimel}\nu}_{i} = {^{\gimel}\nu}_{\diamond} and {^{\gimel}\tau}_{i} = {^{\gimel}\tau}_{\diamond} \forall i.
\begin{array}{l} \text{T-SPFFWA} ( \aleph_1, \aleph_2, \ldots, \aleph_e) \\ \;\;\;\;\;\;\;\;\;\;\begin{aligned} = &\left(\begin{array}{l} \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{ \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} -{{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} -{{^{\gimel}\nu}^{t}}_{i}- {{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}\right)} \end{array}\right)\\\\ \end{aligned} \end{array} |
\begin{aligned} = &\left(\begin{array}{l} \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} - {{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond}- {{^{\gimel}\tau}^{t}}_{\diamond} \right)^{{\daleth}_{i}}\right)} \end{array}\right)\\ \end{aligned} |
\begin{aligned} = &\left(\begin{array}{l} \sqrt[t]{\frac{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} - {{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}\right)}, \\\\ \sqrt[t]{ \frac{\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond}- {{^{\gimel}\tau}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}\right)} \end{array}\right)\\\\ = &\left(\begin{array}{l} \sqrt[t]{\frac{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} - {{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)\right)}, \sqrt[t]{ \frac{\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)\right)}, \\\\ \sqrt[t]{ \frac{\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond}- {{^{\gimel}\tau}^{t}}_{\diamond} \right)\right)} \end{array}\right)\\ = & \langle {^{\gimel}\mu}_{\diamond}, {^{\gimel}\nu}_{\diamond}, {^{\gimel}\tau}_{\diamond} \rangle = \aleph_{\diamond}. \end{aligned} |
Theorem 4.5. Assume that \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle and \beth_{i^*} = \langle {^{\gimel}\mu}_{i^*}, {^{\gimel}\nu}_{i^*}, {^{\gimel}\tau}_{i^*} \rangle are the families of T-SPFNs, and also consider
{\text{T-SPFFWA}}(\beth_{1} , \beth_{2}, \ldots \beth_{e} )\; = \; \beth \; = \; \langle {^{\gimel}\mu}, {^{\gimel}\nu}, {^{\gimel}\tau} \rangle |
and
{\text{T-SPFFWA}}(\beth_{1^*} , \beth_{2^*}, \ldots \beth_{e^*} ) \; = \; \beth_{^*} \; = \; \langle {^{\gimel}\mu}_{^*}, {^{\gimel}\nu}_{^*}, {^{\gimel}\tau}_{^*} \rangle. |
Then,
{{^{\gimel}\mu}^{t}}+{{^{\gimel}\nu}^{t}}+{{^{\gimel}\tau}^{t}} \leq {{^{\gimel}\mu}^{t}}_{^*}+ {{^{\gimel}\nu}^{t}}_{^*}+ {{^{\gimel}\tau}^{t}}_{^*}, \; \; \; {\text{if}} \; \; \; {{^{\gimel}\mu}^{t}}_{i}+ {{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i} \leq {{^{\gimel}\mu}^{t}}_{i^*}+ {{^{\gimel}\nu}^{t}}_{i^*}+ {{^{\gimel}\tau}^{t}}_{i^*} |
Proof. By applying Theorem 4.2 on the both collection of T-SPFNs namely, \aleph_{i} = \langle {{^{\gimel}\mu}^{t}}_{i}, {{^{\gimel}\nu}^{t}}_{i}, {{^{\gimel}\tau}^{t}}_{i} \rangle and \aleph_{i^*} = \langle {{^{\gimel}\mu}^{t}}_{i^*}, {{^{\gimel}\nu}^{t}}_{i^*}, {{^{\gimel}\tau}^{t}}_{i^*} \rangle , we get
\begin{eqnarray*} {{^{\gimel}\mu}^{t}} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)\\\\ {{^{\gimel}\nu}^{t}} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times \left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)\\\\ {{^{\gimel}\tau}^{t}} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right) \end{eqnarray*} |
and
\begin{eqnarray*} {{^{\gimel}\mu}^{t}}_{^*} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i^*} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i^*} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i^*} - {{^{\gimel}\nu}^{t}}_{i^*} - {{^{\gimel}\tau}^{t}}_{i^*}\right)^{{\daleth}_{i}}\right)\\\\ {{^{\gimel}\nu}^{t}}_{^*} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i^*} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i^*} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i^*} - {{^{\gimel}\nu}^{t}}_{i^*} - {{^{\gimel}\tau}^{t}}_{i^*}\right)^{{\daleth}_{i}}\right)\\\\ {{^{\gimel}\tau}^{t}}_{^*} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i^*} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i^*} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i^*} - {{^{\gimel}\nu}^{t}}_{i^*} - {{^{\gimel}\tau}^{t}}_{i^*}\right)^{{\daleth}_{i}}\right).\\ \end{eqnarray*} |
By this, if {{^{\gimel}\mu}^{t}}_{i}+ {{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i} \leq {{^{\gimel}\mu}^{t}}_{i^*}+ {{^{\gimel}\nu}^{t}}_{i^*}+ {{^{\gimel}\tau}^{t}}_{i^*} then we have,
{{^{\gimel}\mu}^{t}}+ {{^{\gimel}\nu}^{t}}+ {{^{\gimel}\tau}^{t}} = 1-\prod\limits_{i = 1}^{e} \left(1-\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{{\daleth}_{i}} \leq 1-\prod\limits_{i = 1}^{e} \left(1-\left\{{{^{\gimel}\mu}^{t}}_{i^*}+{{^{\gimel}\nu}^{t}}_{i^*}+{{^{\gimel}\tau}^{t}}_{i^*}\right\}\right)^{{\daleth}_{i}} \leq {{^{\gimel}\mu}^{t}}_{^*}+ {{^{\gimel}\nu}^{t}}_{^*}+ {{^{\gimel}\tau}^{t}}_{^*}. |
Theorem 4.6. Let \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle be the jumble of T-SPFNs. Then for \text{T-SPFFWA} (\beth_1, \beth_2, \ldots, \beth_e) = \langle {^{\gimel}\mu}_{x}, {^{\gimel}\nu}_{x}, {^{\gimel}\tau}_{x} \rangle , we have
\begin{array}{l} \min\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}+ {{^{\gimel}\tau}^{t}}_{i}\right\} \leq {{^{\gimel}\mu}^{t}}_{x}+{{^{\gimel}\nu}^{t}}_{x} + {{^{\gimel}\tau}^{t}}_{x}\leq \max\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i}\right\}. \end{array} |
Proof. We start with
\begin{eqnarray*} \min\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i}\right\} & = & 1-\left(1-\min _{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right) \\ & = & 1-\left(1-\min\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{\sum\limits_{i = 1}^{e} {\daleth}_{i}} \\ & = & 1-\prod\limits_{i = 1}^{e} \left(1-\min\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{{\daleth}_{i}} \\ &\leq & 1-\prod\limits_{i = 1}^{e} \left(1-\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{{\daleth}_{i}} \\ &\leq & 1-\prod\limits_{i = 1}^{e} \left(1-\max\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{{\daleth}_{i}} \\ & = & 1- \left(1-\max\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{\sum\limits_{i = 1}^{e}{\daleth}_{i}} \\ & = & \max\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i}\right\}. \end{eqnarray*} |
By Theorem 4.2, we get
\begin{eqnarray*} {^{\gimel}\mu}_{x} & = & \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}\\\\ {^{\gimel}\nu}_{x} & = & \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}\\\\ {^{\gimel}\tau}_{x} & = & \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}. \end{eqnarray*} |
From this, we get
{{^{\gimel}\mu}^{t}}_{x}+ {{^{\gimel}\nu}^{t}}_{x}+ {{^{\gimel}\tau}^{t}}_{x} = \left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right). |
Consequently,
\begin{array}{l} \min\nolimits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}+ {{^{\gimel}\tau}^{t}}_{i}\right\} \leq {{^{\gimel}\mu}^{t}}_{x}+{{^{\gimel}\nu}^{t}}_{x} + {{^{\gimel}\tau}^{t}}_{x}\leq \max\nolimits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i}\right\} \end{array}. |
Definition 4.7. Let \beth_{h} = \langle{^{\gimel}\mu}_{h}, {^{\gimel}\nu}_{h}, {^{\gimel}\tau}_{h} \rangle be the jumble of T-SPFNs, and T-SPFFOWA: \mathscr{R}^n \rightarrow \mathscr{R} , be the mapping. If
\begin{equation} \text{T-SPFFOWA}(\beth_{1} , \beth_{2}, \ldots \beth_{e} ) = \left( {\daleth}_1 * \beth_{\xi_{(1)}} \tilde{\oplus} {\daleth}_2 * \beth_{\xi_{(2)}} \tilde{\oplus} \ldots , \tilde{\oplus} {\daleth}_e * \beth_{\xi_{(e)}} \right) \end{equation} | (4.3) |
then the mapping T-SPFFOWA is called "T-spherical fuzzy fairly ordered weighted averaging (T-SPFFOWA) operator", here {\daleth}_i is the WV of \beth_i with {\daleth}_i > 0 and \sum_{i = 1}^{e} {\daleth}_i = 1 .
{\xi}: {1, 2, 3, ......., n} \rightarrow {1, 2, 3, ......., n} is a permutation map s.t. \beth_{\xi_{(i-1)}} \geq \beth_{\xi_{(i)}}.
We may also investigate T-SPFFOWA using proposed operational rules, as demonstrated in the theorem that follows.
Theorem 4.8. Let \beth_{h} = \langle {^{\gimel}\mu}_{h}, {^{\gimel}\nu}_{h}, {^{\gimel}\tau}_{h} \rangle be the jumble of T-SPFNs, we can also find T-SPFFOWA by
\begin{array}{l} \text{T-SPFFOWA} ( \beth_1, \beth_2, \ldots, \beth_e) \\ \;\;\;\;\;\;\;\;\begin{aligned} = \left(\begin{array}{l} \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{\xi_{(i)}}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\xi_{(i)}} - {{^{\gimel}\nu}^{t}}_{\xi_{(i)}} - {{^{\gimel}\tau}^{t}}_{\xi_{(i)}}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\xi_{(i)}} -{{^{\gimel}\nu}^{t}}_{\xi_{(i)}} - {{^{\gimel}\tau}^{t}}_{\xi_{(i)}}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{ \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\xi_{(i)}} -{{^{\gimel}\nu}^{t}}_{\xi_{(i)}}- {{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}\right)} \end{array}\right) \end{aligned} \end{array} |
where {\daleth}_i is the WV of \beth_i with {\daleth}_i > 0 and \sum_{i = 1}^{e} {\daleth}_i = 1 .
Theorem 4.9. Let \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle be the jumble of T-SPFNs and \beth_{\diamond} = \langle {^{\gimel}\mu}_{\diamond}, {^{\gimel}\nu}_{\diamond}, {^{\gimel}\tau}_{\diamond} \rangle be the T-SPFNs such that, \beth_{i} = \beth_{\diamond} \forall i . Then
\begin{equation} {T-SPFFOWA} ( \beth_1, \beth_2, \ldots, \beth_e) = \beth_{\diamond}. \end{equation} | (4.4) |
Theorem 4.10. Let \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle be the jumble of T-SPFNs. Then for \text{T-SPFFOWA} (\beth_1, \beth_2, \ldots, \beth_e) = \langle {^{\gimel}\mu}_{x}, {^{\gimel}\nu}_{x}, {^{\gimel}\tau}_{x} \rangle , we have
\begin{array}{l} \min\nolimits_{\xi_{(i)}}\left\{{{^{\gimel}\mu}^{t}}_{\xi_{(i)}}+ {{^{\gimel}\nu}^{t}}_{\xi_{(i)}}+ {{^{\gimel}\tau}^{t}}_{\xi_{(i)}}\right\} \leq {{^{\gimel}\mu}^{t}}_{x}+{{^{\gimel}\nu}^{t}}_{x} + {{^{\gimel}\tau}^{t}}_{x}\leq \max\nolimits_{\xi_{(i)}}\left\{{{^{\gimel}\mu}^{t}}_{\xi_{(i)}}+{{^{\gimel}\nu}^{t}}_{\xi_{(i)}}+ {{^{\gimel}\tau}^{t}}_{\xi_{(i)}}\right\}. \end{array} |
Theorem 4.11. Assume that \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle and \beth_{i^*} = \langle {^{\gimel}\mu}_{i^*}, {^{\gimel}\nu}_{i^*}, {^{\gimel}\tau}_{i^*} \rangle are the families of T-SPFNs, and also consider
{\text{T-SPFFOWA}}(\beth_{1} , \beth_{2}, \ldots \beth_{e} )\; = \; \beth \; = \; \langle {^{\gimel}\mu}, {^{\gimel}\nu}, {^{\gimel}\tau} \rangle |
and
{\text{T-SPFFOWA}}(\beth_{1^*} , \beth_{2^*}, \ldots \beth_{e^*} ) \; = \; \beth_{^*} \; = \; \langle {^{\gimel}\mu}_{^*}, {^{\gimel}\nu}_{^*}, {^{\gimel}\tau}_{^*} \rangle. |
Then,
{{^{\gimel}\mu}^{t}}+{{^{\gimel}\nu}^{t}}+{{^{\gimel}\tau}^{t}} \leq {{^{\gimel}\mu}^{t}}_{^*}+ {{^{\gimel}\nu}^{t}}_{^*}+ {{^{\gimel}\tau}^{t}}_{^*}, \; \; \; {\text{if}} \; \; \; {{^{\gimel}\mu}^{t}}_{\xi_{(i)}}+ {{^{\gimel}\nu}^{t}}_{\xi_{(i)}}+ {{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \leq {{^{\gimel}\mu}^{t}}_{\xi_{(i)}^*}+ {{^{\gimel}\nu}^{t}}_{\xi_{(i)}^*}+ {{^{\gimel}\tau}^{t}}_{\xi_{(i)}^*}. |
We explore an MCDM issue by comparing each of the n different options to a set of m distinct qualities. In this circumstance, it is necessary to have a group of p specialists whose ratings must be larger than zero, but whose total is one.
As one can remember, the alternative {\amalg^{\varsigma}}_{j} (j = 1, 2, \ldots, n) should be provided by a group of experts {\mathscr{P}^{\mathcal{Q}}}_{k} (k = 1, 2, \ldots, p) . The characteristics \mathscr{C}^{\daleth}_{i} (i = 1, 2, \ldots, m) were likewise chosen by experts after deliberation; hence, the evaluation result is supplied in terms of T-SPFNs, {\alpha^{\varphi}}_{ji}^{p} = \Bigg\langle \xi_{ji}^{p}, \rho_{ji}^{p}, \kappa_{ji}^{p} \Bigg\rangle . Assume further that \mathscr{W}_{t} is the WV for the feature \mathscr{C}^{\daleth}_{i} meeting the criteria, \mathscr{W}_{t} \geq 0 and \sum_{t = 1}^{m} \mathscr{W}_{t} = 1 . The proposed operator is used to create an MCDM for the T-SPF data, which includes the following steps:
Algorithm |
Step 1: |
Determine the ratings of DMs based on the DMs' importance as "linguistics terms" (LTs) as indicated in T-SPFNs. The LTs listed in Table 1. Assume \aleph_{k} = \Big\langle {^{\gimel}\mu}_{k}, {^{\gimel}\nu}_{k}, {^{\gimel}\tau}_{k} \Big\rangle is the T-SPFN for the importance of k -th DM. Then the weight \zeta_{k} of k -th DM can be calculated as follows: |
\begin{equation} \zeta_{k} = \frac{\aleph_{k}}{\sum\nolimits_{k = 1}^{p} \aleph_{k}}, k = 1, 2, 3, \ldots, p \end{equation} | (5.1) |
LTs | T-SPFNs |
Very suitable | 0.800, 0.100, 0.050 |
Suitable | 0.650, 0.150, 0.100 |
Medium suitable | 0.550, 0.200, 0.150 |
Un-suitable | 0.300, 0.300, 0.200 |
Very un-suitable | 0.100, 0.400, 0.400 |
where \aleph_{k} = {{^{\gimel}\mu}^{t}}_{k}+ \left(1-{{^{\gimel}\mu}^{t}}_{k}-{{^{\gimel}\nu}^{t}}_{k}-{{^{\gimel}\tau}^{t}}_{k}\right)\left(\frac{{{^{\gimel}\nu}^{t}}_{k}}{{{^{\gimel}\mu}^{t}}_{k}+{{^{\gimel}\nu}^{t}}_{k}+{{^{\gimel}\tau}^{t}}{k}}\right)\left(\frac{{{^{\gimel}\tau}^{t}}_{k}}{{{^{\gimel}\mu}^{t}}_{k}+{{^{\gimel}\nu}^{t}}_{k}+{{^{\gimel}\tau}^{t}}{k}}\right) and clearly \sum_{k = 1}^{p} \zeta_{k} = 1 .
Step 2:
Acquire a decision matrix {\mathscr{P}^{\mathcal{Q}}}_{(p)} = (\mathfrak{Y}^{(p)}_{ji})_{n\times m } in the form of T-SPFNs from the DMs.
![]() |
Step 3:
Establish a consolidated T-SPF judgement matrix. It is necessary to note that, while developing the aggregated T-SPF decision matrix, all individual perspectives must be summed and included to generate a collective viewpoint. The proposed AO will provide the things to this end:
Consider H = \Big(H_{ji}\Big)_{n\times m} is the aggregated T-SPF decision matrix, where
H_{ji} = T-SPFFWA\; \; \Big( \mathfrak{Y}^{(1)}_{ji}, \mathfrak{Y}^{(2)}_{ji}, \ldots, \mathfrak{Y}^{(p)}_{ji} \Big) |
or
H_{ji} = T-SPFFOWA \; \; \Big( \mathfrak{Y}^{(1)}_{ji}, \mathfrak{Y}^{(2)}_{ji}, \ldots, \mathfrak{Y}^{(p)}_{ji} \Big). |
For convenience, we take H_{ji} as H_{ji} = \Big\langle {^{\gimel}\mu}_{ji}, {^{\gimel}\nu}_{ji}, {^{\gimel}\tau}_{ji}\Big\rangle
Step 4:
If required, normalise the T-SPFNs by changing each cost kind attribute ({^{\gimel}\tau}_{c}) to benefit kind attribute ({^{\gimel}\tau}_{b}) with the help of formula given by:
\begin{equation} (\aleph^{N}_{ji})_{n\times m } = \begin{cases} ( {\tilde{\eth}}_{ji})^c; & i \in {^{\gimel}\tau}_{c} \\ {\tilde{\eth}}_{ji}; & i \in {^{\gimel}\tau}_{b}, \end{cases} \end{equation} | (5.2) |
where ({\tilde{\eth}}_{ji})^c show the compliment of ({\tilde{\eth}}_{ji}) . The normalised decision matrix will be \Gamma_{N} = \Big(\aleph^{N}_{ji}\Big)_{n\times m } = \Big(\breve{{^{\gimel}\mu}}_{ji}, \breve{{^{\gimel}\nu}}_{ji}, \breve{{^{\gimel}\tau}}_{ji} \Big)_{n\times m } .
Step 5:
Construct the accuracy matrix, by utilizing the accuracy function of T-SPFNs as \Psi = \Big({\breve{\Theta}^{\zeta}} \Big(\aleph^{N}_{ji}\Big)\Big)_{n\times m }.
![]() |
Step 6:
Just on basis of this scoring matrix \Psi , a "weighted sum of the scores of each alternate {\amalg^{\varsigma}}_j " is calculated by
\yen({\amalg^{\varsigma}}_j) = \sum\limits_{i = 1}^{m} \mathscr{W}^{\gamma}_{i}\; {\breve{\Theta}^{\zeta}} \Big(\aleph^{N}_{ji}\Big), \; \; \; (j = 1, 2, \ldots, n), |
where, \mathscr{W}^{\gamma}_{1}, \mathscr{W}^{\gamma}_{2}, \ldots \mathscr{W}^{\gamma}_{m} be the WV of the given criterion.
Assume that the weights are indeterminate and that \overbrace{\coprod} represents a subset of them. We evaluate these indeterminate weights using the underlying computational model:
Max\; \; g = \sum\limits_{i = 1}^{m} \yen({\amalg^{\varsigma}}_j) |
under the conditions \sum_{i = 1}^{m} \mathscr{W}^{\gamma}_{i} = 1 . By using this methodology, the WV is normalised. Using a linear programming model, we calculate the weights of criteria subject to certain limitations.
Step 7:
Using the normalised decision matrix \Gamma_{N} and the WV \mathscr{W}^{\gamma} , analyze the consolidated weighted T-SPF decision matrix. We used the suggested AOs listed below.
\begin{array}{l} T-SPFFWA(\aleph^{N}_{j1}, \aleph^{N}_{j2}, \ldots, \aleph^{N}_{jm}) \\ \;\;\;\;\;\;\;\; \begin{aligned} = \left(\begin{array}{l} \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}}\right)^{\mathscr{W}^{\gamma}_{i}}\right), \\\\ \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} -\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}}\right)^{\mathscr{W}^{\gamma}_{i}}\right), \\\\ \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} -\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}}- \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}} \right) \end{array}\right) \end{aligned} \end{array} |
or
\begin{array}{l} T-SPFFOWA(\aleph^{N}_{j1}, \aleph^{N}_{j2}, \ldots, \aleph^{N}_{jm}) \\ \;\;\;\;\;\; \begin{aligned} = \left(\begin{array}{l} \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}}\right)^{\mathscr{W}^{\gamma}_{i}}\right), \\\\ \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} -\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}}\right)^{\mathscr{W}^{\gamma}_{i}}\right), \\\\ \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} -\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}}- \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}} \right) \end{array}\right). \end{aligned} \end{array} |
Step 8:
Using T-SPF, compute the score value of the whole weighted consolidated result. Rank each option depending on the SF, and afterwards select the most desired one (s).
Demonstration of the suggested method is shown in Figure 1.
Food waste treatment and management has become a major concern due to the considerable ecological, sociological, and monetary consequences. Because of the correlation of multiple qualitative and quantitative qualities, selecting the best acceptable food waste treatment procedure from a group of alternatives might be considered an MCDM challenge. The colossal sum of "food waste" (FW) is produced each year around the world, and the sum of the FW era has expanded over time [58]. For occasion, within the Joined together States, FW accounted for 21.1% of the disposed of metropolitan squander stream in 2012 which is identical to 31.4 million tons. In China, 90 million tons of FW was produced in 2010 which made up almost 51% of the "municipal solid waste" (MSW) generation [59]. It is evaluated that over one-fourth of nourishment delivered around the world annually is squandered amid production, handling, dispersion, utilization, and transfer. In developed nations such as Japan, the United Kingdom, South Korea and Australia, the sums of FW produced per year were 9.9, 7.0, 5.7 and 4.4 million tons respectively on normal [60].
It is calculated that 1.6 billion tons of "primary product equivalents" are lost due to food waste throughout the world every year. The edible portion of this represents 1.3 billion tones of foodstuff that is lost or wasted every year. It is projected that 3.3 billion tones of CO _{2} equivalence of greenhouse gases are emitted into the sky each year as a result of food being wasted. The entire amount of water utilized each year in the production of food that is either lost over time (250 km3) is similar to the yearly flow of the Volga River in Russia or 3 times the volume of Lake Geneva. This is a significant issue that has to be addressed. In a similar vein, each year, 1.4 billion hectares of land, which accounts for 28 percent of the total agricultural acreage on the planet, is used to produce food that is either not consumed or is wasted. Agriculture is the primary cause of the bulk of the dangers that face endangered plant and animal species that are monitored by the International Union for the Conservation of Nature (IUCN). Composting only accounts for a small fraction of the total amount of wasted food; the vast majority of it is transferred to landfills, where it contributes significantly to the volume of municipal solid waste. One of the most significant contributors to greenhouse gas emissions from the waste industry is the methane that is released from landfills. Composting at home has the ability to divert up to 150 kg per household per year of food waste away from the collecting authority in the community. FW at the retail and consumer level is often greater in areas with middle- and high-incomes, but food losses during agricultural production are more common in developing nations. To exclude fish and seafood from the calculation, the yearly cost of the direct economic effects of food waste is estimated to be 750 billion dollars. Total FW per year and estimated FW per capita for different countries given in Figures 2 and 3 respectively [57].
FW presents transfer challenges basically due to its tall dampness substance, oil substance, and heterogeneous nature. The choice of waste management technology could be a complex issue from two major perspectives. Firstly, it requires thought of data and investigation from a few distinctive disciplines, to be specific financial matters, supply administration, designing, material science, and chemistry. Besides, determination requires communication and understanding of diverse viewpoints from inside an organization from providers to handlers, and security officers to administration [61]. A recent review of MCDM within the improvement of industrial waste administration approaches universally appears how the goals of these frameworks have become progressively complex over later decades. Babalola conducted a ponder to assess diverse treatment choices for large volumes of nourishment and natural squander and their reasonableness for Japan utilizing MCDM [62]. Additionally in 2016, Mir et al. utilized MCDM to compare and rank 11 MSW treatment strategy scenarios for Malaysia ecologically and financially [63]. The choice investigation, in this manner, has been broadly supported and executed as a implies to supply a straightforward examination and a way to consider and reconcile diverse points of view within the determination of waste administration. Partner engagement utilizing MCDM to back metropolitan solid waste administration has been detailed to facilitate communication, assess clashes and bolster the positioning of diverse techniques.
FW demands several treatment techniques. Burning, anaerobic assimilation, landfilling, pyrolysis, ethanol ageing, and gasification are a few innovations for FW treatment (FWT) that involve diverse financial guesses and have diverse social and environmental repercussions. Various writers have conducted a small number of investigations in this area. In general, FWTT determination necessitates a full analysis of arrangement planning, country's GDP, garbage collection, transparency index, availability of suitable technology, people's awareness of supportability, etc., in which several viable technological options are studied. Consequently, it can be acknowledged that determining an optimal FWTT may involve a complex decision-making process governed by a variety of variables. MCDM methods are applied well for this purpose.
In this section, we actualize the presented decision-making strategy on the choice of alluring FWTT among a set of choices, which uncovers the viability and practicality of the developed strategy. After a preparatory investigation, a gather of specialists ( {\mathscr{P}^{\mathcal{Q}}}_1 , {\mathscr{P}^{\mathcal{Q}}}_2 , {\mathscr{P}^{\mathcal{Q}}}_3 ) has chosen, five technologies as the candidate of FWTT, which are anaerobic absorption {\amalg^{\varsigma}}_1 , incineration {\amalg^{\varsigma}}_2 , composting {\amalg^{\varsigma}}_3 , landfill {\amalg^{\varsigma}}_4 , and gasification {\amalg^{\varsigma}}_5 . DMs evaluating the five technologies under the criterion given in Table 2. Here we take t = 3 .
Criterion | |
\mathscr{C}^{\daleth}_1 | Environmental capacity involvement with the developed scenario |
\mathscr{C}^{\daleth}_2 | Time and space are required for residential waste management |
\mathscr{C}^{\daleth}_3 | number of eco-friendly purchases |
\mathscr{C}^{\daleth}_3 | Number of participants in promoting the model |
Step 1:
LTs for each DM given in Table 3. By the LTs find the DMs weights by the Eq (5.1), Then the DMs weight are \zeta_{1} = 0.3990 , \zeta_{2} = 0.2760 and \zeta_{3} = 0.3250 .
DM | Linguistic terms |
{\mathscr{P}^{\mathcal{Q}}}_1 | Very suitable |
{\mathscr{P}^{\mathcal{Q}}}_2 | Medium suitable |
{\mathscr{P}^{\mathcal{Q}}}_3 | Suitable |
Step 2:
Obtain the decision matrix {\mathscr{P}^{\mathcal{Q}}}_{(p)} = (\mathfrak{Y}^{(p)}_{ji})_{n\times m } in the format of T-SPFNs from DMs. The judgement values, given by three DMs, are given in Tables 4–6.
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | \mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.425, 0.255, 0.155) | (0.352, 0.256, 0.106) | (0.359, 0.215, 0.178) | (0.313, 0.243, 0.212) |
{\amalg^{\varsigma}}_2 | (0.356, 0.154, 0.221) | (0.332, 0.312, 0.211) | (0.290, 0.312, 0.145) | (0.434, 0.255, 0.157) |
{\amalg^{\varsigma}}_3 | (0.203, 0.178, 0.248) | (0.154, 0.287, 0.246) | (0.257, 0.235, 0.153) | (0.275, 0.385, 0.213) |
{\amalg^{\varsigma}}_4 | (0.345, 0.120, 0.158) | (0.483, 0.268, 0.121) | (0.472, 0.181, 0.231) | (0.335, 0.265, 0.235) |
{\amalg^{\varsigma}}_5 | (0.165, 0.370, 0.135) | (0.480, 0.260, 0.195) | (0.280, 0.315, 0.320) | (0.115, 0.175, 0.335) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | \mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.340, 0.335, 0.120) | (0.560, 0.125, 0.130) | (0.345, 0.140, 0.115) | (0.515, 0.310, 0.111) |
{\amalg^{\varsigma}}_2 | (0.515, 0.235, 0.134) | (0.165, 0.355, 0.220) | (0.370, 0.425, 0.120) | (0.452, 0.111, 0.123) |
{\amalg^{\varsigma}}_3 | (0.240, 0.121, 0.315) | (0.175, 0.470, 0.265) | (0.255, 0.375, 0.240) | (0.253, 0.135, 0.145) |
{\amalg^{\varsigma}}_4 | (0.135, 0.240, 0.265) | (0.280, 0.330, 0.145) | (0.275, 0.255, 0.340) | (0.253, 0.235, 0.365) |
{\amalg^{\varsigma}}_5 | (0.365, 0.201, 0.235) | (0.281, 0.240, 0.355) | (0.280, 0.135, 0.330) | (0.154, 0.253, 0.335) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | \mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.475, 0.145, 0.110) | (0.345, 0.252, 0.203) | (0.555, 0.303, 0.115) | (0.425, 0.135, 0.111) |
{\amalg^{\varsigma}}_2 | (0.335, 0.245, 0.145) | (0.145, 0.225, 0.335) | (0.230, 0.153, 0.420) | (0.235, 0.435, 0.245) |
{\amalg^{\varsigma}}_3 | (0.370, 0.265, 0.275) | (0.135, 0.210, 0.545) | (0.235, 0.152, 0.220) | (0.265, 0.225, 0.433) |
{\amalg^{\varsigma}}_4 | (0.220, 0.465, 0.135) | (0.250, 0.415, 0.245) | (0.415, 0.152, 0.140) | (0.265, 0.445, 0.135) |
{\amalg^{\varsigma}}_5 | (0.143, 0.154, 0.465) | (0.270, 0.458, 0.165) | (0.120, 0.415, 0.260) | (0.215, 0.115, 0.435) |
Step 3:
To construct the aggregated T-SPF decision matrix, all individual opinions must be totalled up and integrated to form a group opinion.
H = \Big({\tilde{\eth}}_{ji}\Big)_{5\times 4} be the aggregated T-SPF decision matrix, where
{\tilde{\eth}}_{ji} = T-SPFFWA\; \; \Big(\mathfrak{Y}^{(1)}_{ji}, \mathfrak{Y}^{(2)}_{ji}, \mathfrak{Y}^{(3)}_{ji} \Big) = \left(\zeta_1 * \mathfrak{Y}^{(1)}_{ji} \tilde{\oplus} \zeta_2 * \mathfrak{Y}^{(2)}_{ji} \tilde{\oplus} \zeta_3 * \mathfrak{Y}^{(3)}_{ji} \right) . Aggregated T-SPF decision matrix given in Table 7.
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | |
{\amalg^{\varsigma}}_1 | (0.285906, 0.114804, 0.050480) | (0.272807, 0.114013, 0.056356) |
{\amalg^{\varsigma}}_2 | (0.254533, 0.094056, 0.078675) | (0.117772, 0.178783, 0.139180) |
{\amalg^{\varsigma}}_3 | (0.142084, 0.088203, 0.156125) | (0.077527, 0.205063, 0.236169) |
{\amalg^{\varsigma}}_4 | (0.180479, 0.147796, 0.104477) | (0.240093, 0.212379, 0.072306) |
{\amalg^{\varsigma}}_5 | (0.124448, 0.185574, 0.161027) | (0.253588, 0.199940, 0.113938) |
\mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.294449, 0.114730, 0.0600663) | (0.274437, 0.145051, 0.0669727) |
{\amalg^{\varsigma}}_2 | (0.198061, 0.180828, 0.110345) | (0.268425, 0.153467, 0.0866869) |
{\amalg^{\varsigma}}_3 | (0.139668, 0.122039, 0.0922995) | (0.174100, 0.165420, 0.151573) |
{\amalg^{\varsigma}}_4 | (0.195787, 0.090117, 0.113357) | (0.182522, 0.204743, 0.117831) |
{\amalg^{\varsigma}}_5 | (0.116394, 0.175757, 0.193227) | (0.060994, 0.072372, 0.232129) |
Step 4:
Here is no cost type attribute so, the normalized decision matrix will be \Gamma_{N} = \Big(\aleph^{N}_{ji}\Big)_{n\times m } = \Big(\breve{{^{\gimel}\mu}}_{ji}, \breve{{^{\gimel}\nu}}_{ji}, \breve{{^{\gimel}\tau}}_{ji} \Big)_{5\times 4 } , given in Table 8.
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | |
{\amalg^{\varsigma}}_1 | (0.285906, 0.114804, 0.050480) | (0.272807, 0.114013, 0.056356) |
{\amalg^{\varsigma}}_2 | (0.254533, 0.094056, 0.078675) | (0.117772, 0.178783, 0.139180) |
{\amalg^{\varsigma}}_3 | (0.142084, 0.088203, 0.156125) | (0.077527, 0.205063, 0.236169) |
{\amalg^{\varsigma}}_4 | (0.180479, 0.147796, 0.104477) | (0.240093, 0.212379, 0.072306) |
{\amalg^{\varsigma}}_5 | (0.124448, 0.185574, 0.161027) | (0.253588, 0.199940, 0.113938) |
\mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.294449, 0.114730, 0.0600663) | (0.274437, 0.145051, 0.0669727) |
{\amalg^{\varsigma}}_2 | (0.198061, 0.180828, 0.110345) | (0.268425, 0.153467, 0.0866869) |
{\amalg^{\varsigma}}_3 | (0.139668, 0.122039, 0.0922995) | (0.174100, 0.165420, 0.151573) |
{\amalg^{\varsigma}}_4 | (0.195787, 0.090117, 0.113357) | (0.182522, 0.204743, 0.117831) |
{\amalg^{\varsigma}}_5 | (0.116394, 0.175757, 0.193227) | (0.060994, 0.072372, 0.232129) |
Step 5:
Construct the score matrix, by utilizing the SF of T-SPFNs as \Psi = \Big({\breve{\Theta}^{\zeta}} \Big(\aleph^{N}_{ji}\Big)\Big)_{5\times 4 } .
![]() |
Step 6:
Consider that the DMs provide the following partial weight details about the attribute weights:
\Psi = 0.10 \leq \mathscr{W}^{\gamma}_{1} \leq 0.35 , 0.20 \leq \mathscr{W}^{\gamma}_{2} \leq 0.53 , 0.10 \leq \mathscr{W}^{\gamma}_{3} \leq 0.70 , 0.15 \leq \mathscr{W}^{\gamma}_{4} \leq 0.65
Relying on this data, the following optimization framework can be developed:
\begin{eqnarray*} Max\; \; g & = & 0.0250124 \mathscr{W}^{\gamma}_{1} + 0.0178093 \mathscr{W}^{\gamma}_{1} + 0.0073595 \mathscr{W}^{\gamma}_{1} + 0.0102475 \mathscr{W}^{\gamma}_{1} + 0.0124935 \mathscr{W}^{\gamma}_{1}\\ &&0.0219643 \mathscr{W}^{\gamma}_{2} + 0.0100441 \mathscr{W}^{\gamma}_{2} + 0.0222615 \mathscr{W}^{\gamma}_{2} + 0.0237974 \mathscr{W}^{\gamma}_{2} + 0.0257794 \mathscr{W}^{\gamma}_{2}\\ &&0.0272556 \mathscr{W}^{\gamma}_{3} + 0.0150260 \mathscr{W}^{\gamma}_{3} + 0.0053284 \mathscr{W}^{\gamma}_{3} + 0.0096936 \mathscr{W}^{\gamma}_{3} + 0.0142206 \mathscr{W}^{\gamma}_{3}\\ &&0.0240217 \mathscr{W}^{\gamma}_{4} + 0.0236064 \mathscr{W}^{\gamma}_{4} + 0.0132859 \mathscr{W}^{\gamma}_{4} + 0.0162993 \mathscr{W}^{\gamma}_{4} + 0.0131140 \mathscr{W}^{\gamma}_{4}, \end{eqnarray*} |
such that,
0.10 \leq \mathscr{W}^{\gamma}_{1} \leq 0.35 , 0.20 \leq \mathscr{W}^{\gamma}_{2} \leq 0.53 , 0.10 \leq \mathscr{W}^{\gamma}_{3} \leq 0.70 , 0.15 \leq \mathscr{W}^{\gamma}_{4} \leq 0.65 , \mathscr{W}^{\gamma}_{1} + \mathscr{W}^{\gamma}_{2}+ \mathscr{W}^{\gamma}_{3}+ \mathscr{W}^{\gamma}_{4} = 1 , \mathscr{W}^{\gamma}_{1}, \mathscr{W}^{\gamma}_{2}, \mathscr{W}^{\gamma}_{3}, \mathscr{W}^{\gamma}_{4} \geq 0 .
By solving this model we get, \mathscr{W}^{\gamma}_{1} = 0.1, \mathscr{W}^{\gamma}_{2} = 0.53, \mathscr{W}^{\gamma}_{3} = 0.1, \mathscr{W}^{\gamma}_{4} = 0.27.
Step 7:
Evaluate the aggregated weighted T-SPF decision matrix by using proposed AOs given by Table 9.
{\amalg^{\varsigma}}_1 | (0.277325, 0.122136, 0.058918) |
{\amalg^{\varsigma}}_2 | (0.189635, 0.182495, 0.128065) |
{\amalg^{\varsigma}}_3 | (0.120535, 0.187258, 0.202940) |
{\amalg^{\varsigma}}_4 | (0.221568, 0.194255, 0.093429) |
{\amalg^{\varsigma}}_5 | (0.186953, 0.187209, 0.189453) |
Step 8:
Compute the score values of all alternatives.
S\left( {\amalg^{\varsigma}}_1 \right)\; = \; 0.0211243 |
S\left( {\amalg^{\varsigma}}_2 \right)\; = \; 0.00471918 |
S\left( {\amalg^{\varsigma}}_3 \right)\; = \; -0.0066068 |
S\left( {\amalg^{\varsigma}}_4 \right)\; = \; 0.01006180 |
S\left( {\amalg^{\varsigma}}_5 \right)\; = \; -0.0002658. |
At the end, the final ranking will be
{\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5. |
Thus, we conclude that the optimal FWTT option is incineration {\amalg^{\varsigma}}_1 .
To check the validity and authenticity of the proposed AOs in this article, we solve our given problem employing fundamental averaging AOs suggested by [37]. We take the "normalized T-SPF decision matrix" from Step 4 and the WV obtained from the partial weight details from Step 6 as \mathscr{W}^{\gamma}_{1} = 0.32, \mathscr{W}^{\gamma}_{2} = 0.20, \mathscr{W}^{\gamma}_{3} = 0.33, \mathscr{W}^{\gamma}_{4} = 0.15 . We apply "T-spherical fuzzy weighted average (T-SPFWA) operator", on the T-SPFNs given in Table 10 and get the following results given in Table 11.
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | |
{\amalg^{\varsigma}}_1 | (0.431824, 0.235033, 0.135906) | (0.411300, 0.229910, 0.143730) |
{\amalg^{\varsigma}}_2 | (0.395850, 0.203841, 0.180950) | (0.234851, 0.310206, 0.262513) |
{\amalg^{\varsigma}}_3 | (0.267909, 0.194961, 0.285270) | (0.171292, 0.327612, 0.359957) |
{\amalg^{\varsigma}}_4 | (0.295482, 0.258636, 0.205240) | (0.374920, 0.345483, 0.168449) |
{\amalg^{\varsigma}}_5 | (0.229988, 0.300186, 0.273095) | (0.386231, 0.329630, 0.226572) |
\mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.435387, 0.232267, 0.150877) | (0.415799, 0.271811, 0.162375) |
{\amalg^{\varsigma}}_2 | (0.325725, 0.306545, 0.220540) | (0.403580, 0.278008, 0.189969) |
{\amalg^{\varsigma}}_3 | (0.263540, 0.240870, 0.199947) | (0.299333, 0.289299, 0.272920) |
{\amalg^{\varsigma}}_4 | (0.329464, 0.196406, 0.228867) | (0.313588, 0.338549, 0.234237) |
{\amalg^{\varsigma}}_5 | (0.233374, 0.307167, 0.327199) | (0.154416, 0.173071, 0.376405) |
{\amalg^{\varsigma}}_1 | (0.277183, 0.121832, 0.124118) |
{\amalg^{\varsigma}}_2 | (0.178633, 0.161073, 0.167273) |
{\amalg^{\varsigma}}_3 | (0.119849, 0.168856, 0.182187) |
{\amalg^{\varsigma}}_4 | (0.215161, 0.186141, 0.198276) |
{\amalg^{\varsigma}}_5 | (0.151333, 0.148903, 0.176793) |
Compute the score values of all alternatives.
S\left( {\amalg^{\varsigma}}_1 \right)\; = \; 0.0193839 |
S\left( {\amalg^{\varsigma}}_2 \right)\; = \; 0.0010198 |
S\left( {\amalg^{\varsigma}}_3 \right)\; = \; -0.004325 |
S\left( {\amalg^{\varsigma}}_4 \right)\; = \; 0.0021658 |
S\left( {\amalg^{\varsigma}}_5 \right)\; = \; -0.002060. |
At the end, the final ranking will be
{\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5. |
We achieve the same optimum solution employing the T-SPFWA operator, illustrating the resilience of our proposed AOs.
By analyzing the inputs with specific pre-existing AOs and obtaining an equal optimal solution, we equalize our outcomes. This proves the robustness and reliability of the suggested AOs. Due to its unbiased or neutral operation for T-SPFNs, the offered technique is more practicable and preferable to some previous AOs. The comparison of proposed AOs with some existing operators are given in Table 12.
Authors | AOs | Ranking of alternatives | The optimal alternative |
Mahmood et al. [37] | TSFWG | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
Munir et al. [38] | T-SFEWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
T-SFEOWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Zeng et al. [39] | T-SFEWIG | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
T-SFEOWIG | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Liu et al. [40] | SPFPMM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
SPFPDMM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4 | {\amalg^{\varsigma}}_1 | |
Kifayat-Ullah et al. [41] | TSFHWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_3 | {\amalg^{\varsigma}}_1 |
TSFOHWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Khan et al. [42] | T-SPHFSSPHEM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4 | {\amalg^{\varsigma}}_1 |
T-SPHFSSPGHEM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Proposed | T-SPFFWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
Present research indicates that when a DM provides an equal number of membership, abstinence and non-membership evaluations for an object, the resulting aggregate assessments are uneven. In this scenario, we proposed some novel fairly or neutrality operations based on T-SPFS and proportional distribution rules for membership, abstinence and non-membership functions, with an emphasis on correctness and applicability throughout decision making impacted by the DM's attitude. We contributed some "T-spherical fuzzy fairly weighted averaging (T-SPFFWA) operator" and "T-spherical fuzzy fairly ordered weighted averaging (T-SPFFOWA) operator" for the T-SPFN information, inspired by fairly operations. We discussed the prospective AOs' characteristics in considerable detail. The primary benefit of the suggested operators is that they facilitate not just interaction amongst pairs of diverse T-SPFNs, but also the exploration of DM attitude characteristics by enabling for a categorical treatment of the T-SPFS degrees. The developed strategy was compared with extant strategies to confirm its legitimacy. The results gotten by the proposed strategy confirm that it encompasses a better than average viability and soundness and is reliable with extant models. There is no interaction between the membership, abstention, and non-membership degrees as we discuss the limitations of proposed AOs. On this side of the proposed AOs, the hybrid structure of interactive AOs is implemented. This model was expanded to incorporate the global dynamics of a three-species spatial food chain model [64] and a multi-source fluid queue-based stochastic model [65].
The authors declare that they have no conflict of interest.
[1] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[2] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
![]() |
[3] | B. C. Cuong, Picture fuzzy sets-first results, part 1, Seminar neuro-fuzzy systems with applications, Institute of Mathematics, Hanoi, 2013. |
[4] | B. C. Cuong, Picture fuzzy sets-first results, part 2, Seminar neuro-fuzzy systems with applications, Institute of Mathematics, Hanoi, 2013. |
[5] | B. C. Cuong, P. V. Hai, Some fuzzy logic operators for picture fuzzy sets, In 2015 Seventh International Conference on Knowledge and Systems Engineering, Vietnam, IEEE, 2015,132–137. https://doi.org/10.1109/KSE.2015.20 |
[6] | B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Technol., 30 (2014), 409–420. |
[7] | P. H. Phong, D. T. Hieu, R. T. H. Ngan, P. T. Them, Some compositions of picture fuzzy relations, In proceedings of the 7th national conference on fundamental and applied information technology research, FAIR'7, Thai Nguyen, 2014, 19–20. |
[8] |
G. W. Wei, F. E. Alsaadi, T. Hayat, A. Alsaedi, Projection models for multiple attribute decision making with picture fuzzy information, Int. J. Mach. Learn. Cyb., 9 (2018), 713–719. https://doi.org/10.1007/s13042-016-0604-1 doi: 10.1007/s13042-016-0604-1
![]() |
[9] | G. W. Wei, H. Gao, The generalized dice similarity measures for picture fuzzy sets and their applications, Informatica, 29 (2018), 107–124. |
[10] | G. W. Wei, Some similarity measures for picture fuzzy sets and their applications, Iran. J. Fuzzy Syst., 15 (2018), 77–89. |
[11] |
P. Singh, Correlation coefficients for picture fuzzy sets, J. Intell. Fuzzy Syst., 27 (2014), 2857–2868. https://doi.org/10.3233/IFS-141247 doi: 10.3233/IFS-141247
![]() |
[12] | L. H. Son, DPFCM: A novel distributed picture fuzzy clustering method on picture fuzzy sets, Expert Syst. Appl., 2 (2015), 51–66. |
[13] |
M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, Comput. Model. Eng. Sci., 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699
![]() |
[14] |
H. Garg, Some picture fuzzy aggregation operators and their applications to multicriteria decision-making, Arab. J. Sci. Eng., 42 (2017), 5275–5290. https://doi.org/10.1007/s13369-017-2625-9 doi: 10.1007/s13369-017-2625-9
![]() |
[15] |
G. W. Wei, Picture fuzzy hamacher aggregation operators and their application to multiple attribute decision making, Fund. Inform., 157 (2018), 271–320. https://doi.org/10.3233/FI-2018-1628 doi: 10.3233/FI-2018-1628
![]() |
[16] |
C. Jana, T. Senapati, M. Pal, R. R. Yager, Picture fuzzy Dombi aggregation operators: Application to MADM process, Appl. Soft Comput., 74 (2019), 99–109. https://doi.org/10.1016/j.asoc.2018.10.021 doi: 10.1016/j.asoc.2018.10.021
![]() |
[17] |
C. Tian, J. J. Peng, S. Zhang, W. Y. Zhang, J. Q. Wang, Weighted picture fuzzy aggregation operators and their applications to multi-criteria decision-making problems, Comput. Ind. Eng., 137 (2019), 106037. https://doi.org/10.1016/j.cie.2019.106037 doi: 10.1016/j.cie.2019.106037
![]() |
[18] |
L. Wang, H. Y. Zhang, J. Q. Wang, G. F. Wu, Picture fuzzy multi-criteria group decision-making method to hotel building energy efficiency retrofit project selection, RAIRO Oper. Res., 54 (2020), 211–229. https://doi.org/10.1051/ro/2019004 doi: 10.1051/ro/2019004
![]() |
[19] |
R. Wang, J. Wang, H. Gao, G. Wei, Methods for MADM with picture fuzzy muirhead mean operators and their application for evaluating the financial investment risk, Symmetry, 11 (2019), 6. https://doi.org/10.3390/sym11010006 doi: 10.3390/sym11010006
![]() |
[20] | B. Li, J. Wang, L. Yang, X. Li Novel generalized simplified neutrosophic number Einstein aggregation operator, Int. J. Appl. Math., 48 (2016), 1–6. |
[21] |
M. Riaz, H. M. A. Farid, M. Aslam, D. Pamucar, D. Bozanic, Novel approach for third-party reverse logistic provider selection process under linear Diophantine fuzzy prioritized aggregation operators, Symmetry, 13 (2021), 1152. https://doi.org/10.3390/sym13071152 doi: 10.3390/sym13071152
![]() |
[22] |
A. Iampan, G. S. Garcia, M. Riaz, H. M. A. Farid, R. Chinram, Linear diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems, J. Math., 2021 (2021), 5548033. https://doi.org/10.1155/2021/5548033 doi: 10.1155/2021/5548033
![]() |
[23] |
H. M. A. Farid, M. Riaz, Some generalized q-rung orthopair fuzzy Einstein interactive geometric aggregation operators with improved operational laws, Int. J. Intell. Syst., 36 (2021), 7239–7273. https://doi.org/10.1002/int.22587 doi: 10.1002/int.22587
![]() |
[24] |
S. Ashraf, S. Abdullah, T. Mahmood, M, Aslam, Cleaner production evaluation in gold mines using novel distance measure method with cubic picture fuzzy numbers, Int. J. Fuzzy Syst., 21 (2019), 2448–2461. https://doi.org/10.1007/s40815-019-00681-3 doi: 10.1007/s40815-019-00681-3
![]() |
[25] | S. Ashraf, S. Abdullah, T. Mahmood, Aggregation operators of cubic picture fuzzy quantities and their application in decision support systems, Korean J. Math., 28 (2020), 1976–8605. |
[26] |
A. Saha, D. Dutta, S. Kar, Some new hybrid hesitant fuzzy weighted aggregation operators based on Archimedean and Dombi operations for multi-attribute decision making, Neural Comput. Appl., 33 (2021), 8753–8776. https://doi.org/10.1007/s00521-020-05623-x doi: 10.1007/s00521-020-05623-x
![]() |
[27] |
A. Saha, P. Majumder, D. Dutta, B. K. Debnath, Multi-attribute decision making using q-rung orthopair fuzzy weighted fairly aggregation operators, J. Amb. Intell. Humaniz. Comput., 12 (2021), 8149–8171. https://doi.org/10.1007/s12652-020-02551-5 doi: 10.1007/s12652-020-02551-5
![]() |
[28] |
G. Wei, Z. Zhang, Some single-valued neutrosophic bonferroni power aggregation operators in multiple attribute decision making, J. Amb. Intell. Humaniz. Comput., 10 (2019), 863–882. https://doi.org/10.1007/s12652-018-0738-y doi: 10.1007/s12652-018-0738-y
![]() |
[29] |
F. Karaaslan, S. Ozlu, Correlation coefficients of dual type-2 hesitant fuzzy sets and their applications in clustering analysis, Int. J. Intell. Syst., 35 (2020), 1200–1229. https://doi.org/10.1002/int.22239 doi: 10.1002/int.22239
![]() |
[30] |
J. C. R. Alcantud, The relationship between fuzzy soft and soft topologies, J. Intell. Fuzzy Syst., 2022. https://doi.org/10.1007/s40815-021-01225-4 doi: 10.1007/s40815-021-01225-4
![]() |
[31] |
M. Akram, K. Ullah, D. Pamucar, Performance evaluation of solar energy cells using the interval-valued T-spherical fuzzy Bonferroni mean operators, Energies, 15 (2022), 292. https://doi.org/10.3390/en15010292 doi: 10.3390/en15010292
![]() |
[32] |
A. Hussain, K. Ullah, M. S. Yang, D. Pamucar, Aczel-Alsina aggregation operators on T-spherical fuzzy (TSF) information with application to TSF multi-attribute decision making, IEEE Access, 10 (2022), 26011–26023. https://doi.org/10.1109/ACCESS.2022.3156764 doi: 10.1109/ACCESS.2022.3156764
![]() |
[33] | B. Cao, Y. Yan, Y. Wang, X. Liu, J. C. W. Lin, A. K. Sangaiah, et al., A multiobjective intelligent decision-making method for multistage placement of PMU in power grid enterprises, IEEE Trans. Industr. Inform., 2022. |
[34] |
K. Liu, Z. Yang, W. Wei, B. Gao, D. Xin, C. Sun, et al., Novel detection approach for thermal defects: Study on its feasibility and application to vehicle cables, High Volt., 2022. https://doi.org/10.1049/hve2.12258 doi: 10.1049/hve2.12258
![]() |
[35] |
S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. https://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
![]() |
[36] |
F. K. Gundogdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2019), 337–352. https://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
![]() |
[37] |
T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach towards decision making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural. Comput. Appl., 31 (2018), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
![]() |
[38] |
M. Munir, H. Kalsoom, K. Ullah, T. Mahmood, Y. M. Chu, T-spherical fuzzy Einstein hybrid aggregation operators and their applications in multi-attribute decision making problems, Symmetry, 12 (2020), 365. https://doi.org/10.3390/sym12030365 doi: 10.3390/sym12030365
![]() |
[39] | S. Zeng, M. Munir, T. Mahmood, M. Naeem, Some T-spherical fuzzy Einstein interactive aggregation operators and their application to selection of photovoltaic cells, Math. Probl. Eng., 2020 (2020), 1904362. |
[40] |
P. Liu, Q. Khan, T. Mahmood, N. Hassan, T-spherical fuzzy power Muirhead mean operator based on novel operational laws and their application in multi-attribute group decision making, IEEE Access, 7 (2019), 22613–22632. https://doi.org/10.1109/ACCESS.2019.2896107 doi: 10.1109/ACCESS.2019.2896107
![]() |
[41] |
K. Ullah, T. Mahmood, H. Garg, Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators, Int. J. Fuzzy Syst., 22 (2020), 570–582. https://doi.org/10.1007/s40815-020-00803-2 doi: 10.1007/s40815-020-00803-2
![]() |
[42] |
Q. Khan, J. Gwak, M. Shahzad, M. K. Alam, A novel approached based on T-spherical fuzzy Schweizer-Sklar power Heronian mean operator for evaluating water reuse applications under uncertainty, Sustainability, 13 (2021), 7108. https://doi.org/10.3390/su13137108 doi: 10.3390/su13137108
![]() |
[43] |
X. Gou, P. Xiao, D. Huang, F. Deng, Probabilistic double hierarchy linguistic alternative queuing method for real economy development evaluation under the perspective of economic financialization, Econ. Res.-Ekon. Istraž., 34 (2021), 3225–3244. https://doi.org/10.1080/1331677X.2020.1870520 doi: 10.1080/1331677X.2020.1870520
![]() |
[44] |
X. Gou, Z. Xu, H. Liao, F. Herrera, Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: The application in smart healthcare, J. Oper. Res. Soc., 72 (2021), 2611–2630. https://doi.org/10.1080/01605682.2020.1806741 doi: 10.1080/01605682.2020.1806741
![]() |
[45] | X. Gou, Z. Xu, W. Zhou, E. H. Viedma, The risk assessment of construction project investment based on prospect theory with linguistic preference orderings, Econ. Res.-Ekon. Istraž., 34 (2021), 709–731. |
[46] |
J. C. R. Alcantud, G. S. García, M. Akram, OWA aggregation operators and multi-agent decisions with N-soft sets, Expert Syst. Appl., 203 (2022), 1–17. https://doi.org/10.1016/j.eswa.2022.117430 doi: 10.1016/j.eswa.2022.117430
![]() |
[47] |
M. Sitara, M. Akram, M. Riaz, Decision-making analysis based on q-rung picture fuzzy graph structures, J. Appl. Math. Comput., 67 (2021), 541–577. https://doi.org/10.1007/s12190-020-01471-z doi: 10.1007/s12190-020-01471-z
![]() |
[48] |
F. Feng, Y. Zheng, B. Sun, M. Akram, Novel score functions of generalized orthopair fuzzy membership grades with application to multiple attribute decision making, Granular Comput., 7 (2022), 95–111. https://doi.org/10.1007/s41066-021-00253-7 doi: 10.1007/s41066-021-00253-7
![]() |
[49] |
T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Amb. Intel. Hum. Comp., 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0
![]() |
[50] | F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, Rehoboth, American Research Press, 1999, 1–141. |
[51] | H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single-valued neutrosophic sets, Infinite study, 2010, 1–4. |
[52] |
P. Rani, A. R. Mishra, A. Saha, I. M. Hezam, D. Pamucar, Fermatean fuzzy Heronian mean operators and MEREC-based additive ratio assessment method: An application to food waste treatment technology selection, Int. J. Intell. Syst., 37 (2022), 2612–2647. https://doi.org/10.1002/int.22787 doi: 10.1002/int.22787
![]() |
[53] |
A. M. Buyuk, G. T. Temur, Food waste treatment option selection through spherical fuzzy AHP, J. Intell. Fuzzy Syst., 42 (2022), 97–107. https://doi.org/10.3233/JIFS-219178 doi: 10.3233/JIFS-219178
![]() |
[54] |
P. Rani, A. R. Mishra, R. Krishankumar, K. S. Ravichandran, S. Kar, Multi-criteria food waste treatment method selection using single-valued neutrosophic-CRITIC-MULTIMOORA framework, Appl. Soft Comput., 111 (2021), 107657. https://doi.org/10.1016/j.asoc.2021.107657 doi: 10.1016/j.asoc.2021.107657
![]() |
[55] |
T. Chen, Y. Jin, X. Qiu, X. Chen, A hybrid fuzzy evaluation method for safety assessment of food-waste feed based on entropy and the analytic hierarchy process methods, Expert Syst. Appl., 41 (2014), 7328–7337. https://doi.org/10.1016/j.eswa.2014.06.006 doi: 10.1016/j.eswa.2014.06.006
![]() |
[56] |
J. Y. Ho, J. Ooi, Y. K. Wan, V. Andiappan, Synthesis of wastewater treatment process (WWTP) and supplier selection via Fuzzy Analytic Hierarchy Process (FAHP), J. Clean. Prod., 314 (2021), 128104. https://doi.org/10.1016/j.jclepro.2021.128104 doi: 10.1016/j.jclepro.2021.128104
![]() |
[57] | UNEP food waste index report 2021. Available from: https://www.unep.org/resources/report/unep-food-waste-index-report-2021. |
[58] |
K. L. Thyberg, D. J. Tonjes, J. Gurevitch, Quantification of food waste disposal in the United States: A meta-analysis, Environ. Sci. Technol., 49 (2015), 13946–13953. https://doi.org/10.1021/acs.est.5b03880 doi: 10.1021/acs.est.5b03880
![]() |
[59] |
Z. Wen, Y. Wang, D. D. Clercq, What is the true value of food waste? A case study of technology integration in urban food waste treatment in Suzhou City China, J. Clean. Prod., 118 (2016), 88–96. https://doi.org/10.1016/j.jclepro.2015.12.087 doi: 10.1016/j.jclepro.2015.12.087
![]() |
[60] |
A. Ahamed, K. Yin, B. J. H. Ng, F. Ren, V. W. C. Chang, J. Y. Wang, Life cycle assessment of the present and proposed food waste management technologies from environmental and economic impact perspectives, J. Clean. Prod., 131 (2016), 607–614. https://doi.org/10.1016/j.jclepro.2016.04.127 doi: 10.1016/j.jclepro.2016.04.127
![]() |
[61] | N. R. Khalili, S. Duecker, Application of multi-criteria decision analysis in design of sustainable environmental management system framework, J. Clean. Prod., 47 (2016), 188–198. |
[62] |
M. A. Babalola, A multi-criteria decision analysis of waste treatment options for food and biodegradable waste management in Japan, Environments, 2 (2015), 471–488. https://doi.org/10.3390/environments2040471 doi: 10.3390/environments2040471
![]() |
[63] |
M. A. Mir, P. T. Ghazvine, N. M. N. Sulaiman, N. E. A. Basri, S. Saheri, N. Z. Mahmood, et al., Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model, J. Environ. Manag., 166 (2016), 109–115. https://doi.org/10.1016/j.jenvman.2015.09.028 doi: 10.1016/j.jenvman.2015.09.028
![]() |
[64] |
H. Y. Jin, Z. A. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equ., 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
![]() |
[65] |
H. Zheng, S. Jin, A multi-source fluid queue based stochastic model of the probabilistic offloading strategy in a MEC system with multiple mobile devices and a single MEC server, Int. J. Math. Comput. Sci., 32 (2022), 125–138. http://dx.doi.org/10.34768/amcs-2022-0010 doi: 10.34768/amcs-2022-0010
![]() |
1. | Haolun Wang, Tingjun Xu, Liangqing Feng, Kifayat Ullah, An Improved ARAS Approach with T-Spherical Fuzzy Information and Its Application in Multi-attribute Group Decision-Making, 2024, 26, 1562-2479, 2132, 10.1007/s40815-024-01718-y | |
2. | Jawad Ali, Muhammad Naeem, Ahmad N. Al-Kenani, Complex T-Spherical Fuzzy Frank Aggregation Operators and Their Application to Decision Making, 2023, 11, 2169-3536, 88971, 10.1109/ACCESS.2023.3298845 | |
3. | Ahmet Aytekin, Selçuk Korucuk, Şule Bayazit Bedirhanoğlu, Vladimir Simic, Selecting the ideal sustainable green strategy for logistics companies using a T-spherical fuzzy-based methodology, 2024, 127, 09521976, 107347, 10.1016/j.engappai.2023.107347 | |
4. | Muhammad Azeem, Ayesha Ilyas, Jawad Ali, Madiha Ghamkhar, Muhammad I. Syam, Group decision-making algorithm with sine trigonometric r,s,t-spherical fuzzy aggregation operators and their application, 2024, 14, 2045-2322, 10.1038/s41598-024-61382-y | |
5. | Jawad Ali, Analysis and application of \text {r},\text {s},\text {t}-spherical fuzzy Aczel–Alsina aggregation operators in multiple criteria decision-making, 2024, 9, 2364-4966, 10.1007/s41066-023-00432-8 | |
6. | Bartosz Radomski, Tomasz Mróz, Application of the Hybrid MCDM Method for Energy Modernisation of an Existing Public Building—A Case Study, 2023, 16, 1996-1073, 3475, 10.3390/en16083475 | |
7. | Muhammad Rahim, Shah Zeb Khan, Adel M. Widyan, A. Almutairi, Hamiden Abd El-Wahed Khalifa, A novel complex (p,q,r)- spherical fuzzy TOPSIS framework for sustainable urban development assessment, 2025, 09574174, 127288, 10.1016/j.eswa.2025.127288 |
LTs | T-SPFNs |
Very suitable | 0.800, 0.100, 0.050 |
Suitable | 0.650, 0.150, 0.100 |
Medium suitable | 0.550, 0.200, 0.150 |
Un-suitable | 0.300, 0.300, 0.200 |
Very un-suitable | 0.100, 0.400, 0.400 |
Criterion | |
\mathscr{C}^{\daleth}_1 | Environmental capacity involvement with the developed scenario |
\mathscr{C}^{\daleth}_2 | Time and space are required for residential waste management |
\mathscr{C}^{\daleth}_3 | number of eco-friendly purchases |
\mathscr{C}^{\daleth}_3 | Number of participants in promoting the model |
DM | Linguistic terms |
{\mathscr{P}^{\mathcal{Q}}}_1 | Very suitable |
{\mathscr{P}^{\mathcal{Q}}}_2 | Medium suitable |
{\mathscr{P}^{\mathcal{Q}}}_3 | Suitable |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | \mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.425, 0.255, 0.155) | (0.352, 0.256, 0.106) | (0.359, 0.215, 0.178) | (0.313, 0.243, 0.212) |
{\amalg^{\varsigma}}_2 | (0.356, 0.154, 0.221) | (0.332, 0.312, 0.211) | (0.290, 0.312, 0.145) | (0.434, 0.255, 0.157) |
{\amalg^{\varsigma}}_3 | (0.203, 0.178, 0.248) | (0.154, 0.287, 0.246) | (0.257, 0.235, 0.153) | (0.275, 0.385, 0.213) |
{\amalg^{\varsigma}}_4 | (0.345, 0.120, 0.158) | (0.483, 0.268, 0.121) | (0.472, 0.181, 0.231) | (0.335, 0.265, 0.235) |
{\amalg^{\varsigma}}_5 | (0.165, 0.370, 0.135) | (0.480, 0.260, 0.195) | (0.280, 0.315, 0.320) | (0.115, 0.175, 0.335) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | \mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.340, 0.335, 0.120) | (0.560, 0.125, 0.130) | (0.345, 0.140, 0.115) | (0.515, 0.310, 0.111) |
{\amalg^{\varsigma}}_2 | (0.515, 0.235, 0.134) | (0.165, 0.355, 0.220) | (0.370, 0.425, 0.120) | (0.452, 0.111, 0.123) |
{\amalg^{\varsigma}}_3 | (0.240, 0.121, 0.315) | (0.175, 0.470, 0.265) | (0.255, 0.375, 0.240) | (0.253, 0.135, 0.145) |
{\amalg^{\varsigma}}_4 | (0.135, 0.240, 0.265) | (0.280, 0.330, 0.145) | (0.275, 0.255, 0.340) | (0.253, 0.235, 0.365) |
{\amalg^{\varsigma}}_5 | (0.365, 0.201, 0.235) | (0.281, 0.240, 0.355) | (0.280, 0.135, 0.330) | (0.154, 0.253, 0.335) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | \mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.475, 0.145, 0.110) | (0.345, 0.252, 0.203) | (0.555, 0.303, 0.115) | (0.425, 0.135, 0.111) |
{\amalg^{\varsigma}}_2 | (0.335, 0.245, 0.145) | (0.145, 0.225, 0.335) | (0.230, 0.153, 0.420) | (0.235, 0.435, 0.245) |
{\amalg^{\varsigma}}_3 | (0.370, 0.265, 0.275) | (0.135, 0.210, 0.545) | (0.235, 0.152, 0.220) | (0.265, 0.225, 0.433) |
{\amalg^{\varsigma}}_4 | (0.220, 0.465, 0.135) | (0.250, 0.415, 0.245) | (0.415, 0.152, 0.140) | (0.265, 0.445, 0.135) |
{\amalg^{\varsigma}}_5 | (0.143, 0.154, 0.465) | (0.270, 0.458, 0.165) | (0.120, 0.415, 0.260) | (0.215, 0.115, 0.435) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | |
{\amalg^{\varsigma}}_1 | (0.285906, 0.114804, 0.050480) | (0.272807, 0.114013, 0.056356) |
{\amalg^{\varsigma}}_2 | (0.254533, 0.094056, 0.078675) | (0.117772, 0.178783, 0.139180) |
{\amalg^{\varsigma}}_3 | (0.142084, 0.088203, 0.156125) | (0.077527, 0.205063, 0.236169) |
{\amalg^{\varsigma}}_4 | (0.180479, 0.147796, 0.104477) | (0.240093, 0.212379, 0.072306) |
{\amalg^{\varsigma}}_5 | (0.124448, 0.185574, 0.161027) | (0.253588, 0.199940, 0.113938) |
\mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.294449, 0.114730, 0.0600663) | (0.274437, 0.145051, 0.0669727) |
{\amalg^{\varsigma}}_2 | (0.198061, 0.180828, 0.110345) | (0.268425, 0.153467, 0.0866869) |
{\amalg^{\varsigma}}_3 | (0.139668, 0.122039, 0.0922995) | (0.174100, 0.165420, 0.151573) |
{\amalg^{\varsigma}}_4 | (0.195787, 0.090117, 0.113357) | (0.182522, 0.204743, 0.117831) |
{\amalg^{\varsigma}}_5 | (0.116394, 0.175757, 0.193227) | (0.060994, 0.072372, 0.232129) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | |
{\amalg^{\varsigma}}_1 | (0.285906, 0.114804, 0.050480) | (0.272807, 0.114013, 0.056356) |
{\amalg^{\varsigma}}_2 | (0.254533, 0.094056, 0.078675) | (0.117772, 0.178783, 0.139180) |
{\amalg^{\varsigma}}_3 | (0.142084, 0.088203, 0.156125) | (0.077527, 0.205063, 0.236169) |
{\amalg^{\varsigma}}_4 | (0.180479, 0.147796, 0.104477) | (0.240093, 0.212379, 0.072306) |
{\amalg^{\varsigma}}_5 | (0.124448, 0.185574, 0.161027) | (0.253588, 0.199940, 0.113938) |
\mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.294449, 0.114730, 0.0600663) | (0.274437, 0.145051, 0.0669727) |
{\amalg^{\varsigma}}_2 | (0.198061, 0.180828, 0.110345) | (0.268425, 0.153467, 0.0866869) |
{\amalg^{\varsigma}}_3 | (0.139668, 0.122039, 0.0922995) | (0.174100, 0.165420, 0.151573) |
{\amalg^{\varsigma}}_4 | (0.195787, 0.090117, 0.113357) | (0.182522, 0.204743, 0.117831) |
{\amalg^{\varsigma}}_5 | (0.116394, 0.175757, 0.193227) | (0.060994, 0.072372, 0.232129) |
{\amalg^{\varsigma}}_1 | (0.277325, 0.122136, 0.058918) |
{\amalg^{\varsigma}}_2 | (0.189635, 0.182495, 0.128065) |
{\amalg^{\varsigma}}_3 | (0.120535, 0.187258, 0.202940) |
{\amalg^{\varsigma}}_4 | (0.221568, 0.194255, 0.093429) |
{\amalg^{\varsigma}}_5 | (0.186953, 0.187209, 0.189453) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | |
{\amalg^{\varsigma}}_1 | (0.431824, 0.235033, 0.135906) | (0.411300, 0.229910, 0.143730) |
{\amalg^{\varsigma}}_2 | (0.395850, 0.203841, 0.180950) | (0.234851, 0.310206, 0.262513) |
{\amalg^{\varsigma}}_3 | (0.267909, 0.194961, 0.285270) | (0.171292, 0.327612, 0.359957) |
{\amalg^{\varsigma}}_4 | (0.295482, 0.258636, 0.205240) | (0.374920, 0.345483, 0.168449) |
{\amalg^{\varsigma}}_5 | (0.229988, 0.300186, 0.273095) | (0.386231, 0.329630, 0.226572) |
\mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.435387, 0.232267, 0.150877) | (0.415799, 0.271811, 0.162375) |
{\amalg^{\varsigma}}_2 | (0.325725, 0.306545, 0.220540) | (0.403580, 0.278008, 0.189969) |
{\amalg^{\varsigma}}_3 | (0.263540, 0.240870, 0.199947) | (0.299333, 0.289299, 0.272920) |
{\amalg^{\varsigma}}_4 | (0.329464, 0.196406, 0.228867) | (0.313588, 0.338549, 0.234237) |
{\amalg^{\varsigma}}_5 | (0.233374, 0.307167, 0.327199) | (0.154416, 0.173071, 0.376405) |
{\amalg^{\varsigma}}_1 | (0.277183, 0.121832, 0.124118) |
{\amalg^{\varsigma}}_2 | (0.178633, 0.161073, 0.167273) |
{\amalg^{\varsigma}}_3 | (0.119849, 0.168856, 0.182187) |
{\amalg^{\varsigma}}_4 | (0.215161, 0.186141, 0.198276) |
{\amalg^{\varsigma}}_5 | (0.151333, 0.148903, 0.176793) |
Authors | AOs | Ranking of alternatives | The optimal alternative |
Mahmood et al. [37] | TSFWG | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
Munir et al. [38] | T-SFEWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
T-SFEOWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Zeng et al. [39] | T-SFEWIG | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
T-SFEOWIG | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Liu et al. [40] | SPFPMM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
SPFPDMM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4 | {\amalg^{\varsigma}}_1 | |
Kifayat-Ullah et al. [41] | TSFHWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_3 | {\amalg^{\varsigma}}_1 |
TSFOHWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Khan et al. [42] | T-SPHFSSPHEM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4 | {\amalg^{\varsigma}}_1 |
T-SPHFSSPGHEM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Proposed | T-SPFFWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
LTs | T-SPFNs |
Very suitable | 0.800, 0.100, 0.050 |
Suitable | 0.650, 0.150, 0.100 |
Medium suitable | 0.550, 0.200, 0.150 |
Un-suitable | 0.300, 0.300, 0.200 |
Very un-suitable | 0.100, 0.400, 0.400 |
Criterion | |
\mathscr{C}^{\daleth}_1 | Environmental capacity involvement with the developed scenario |
\mathscr{C}^{\daleth}_2 | Time and space are required for residential waste management |
\mathscr{C}^{\daleth}_3 | number of eco-friendly purchases |
\mathscr{C}^{\daleth}_3 | Number of participants in promoting the model |
DM | Linguistic terms |
{\mathscr{P}^{\mathcal{Q}}}_1 | Very suitable |
{\mathscr{P}^{\mathcal{Q}}}_2 | Medium suitable |
{\mathscr{P}^{\mathcal{Q}}}_3 | Suitable |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | \mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.425, 0.255, 0.155) | (0.352, 0.256, 0.106) | (0.359, 0.215, 0.178) | (0.313, 0.243, 0.212) |
{\amalg^{\varsigma}}_2 | (0.356, 0.154, 0.221) | (0.332, 0.312, 0.211) | (0.290, 0.312, 0.145) | (0.434, 0.255, 0.157) |
{\amalg^{\varsigma}}_3 | (0.203, 0.178, 0.248) | (0.154, 0.287, 0.246) | (0.257, 0.235, 0.153) | (0.275, 0.385, 0.213) |
{\amalg^{\varsigma}}_4 | (0.345, 0.120, 0.158) | (0.483, 0.268, 0.121) | (0.472, 0.181, 0.231) | (0.335, 0.265, 0.235) |
{\amalg^{\varsigma}}_5 | (0.165, 0.370, 0.135) | (0.480, 0.260, 0.195) | (0.280, 0.315, 0.320) | (0.115, 0.175, 0.335) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | \mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.340, 0.335, 0.120) | (0.560, 0.125, 0.130) | (0.345, 0.140, 0.115) | (0.515, 0.310, 0.111) |
{\amalg^{\varsigma}}_2 | (0.515, 0.235, 0.134) | (0.165, 0.355, 0.220) | (0.370, 0.425, 0.120) | (0.452, 0.111, 0.123) |
{\amalg^{\varsigma}}_3 | (0.240, 0.121, 0.315) | (0.175, 0.470, 0.265) | (0.255, 0.375, 0.240) | (0.253, 0.135, 0.145) |
{\amalg^{\varsigma}}_4 | (0.135, 0.240, 0.265) | (0.280, 0.330, 0.145) | (0.275, 0.255, 0.340) | (0.253, 0.235, 0.365) |
{\amalg^{\varsigma}}_5 | (0.365, 0.201, 0.235) | (0.281, 0.240, 0.355) | (0.280, 0.135, 0.330) | (0.154, 0.253, 0.335) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | \mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.475, 0.145, 0.110) | (0.345, 0.252, 0.203) | (0.555, 0.303, 0.115) | (0.425, 0.135, 0.111) |
{\amalg^{\varsigma}}_2 | (0.335, 0.245, 0.145) | (0.145, 0.225, 0.335) | (0.230, 0.153, 0.420) | (0.235, 0.435, 0.245) |
{\amalg^{\varsigma}}_3 | (0.370, 0.265, 0.275) | (0.135, 0.210, 0.545) | (0.235, 0.152, 0.220) | (0.265, 0.225, 0.433) |
{\amalg^{\varsigma}}_4 | (0.220, 0.465, 0.135) | (0.250, 0.415, 0.245) | (0.415, 0.152, 0.140) | (0.265, 0.445, 0.135) |
{\amalg^{\varsigma}}_5 | (0.143, 0.154, 0.465) | (0.270, 0.458, 0.165) | (0.120, 0.415, 0.260) | (0.215, 0.115, 0.435) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | |
{\amalg^{\varsigma}}_1 | (0.285906, 0.114804, 0.050480) | (0.272807, 0.114013, 0.056356) |
{\amalg^{\varsigma}}_2 | (0.254533, 0.094056, 0.078675) | (0.117772, 0.178783, 0.139180) |
{\amalg^{\varsigma}}_3 | (0.142084, 0.088203, 0.156125) | (0.077527, 0.205063, 0.236169) |
{\amalg^{\varsigma}}_4 | (0.180479, 0.147796, 0.104477) | (0.240093, 0.212379, 0.072306) |
{\amalg^{\varsigma}}_5 | (0.124448, 0.185574, 0.161027) | (0.253588, 0.199940, 0.113938) |
\mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.294449, 0.114730, 0.0600663) | (0.274437, 0.145051, 0.0669727) |
{\amalg^{\varsigma}}_2 | (0.198061, 0.180828, 0.110345) | (0.268425, 0.153467, 0.0866869) |
{\amalg^{\varsigma}}_3 | (0.139668, 0.122039, 0.0922995) | (0.174100, 0.165420, 0.151573) |
{\amalg^{\varsigma}}_4 | (0.195787, 0.090117, 0.113357) | (0.182522, 0.204743, 0.117831) |
{\amalg^{\varsigma}}_5 | (0.116394, 0.175757, 0.193227) | (0.060994, 0.072372, 0.232129) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | |
{\amalg^{\varsigma}}_1 | (0.285906, 0.114804, 0.050480) | (0.272807, 0.114013, 0.056356) |
{\amalg^{\varsigma}}_2 | (0.254533, 0.094056, 0.078675) | (0.117772, 0.178783, 0.139180) |
{\amalg^{\varsigma}}_3 | (0.142084, 0.088203, 0.156125) | (0.077527, 0.205063, 0.236169) |
{\amalg^{\varsigma}}_4 | (0.180479, 0.147796, 0.104477) | (0.240093, 0.212379, 0.072306) |
{\amalg^{\varsigma}}_5 | (0.124448, 0.185574, 0.161027) | (0.253588, 0.199940, 0.113938) |
\mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.294449, 0.114730, 0.0600663) | (0.274437, 0.145051, 0.0669727) |
{\amalg^{\varsigma}}_2 | (0.198061, 0.180828, 0.110345) | (0.268425, 0.153467, 0.0866869) |
{\amalg^{\varsigma}}_3 | (0.139668, 0.122039, 0.0922995) | (0.174100, 0.165420, 0.151573) |
{\amalg^{\varsigma}}_4 | (0.195787, 0.090117, 0.113357) | (0.182522, 0.204743, 0.117831) |
{\amalg^{\varsigma}}_5 | (0.116394, 0.175757, 0.193227) | (0.060994, 0.072372, 0.232129) |
{\amalg^{\varsigma}}_1 | (0.277325, 0.122136, 0.058918) |
{\amalg^{\varsigma}}_2 | (0.189635, 0.182495, 0.128065) |
{\amalg^{\varsigma}}_3 | (0.120535, 0.187258, 0.202940) |
{\amalg^{\varsigma}}_4 | (0.221568, 0.194255, 0.093429) |
{\amalg^{\varsigma}}_5 | (0.186953, 0.187209, 0.189453) |
\mathscr{C}^{\daleth}_1 | \mathscr{C}^{\daleth}_2 | |
{\amalg^{\varsigma}}_1 | (0.431824, 0.235033, 0.135906) | (0.411300, 0.229910, 0.143730) |
{\amalg^{\varsigma}}_2 | (0.395850, 0.203841, 0.180950) | (0.234851, 0.310206, 0.262513) |
{\amalg^{\varsigma}}_3 | (0.267909, 0.194961, 0.285270) | (0.171292, 0.327612, 0.359957) |
{\amalg^{\varsigma}}_4 | (0.295482, 0.258636, 0.205240) | (0.374920, 0.345483, 0.168449) |
{\amalg^{\varsigma}}_5 | (0.229988, 0.300186, 0.273095) | (0.386231, 0.329630, 0.226572) |
\mathscr{C}^{\daleth}_3 | \mathscr{C}^{\daleth}_4 | |
{\amalg^{\varsigma}}_1 | (0.435387, 0.232267, 0.150877) | (0.415799, 0.271811, 0.162375) |
{\amalg^{\varsigma}}_2 | (0.325725, 0.306545, 0.220540) | (0.403580, 0.278008, 0.189969) |
{\amalg^{\varsigma}}_3 | (0.263540, 0.240870, 0.199947) | (0.299333, 0.289299, 0.272920) |
{\amalg^{\varsigma}}_4 | (0.329464, 0.196406, 0.228867) | (0.313588, 0.338549, 0.234237) |
{\amalg^{\varsigma}}_5 | (0.233374, 0.307167, 0.327199) | (0.154416, 0.173071, 0.376405) |
{\amalg^{\varsigma}}_1 | (0.277183, 0.121832, 0.124118) |
{\amalg^{\varsigma}}_2 | (0.178633, 0.161073, 0.167273) |
{\amalg^{\varsigma}}_3 | (0.119849, 0.168856, 0.182187) |
{\amalg^{\varsigma}}_4 | (0.215161, 0.186141, 0.198276) |
{\amalg^{\varsigma}}_5 | (0.151333, 0.148903, 0.176793) |
Authors | AOs | Ranking of alternatives | The optimal alternative |
Mahmood et al. [37] | TSFWG | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
Munir et al. [38] | T-SFEWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
T-SFEOWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Zeng et al. [39] | T-SFEWIG | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
T-SFEOWIG | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Liu et al. [40] | SPFPMM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |
SPFPDMM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4 | {\amalg^{\varsigma}}_1 | |
Kifayat-Ullah et al. [41] | TSFHWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_3 | {\amalg^{\varsigma}}_1 |
TSFOHWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Khan et al. [42] | T-SPHFSSPHEM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4 | {\amalg^{\varsigma}}_1 |
T-SPHFSSPGHEM | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 | |
Proposed | T-SPFFWA | {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 | {\amalg^{\varsigma}}_1 |