Processing math: 20%
Research article Special Issues

T-spherical fuzzy information aggregation with multi-criteria decision-making

  • T-spherical fuzzy sets (T-SPFSs) have gained popularity because of their ability to account for uncertainty more effectively and spanning a larger domain. The sum of the t-th power of membership grades in T-SPFSs is close to a unit interval, allowing for greater uncertainty. As a result, this set outperforms traditional fuzzy structures. The "multi-criteria decision-making" (MCDM) approach is a widely used technique that requires the use of some aggregation tools, and various such aggregation operators (AOs) have been developed over the years to achieve this purpose. The purpose of this paper is to propose some new operational laws and AOs for use in a T-spherical fuzzy environment. In this regard, we presented some new neutral or fair operational rules that combine the concept of proportional distribution to provide a neutral or fair solution to the membership, abstinence, and non-membership of T-spherical fuzzy numbers (T-SPFNs). Based on the obtained operational rules, we presented the "T-spherical fuzzy fairly weighted average operator" and the "T-spherical fuzzy fairly ordered weighted averaging operator". Compared to earlier methodologies, the proposed AOs provide more generalised, reliable, and accurate information. In addition, under T-SPFSs, an MCDM approach is developed employing suggested AOs with several decision-makers (DMs) and partial weight details. Finally, to demonstrate the applicability of the innovative technique, we give an actual case study of "food waste treatment technology" (FWTT) selection under T-SPFSs scenarios. A comparison with an existing model has also been undertaken to confirm the validity and robustness of the acquired results.

    Citation: Hafiz Muhammad Athar Farid, Muhammad Riaz, Gustavo Santos Garcia. T-spherical fuzzy information aggregation with multi-criteria decision-making[J]. AIMS Mathematics, 2023, 8(5): 10113-10145. doi: 10.3934/math.2023512

    Related Papers:

    [1] Muhammad Naeem, Aziz Khan, Shahzaib Ashraf, Saleem Abdullah, Muhammad Ayaz, Nejib Ghanmi . A novel decision making technique based on spherical hesitant fuzzy Yager aggregation information: application to treat Parkinson's disease. AIMS Mathematics, 2022, 7(2): 1678-1706. doi: 10.3934/math.2022097
    [2] Muhammad Qiyas, Muhammad Naeem, Saleem Abdullah, Neelam Khan . Decision support system based on complex T-Spherical fuzzy power aggregation operators. AIMS Mathematics, 2022, 7(9): 16171-16207. doi: 10.3934/math.2022884
    [3] Muhammad Akram, Sumera Naz, Feng Feng, Ghada Ali, Aqsa Shafiq . Extended MABAC method based on 2-tuple linguistic T-spherical fuzzy sets and Heronian mean operators: An application to alternative fuel selection. AIMS Mathematics, 2023, 8(5): 10619-10653. doi: 10.3934/math.2023539
    [4] Muhammad Naeem, Muhammad Qiyas, Lazim Abdullah, Neelam Khan, Salman Khan . Spherical fuzzy rough Hamacher aggregation operators and their application in decision making problem. AIMS Mathematics, 2023, 8(7): 17112-17141. doi: 10.3934/math.2023874
    [5] Ashraf Al-Quran . T-spherical linear Diophantine fuzzy aggregation operators for multiple attribute decision-making. AIMS Mathematics, 2023, 8(5): 12257-12286. doi: 10.3934/math.2023618
    [6] Muhammad Ali Khan, Saleem Abdullah, Alaa O. Almagrabi . Analysis of deep learning technique using a complex spherical fuzzy rough decision support model. AIMS Mathematics, 2023, 8(10): 23372-23402. doi: 10.3934/math.20231188
    [7] Muhammad Qiyas, Muhammad Naeem, Neelam Khan . Fractional orthotriple fuzzy Choquet-Frank aggregation operators and their application in optimal selection for EEG of depression patients. AIMS Mathematics, 2023, 8(3): 6323-6355. doi: 10.3934/math.2023320
    [8] Khawlah Alhulwah, Muhammad Azeem, Mehwish Sarfraz, Nasreen Almohanna, Ali Ahmad . Prioritized aggregation operators for Schweizer-Sklar multi-attribute decision-making for complex spherical fuzzy information in mobile e-tourism applications. AIMS Mathematics, 2024, 9(12): 34753-34784. doi: 10.3934/math.20241655
    [9] Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki, Fawad Hussain . q-Spherical fuzzy rough sets and their usage in multi-attribute decision-making problems. AIMS Mathematics, 2023, 8(4): 8210-8248. doi: 10.3934/math.2023415
    [10] Shahid Hussain Gurmani, Zhao Zhang, Rana Muhammad Zulqarnain . An integrated group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information and its application to the selection of cloud storage provider. AIMS Mathematics, 2023, 8(9): 20223-20253. doi: 10.3934/math.20231031
  • T-spherical fuzzy sets (T-SPFSs) have gained popularity because of their ability to account for uncertainty more effectively and spanning a larger domain. The sum of the t-th power of membership grades in T-SPFSs is close to a unit interval, allowing for greater uncertainty. As a result, this set outperforms traditional fuzzy structures. The "multi-criteria decision-making" (MCDM) approach is a widely used technique that requires the use of some aggregation tools, and various such aggregation operators (AOs) have been developed over the years to achieve this purpose. The purpose of this paper is to propose some new operational laws and AOs for use in a T-spherical fuzzy environment. In this regard, we presented some new neutral or fair operational rules that combine the concept of proportional distribution to provide a neutral or fair solution to the membership, abstinence, and non-membership of T-spherical fuzzy numbers (T-SPFNs). Based on the obtained operational rules, we presented the "T-spherical fuzzy fairly weighted average operator" and the "T-spherical fuzzy fairly ordered weighted averaging operator". Compared to earlier methodologies, the proposed AOs provide more generalised, reliable, and accurate information. In addition, under T-SPFSs, an MCDM approach is developed employing suggested AOs with several decision-makers (DMs) and partial weight details. Finally, to demonstrate the applicability of the innovative technique, we give an actual case study of "food waste treatment technology" (FWTT) selection under T-SPFSs scenarios. A comparison with an existing model has also been undertaken to confirm the validity and robustness of the acquired results.



    In practise, as a system becomes more sophisticated, it becomes more difficult for DMs to determine the best choice from a collection of feasible possibilities. It is challenging to convey how tough it is to achieve a single objective, yet it is not unattainable. Numerous organisations wrestled with the complexity of motivating employees, achievement, and worldview development. As a result, organizational choices, whether made by people or committees, include a number of concurrent objectives. Using optionally solved criteria, each DM should be confined to producing the optimal solution for each practical implication in actual issues. As a result, the decision maker is more concerned with developing more realistic and reliable methods for finding the best options.

    MCDM is a widely used intellectual process. Its key feature is to help DMs choose the best possibility out of a limited number of choices by using their expert assessment. To solve these kinds of complications, Zadeh [1] was the first person to come up with the concept of "fuzzy set" (FS), which is a mathematical framework for expressing imprecision. Atanasov [2] took this unique initiative of FS and turned it into the theory of "intuitionistic fuzzy sets" (IFS). It is essential to remember that FS can be described in aspects of "membership functionalities" and IFS can be described in aspects of both "membership and non-membership functionalities". IFSs have been utilized a lot to solve big complications, but there are some situations that they can't handle. Assume that when it comes to voting, the human perspective contains more answers like "yes", "no", "don't know", and "refuse" that traditional FS and IFS can't fully represent. Cuong [3,4] intoduced the idea of "picture fuzzy set" (PFS) to fix these issues.

    Cuong and Hai [5] defined some basics for PFSs. Cuong [6] examined many technique for evaluating the distance between PFSs. Wei et al. introduced the "projection model" [8], "generalized dice similarity measures" [9] and "similarity measures" [10] for PFS. Singh [11] proposed some "correlation coefficients" and Son [12] defined "distributed picture fuzzy clustering method" for PFSs. Riaz et al. [13] revised several fundamental PFS operations. Phong et al. [7] investigated several PF-relation setups.

    In recent eras, there has been a focus on the synthesis of knowledge and improved AOs. The effectiveness and limits of AOs are now a fundamental component of selection. It is evident that AO provides many principles for combining a finite set of fuzzy values into a single fuzzy value. Data analysis is crucial in the selection, business, medical, architecture, and surveillance domains. On PFSs, several AOs have been established in terms of their roles and operating regulations. Garg [14] advocated several averaging AOs for PFNs. Wei [15] and Jana et al. [15] introduced the notion of "Hamacher AOs", whereas Jana et al. [16] recommended "Dombi AOs" for PFNs. Tian et al. [17] gave the notion of "picture fuzzy power Choquet ordered geometric AOs" & "power shapley Choquet ordered AOs". Wang et al. [18] offered the selection of a hotel energy performance conversion project under PFSs. Wang et al. [19] proposed "Muirhead mean AOs" for PFNs.

    Li et al. [20] introduced the unique concept of broadly applied, simplified neutrosophic Einstein AOs. Modified Einstein interacting geometric AOs for "q-rung orthopair fuzzy numbers" were provided by Farid & Riaz [23]. Many AOs for "linear diophantine fuzzy numbers" are given in [21,22]. Ashraf et al. suggested a distance metric for fuzzy collections of cubic picture fuzzy set [24,25]. Saha et al. [26,27] provided the novel hybrid weighted AOs for some extensions of fuzzy. Wei and Zhang [28] selected important providers using single-valued neutrosophic Bonferroni power AOs. Some extra-ordinary work related to proposed work is given in [29,30,31,32]. Cao et al. [33] proposed decision-making method for power grid enterprizes. Liu et al. [34] introduced detection approach for thermal defects.

    In everyday reality, we may meet many scenarios that cannot be addressed by PFS, including when the sum of PMD, NuMD and NgMD > 1. In just such a case, PFS has been unable to deliver an appropriate conclusion. In [35,36] authors proposed the idea of "spherical fuzzy sets" (SFSs) independently in their articles. Mahmood et al. [37] defined T-SPFSs as an extension of SFSs. In T-SPFSs, the sum of the t-th power of membership grades is close to a unit interval, providing for higher uncertainty. As a result, this set outperforms conventional fuzzy structures. Munir et al. [38] developed the Einstein hybrid AOs for T-SPFSs with applications to MCDM. Zeng et al. [39] defined some Einstein interactive AOs for T-SPFSs with application to selection of photovoltaic cells. Liu et al. [40] proposed novel power Muirhead mean AOs for T-SPFSs. Kifayat-Ullah et al. [41] gave the notion of T-SPF Hamacher AOs with MCDM. Khan et al. [42] introduced the Schweizer-Sklar power Heronian mean AOs in the domain of T-SPFSs. More work related to MCDM is given in [43,44,45]. Some work related to AOs and graph structures can be seen in [46,47]. Feng et al. [48] proposed some novel score functions related to orthopair fuzzy set. Senapati and Yager proposed "Fermatean fuzzy set" as the extension of IFS [49]. Smarandache proposed a novel idea of "neutrosophic set" [50,51].

    In literature many AOs [37,38,40,41] are there to solve MCDM problem in the framework of T-SPF, one can see the unbiased nature of aggregation process while dealing equal "membership degree" (MSD), "abstinence degree" (AD) and "non-membership degree" (N-MSD). For example, in the scenario where a DM directs a comparison work to all MSD, AD, and N-MSD, the values acquired by AOs which previously existent in the literature cannot be distinguished [37,38,40,41]. This indicates that the ultimate conclusion is unquestionably biassed. Consequently, several new procedures are necessary to handle MSD, AD, and N-MSD properly and to ensure the fair or neutral operation of T-SPFN. To attain actual satisfaction while assessing positive, abstinence, and negative membership, we provide two neutral or fair procedures based on the notion of proportionate distribution constraints for all functions.

    The "Fermatean fuzzy Heronian mean" AOs and the "method based on the removal effects of criteria" (MEREC) approach were suggested by Rani et al. [52] with applications towards the selection of FWTT. Through the use of a spherical fuzzy technique, Buyuk and Temur [53] presented a new method for selecting treatment options for food waste. Rani et al. [54] was the one who came up with the idea of employing a single-valued neutrosophic framework to identify the best treatment procedure for multi-criteria food waste. Chen et al. [55] suggested a hybrid fuzzy evaluation approach for the purpose of safely evaluating food waste as a feed ingredient, with the method being based on entropy methods. The synthesis of the waste-water treatment process and the selection of suppliers were both introduced by Ho et al. [56] using fuzzy techniques.

    This format is maintained for the rest of the article. In the second part, we will go through the fundamental notions of T-SPFS. In Section 3, we looked at a few different T-SPFN approaches. The appropriate AOs for T-SPFNs are provided in Section 4. In Section 5, an MCDM framework is shown for the suggested AOs, and in Section 6, a numerically comprehensive test case is provided. The most important conclusions from the research are discussed in the seventh part.

    Some key principles connected with T-SPFSs have just been addressed in this portion of the manuscript.

    Definition 2.1. [37] A "T-spherical fuzzy set" (T-SPFS) in X is defined as

    χ={˘,μχ(˘),νχ(˘),τχ(˘)|˘X} (2.1)

    where μχ(˘),νχ(˘),τχ(˘)[0,1], such that 0μtχ(˘)+νtχ(˘)+τtχ(˘)1 for all ˘X. μχ(˘),νχ(˘),τχ(˘) denote "membership degree (MSD), abstinence degree (AD) and non-membership degree (N-MSD)" respectively for some ˘X.

    we denote this pair as =(μ,ν,τ), throughout this article, and called as T-SPFN with the conditions μ,ν,τ[0,1] and μt+νt+τt1.

    Definition 2.2. [37] When implementing T-SPFNs to actual situations, it is crucial to categorize them. For this, "score function" (SF) corresponding to T-SPFN =(μ,ν,τ) be defined as

    S()=μtτt. (2.2)

    In many instances, however, the aforesaid function is inadequate of categorizing T-SPFNs under various settings, making it difficult to tell which is better. This is accomplished by defining an "accuracy function" H of as

    ˘Θζ()=μt+νt+τt. (2.3)

    We shall provide operational principles for aggregating T-SPFNs.

    Definition 2.3. [40] Let 1=μ1,ν1,τ1 and 2=μ2,ν2,τ2 be two T-SPFNs, then

    c1=τ1,ν1,μ1 (2.4)
    12=max{μ1,μ2},min{ν1,ν2},min{τ1,τ2} (2.5)
    12=min{μ1,μ2},max{ν1,ν2},max{τ1,τ2} (2.6)
    12=tμt1+μt2μt1μt2,ν1ν2,τ1τ2 (2.7)
    12=μ1μ2,tνt1+νt2νt1νt2,tτt1+τt2τt1τt2 (2.8)
    σ1=t1(1μt1)σ,νσ1,τσ1 (2.9)
    σ1=μσ1,t1(1νt1)σ,t1(1τt1)σ. (2.10)

    Definition 2.4. Let 1=μ1,ν1,τ1 and 2=μ2,ν2,τ2 be two T-SPFNs and Yγ,Yγ1,Yγ2>0 be the real numbers, then we have

    (1) 12=21

    (2) 12=21

    (3) Yγ(12)=(Yγ1)(Yγ2)

    (4) (12)Yγ=Yγ1Yγ2

    (5) (Yγ1+Yγ2)1=(Yγ11)(Yγ22)

    (6) Yγ1+Yγ21=Yγ11Yγ22.

    If μ1=ν1 and μ2=ν2 then from Definition 2.3 we get, μ12ν12,μ12ν12,μYγ1νYγ1,μYγ1νYγ1. Thus none of the operations 12,12,Yγ1,Yγ1 found to be neutral or fair indeed. Consequently, our focus must first be on developing fair operations amongst T-SPFNs.

    In this part, we construct several basic operations involving T-SPFNs and investigate their fundamental features.

    Definition 3.1. Consider 1=μ1,ν1,τ1 and 2=μ2,ν2,τ2 be the two T-SPFNs and Yγ>0. Then we define

    1˜2=(t(μt1μt2μt1μt2+νt1νt2+τt1τt2)×(1(1μt1νt1τt1)(1μt2νt2τt2)),t(νt1νt2μt1μt2+νt1νt2+τt1τt2)×(1(1μt1νt1τt1)(1μt2νt2τt2)),t(τt1τt2μt1μt2+νt1νt2+τt1τt2)×(1(1μt1νt1τt1)(1μt2νt2τt2)))
    Yγ1=(t(μtYγ1μtYγ1+νtYγ1+τtYγ1)×(1(1μt1νt1τt1)Yγ),t(νtYγ1μtYγ1+νtYγ1+τtYγ1)×(1(1μt1νt1τt1)Yγ),t(τtYγ1μtYγ1+νtYγ1+τtYγ1)×(1(1μt1νt1τt1)Yγ)).

    It can be easily verified that 1˜2,Yγ1 are the T-SPFNs.

    Theorem 3.2. Consider 1=<μ1,ν1,τ1> and 2=<μ2,ν2,τ2> are the T-SPFNs. If μ1=ν1, μ2=ν2 and τ2=τ2 then we have

    (i) μ1˜2=ν1˜2=τ1˜2.

    (ii) μYγ1=νYγ1=τYγ1.

    Proof. (ⅰ) As given μ1=ν1, μ2=ν2 and τ2=τ2

    μ1˜2ν1˜2=t(μt1μt2μt1μt2+νt1νt2+τt1τt2)×(1(1μt1νt1τt1)(1μt2νt2τt2))t(νt1νt2μt1μt2+νt1νt2+τt1τt2)×(1(1μt1νt1τt1)(1μt2νt2τt2))=1

    and

    ν1˜2τ1˜2=t(νt1νt2μt1μt2+νt1νt2+τt1τt2)×(1(1μt1νt1τt1)(1μt2νt2τt2))t(τt1τt2μt1μt2+νt1νt2+τt1τt2)×(1(1μt1νt1τt1)(1μt2νt2τt2))=1.

    Consequently, μ1˜2=ν1˜2=τ1˜2. If μ1=ν1, μ2=ν2 and τ2=τ2.

    (ⅱ)

    μYγ1νYγ1=t(μtYγ1μtYγ1+νtYγ1+τtYγ1)×(1(1μt1νt1τt1)Yγ)t(νtYγ1μtYγ1+νtYγ1+τtYγ1)×(1(1μt1νt1τt1)Yγ)=1

    and

    νYγ1τYγ1=t(νtYγ1μtYγ1+νtYγ1+τtYγ1)×(1(1μt1νt1τt1)Yγ)t(τtYγ1μtYγ1+νtYγ1+τtYγ1)×(1(1μt1νt1τt1)Yγ)=1.

    Consequently, μYγ1=νYγ1=τYγ1. If μ1=ν1, μ2=ν2 and τ2=τ2.

    This theorem reveled that the operations 1˜2,Yγ1 show the fairly or neutral nature to the DMs, when MSD, AD and N-MSD are equal initially. This is why we call the operations ˜, * fairly operations.

    Theorem 3.3. Consider 1=<μ1,ν1,τ1> and 2=<μ2,ν2,τ2> are the T-SPFNs and ,1 and 2 are any three real numbers, then we have

    (i) 1˜2=2˜1

    (ii) (1˜2)=(1)˜(2)

    (iii) (1+2)1=(11)˜(21).

    Proof. (ⅰ) This one is trivial.

    (ⅱ) (1˜2)

    =(t(μt1μt2μt1μt2+νt1νt2+τt1τt2)(μt1μt2μt1μt2+νt1νt2+τt1τt2)+(νt1νt2μt1μt2+νt1νt2+τt1τt2)+(τt1τt2μt1μt2+νt1νt2+τt1τt2)×(1(1(1(1μt1νt1τt1)(1μt2νt2τt2)))),t(νt1νt2μt1μt2+νt1νt2+τt1τt2)(μt1μt2μt1μt2+νt1νt2+τt1τt2)+(νt1νt2μt1μt2+νt1νt2+τt1τt2)+(τt1τt2μt1μt2+νt1νt2+τt1τt2)×(1(1(1(1μt1νt1τt1)(1μt2νt2τt2)))),t(τt1τt2μt1μt2+νt1νt2+τt1τt2)(μt1μt2μt1μt2+νt1νt2+τt1τt2)+(νt1νt2μt1μt2+νt1νt2+τt1τt2)+(τt1τt2μt1μt2+νt1νt2+τt1τt2)×(1(1(1(1μt1νt1τt1)(1μt2νt2τt2)))))
    =(tμt1μt2μt1μt2+νt1νt2+τt1τt2(1(1μt1νt1τt1)(1μt2νt2τt2)),tνt1νt2μt1μt2+νt1νt2+τt1τt2(1(1μt1νt1τt1)(1μt2νt2τt2)),tτt1τt2μt1μt2+νt1νt2+τt1τt2(1(1μt1νt1τt1)(1μt2νt2τt2)),)

    and

    (1)˜(2)=(t(μt1μt1+νt1+τt1)×(1(1μt1νt1τt1)),t(νt1μt1+νt1+τt1)×(1(1μt1νt1τt1)),t(τt1μt1+νt1+τt1)×(1(1μt1νt1τt1))˜t(μt2μt2+νt2+τt2)×(1(1μt2νt2τt2)),t(νt2μt2+νt2+τt2)×(1(1μt2νt2τt2)),t(τt2μt2+νt2+τt2)×(1(1μt2νt2τt2)))=(tμt1μt1+νt1+τt1×μt2μt2+νt2+τt2μt1μt1+νt1+τt1×μt2μt2+νt2+τt2+νt1μt1+νt1+τt1×νt2μt2+νt2+τt2+τt1μt1+νt1+τt1×τt2μt2+νt2+τt2×(1(1(1(1μt1νt1τt1)))×(1(1(1μt2νt2τt2)))),tνt1μt1+νt1+τt1×νt2μt2+νt2+τt2μt1μt1+νt1+τt1×μt2μt2+νt2+τt2+νt1μt1+νt1+τt1×νt2μt2+νt2+τt2+τt1μt1+νt1+τt1×τt2μt2+νt2+τt2×(1(1(1(1μt1νt1τt1)))×(1(1(1μt2νt2τt2)))),tτt1μt1+νt1+τt1×τt2μt2+νt2+τt2μt1μt1+νt1+τt1×μt2μt2+νt2+τt2+νt1μt1+νt1+τt1×νt2μt2+νt2+τt2+τt1μt1+νt1+τt1×τt2μt2+νt2+τt2×(1(1(1(1μt1νt1τt1)))×(1(1(1μt2νt2τt2)))))
    =(tμt1μt2μt1μt2+νt1νt2+τt1τt2(1(1μt1νt1τt1)(1μt2νt2τt2)),tνt1νt2μt1μt2+νt1νt2+τt1τt2(1(1μt1νt1τt1)(1μt2νt2τt2)),tτt1τt2μt1μt2+νt1νt2+τt1τt2(1(1μt1νt1τt1)(1μt2νt2τt2))).

    Hence, (1˜2)=(1)˜(2).

    (ⅲ) (11)˜(21)

    =(t(μt11μt11+νt1+τt1)×(1(1μt1νt1τt1)1),t(νt11μt11+νt1+τt1)×(1(1μt1νt1τt1)1),t(τt11μt11+νt1+τt1)×(1(1μt1νt1τt1)1)˜t(μt21μt21+νt1+τt1)×(1(1μt1νt1τt1)2),t(νt21μt21+νt1+τt1)×(1(1μt1νt1τt1)2),t(τt21μt21+νt1+τt1)×(1(1μt1νt1τt1)2))
    =(t(μt1+21μt1+21+νt1+τt1)×(1(1μt1νt1τt1)1+2),t(νt1+21μt1+21+νt1+τt1)×(1(1μt1νt1τt1)1+2),t(τt1+21μt1+21+νt1+τt1)×(1(1μt1νt1τt1)1+2))

    and

    (1+2)1=(t(μt1+21μt1+21+νt1+τt1)×(1(1μt1νt1τt1)1+2),t(νt1+21μt1+21+νt1+τt1)×(1(1μt1νt1τt1)1+2),t(τt1+21μt1+21+νt1+τt1)×(1(1μt1νt1τt1)1+2)).

    Hence, (1+2)1=(11)˜(21).

    This section addresses the evolution of fair AOs for T-SPFNs and their respective properties.

    Definition 4.1. Let h=μh,νh,τh be the jumble of T-SPFNs, and T-SPFFWA: RnR, be the mapping. If

    T-SPFFWA(1,2,e)=(11˜22˜,˜ee) (4.1)

    then the mapping T-SPFFWA is called "T-spherical fuzzy fairly weighted averaging (T-SPFFWA) operator", here i is the "weight vector" (WV) of i with i>0 and ei=1i=1.

    We may also investigate T-SPFFWA using proposed operational rules, as demonstrated in the theorem that follows.

    Theorem 4.2. Let h=μh,νh,τh be the jumble of T-SPFNs, we can also find T-SPFFWA by

    T-SPFFWA(1,2,,e)=(tei=1(μti)iei=1(μti)i+ei=1(νti)i+ei=1(τti)i×(1ei=1(1μtiνtiτti)i),tei=1(νti)iei=1(μti)i+ei=1(νti)i+ei=1(τti)i×(1ei=1(1μtiνtiτti)i),tei=1(τti)iei=1(μti)i+ei=1(νti)i+ei=1(τti)i×(1ei=1(1μtiνtiτti)i))

    where i is the WV of i with i>0 and ei=1i=1.

    Proof. We will start this prove using mathematical induction.

    For e=1, we have 1=μ1,ν1,τ1 and =1.

    T-SPFFWA(1)=11=(t(μt1)1(μt1)1+(νt1)1+(τt1)1×(1(1μt1νt1τt1)1),t(νt1)1(μt1)1+(νt1)1+(τt1)1×(1(1μt1νt1τt1)1),t(τt1)1(μt1)1+(νt1)1+(τt1)1×(1(1μt1νt1τt1)1)).

    Theorem is valid for e=1, now we consider this is valid for e=g, i.e.,

    T-SPFFWA(1,2,,g)=(tgi=1(μti)igi=1(μti)i+gi=1(νti)i+gi=1(τti)i×(1gi=1(1μtiνtiτti)i),tgi=1(νti)igi=1(μti)i+gi=1(νti)i+gi=1(τti)i×(1gi=1(1μtiνtiτti)i),tgi=1(τti)igi=1(μti)i+gi=1(νti)i+gi=1(τti)i×(1gi=1(1μtiνtiτti)i)).

    We will prove for e=g+1.

    T-SPFFWA(1,2,,g+1) = T-SPFFWA(1,2,,g)˜(g+1g+1)

    =(tgi=1(μti)igi=1(μti)i+gi=1(νti)i+gi=1(τti)i×(1gi=1(1μtiνtiτti)i),tgi=1(νti)igi=1(μti)i+gi=1(νti)i+gi=1(τti)i×(1gi=1(1μtiνtiτti)i),tgi=1(τti)igi=1(μti)i+gi=1(νti)i+gi=1(τti)i×(1gi=1(1μtiνtiτti)i))˜(t(μtg+1g+1μtg+1g+1+νtg+1g+1+τtg+1g+1)×(1(1μtg+1νtg+1τtg+1)g+1),t(νtg+1g+1μtg+1g+1+νtg+1g+1+τtg+1g+1)×(1(1μtg+1νtg+1τtg+1)g+1),t(τtg+1g+1μtg+1g+1+νtg+1g+1+τtg+1g+1)×(1(1μtg+1νtg+1τtg+1)g+1))
    =(tgi=1(μti)i×(μtg+1)g+1gi=1(μti)i×(μtg+1)g+1+gi=1(νti)i×(νtg+1)g+1+gi=1(τti)i(τtg+1)g+1×(1gi=1(1μtiνtiτti)i×(1μtg+1νtg+1τtg+1)g+1),tgi=1(νti)i×(νtg+1)g+1gi=1(μti)i×(μtg+1)g+1+gi=1(νti)i×(νtg+1)g+1+gi=1(τti)i(τtg+1)g+1×(1gi=1(1μtiνtiτti)i×(1μtg+1νtg+1τtg+1)g+1),tgi=1(τti)i×(τtg+1)g+1gi=1(μti)i×(μtg+1)g+1+gi=1(νti)i×(νtg+1)g+1+gi=1(τti)i(τtg+1)g+1×(1gi=1(1μtiνtiτti)i×(1μtg+1νtg+1τtg+1)g+1))=(tg+1i=1(μti)ig+1i=1(μti)i+g+1i=1(νti)i+g+1i=1(τti)i×(1g+1i=1(1μtiνtiτti)i),tg+1i=1(νti)ig+1i=1(μti)i+g+1i=1(νti)i+g+1i=1(τti)i×(1g+1i=1(1μtiνtiτti)i),tg+1i=1(τti)ig+1i=1(μti)i+g+1i=1(νti)i+g+1i=1(τti)i×(1g+1i=1(1μtiνtiτti)i)).

    Therefore, the result also stands for e=g+1. As a result, according to the principle of induction on 'e', the conclusion holds for any and all e.

    Example 4.3. Consider 1=0.415,0.245,0.145, 2=0.339,0.334,0.119 and 3=0.474,0.144,0.109 are three T-SPFNs with WV =(0.399,0.276,0.325), we take t=3, then

    t3i=1(μti)i3i=1(μti)i+3i=1(νti)i+3i=1(τti)i×(13i=1(1μtiνtiτti)i)=0.426140t3i=1(νti)i3i=1(μti)i+3i=1(νti)i+3i=1(τti)i×(13i=1(1μtiνtiτti)i)=0.235385t3i=1(τti)i3i=1(μti)i+3i=1(νti)i+3i=1(τti)i×(13i=1(1μtiνtiτti)i)=0.132880.
    \begin{array}{l} \text{T-SPFFWA} ( \beth_1, \beth_2, \beth_3) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{aligned} = \left(\begin{array}{l} \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{3}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{3}\left(1-{{^{\gimel}\mu}^{t}}_{i} -{{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{3}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{3}\left(1-{{^{\gimel}\mu}^{t}}_{i} -{{^{\gimel}\nu}^{t}}_{i}- {{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}\right)} \end{array}\right) \end{aligned}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; = (0.426140, 0.235385, 0.132880) . \end{array}

    The proposed AO meets a few special requirements, which are presented in the context of the theorems underneath.

    Theorem 4.4. Let \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle be the jumble of T-SPFNs and \beth_{\diamond} = \langle {^{\gimel}\mu}_{\diamond}, {^{\gimel}\nu}_{\diamond}, {^{\gimel}\tau}_{\diamond} \rangle be the T-SPFNs such that, \beth_{i} = \beth_{\diamond} \forall i . Then

    \begin{equation} \text{T-SPFFWA} ( \beth_1, \beth_2, \ldots, \beth_e) = \beth_{\diamond}. \end{equation} (4.2)

    Proof. Given that \aleph_{i} = \aleph_{\diamond} \forall i , by this, {^{\gimel}\mu}_{i} = {^{\gimel}\mu}_{\diamond}, \; \; {^{\gimel}\nu}_{i} = {^{\gimel}\nu}_{\diamond} and {^{\gimel}\tau}_{i} = {^{\gimel}\tau}_{\diamond} \forall i.

    \begin{array}{l} \text{T-SPFFWA} ( \aleph_1, \aleph_2, \ldots, \aleph_e) \\ \;\;\;\;\;\;\;\;\;\;\begin{aligned} = &\left(\begin{array}{l} \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{ \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} -{{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} -{{^{\gimel}\nu}^{t}}_{i}- {{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}\right)} \end{array}\right)\\\\ \end{aligned} \end{array}
    \begin{aligned} = &\left(\begin{array}{l} \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} - {{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond}- {{^{\gimel}\tau}^{t}}_{\diamond} \right)^{{\daleth}_{i}}\right)} \end{array}\right)\\ \end{aligned}
    \begin{aligned} = &\left(\begin{array}{l} \sqrt[t]{\frac{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} - {{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}\right)}, \\\\ \sqrt[t]{ \frac{\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond}- {{^{\gimel}\tau}^{t}}_{\diamond} \right)^{\sum\nolimits_{i = 1}^{e} {\daleth}_{i}}\right)} \end{array}\right)\\\\ = &\left(\begin{array}{l} \sqrt[t]{\frac{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} - {{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)\right)}, \sqrt[t]{ \frac{\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond} - {{^{\gimel}\tau}^{t}}_{\diamond}\right)\right)}, \\\\ \sqrt[t]{ \frac{\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)}{\left({{^{\gimel}\mu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\nu}^{t}}_{\diamond} \right)+\left({{^{\gimel}\tau}^{t}}_{\diamond} \right)} \times\left(1-\left(1-{{^{\gimel}\mu}^{t}}_{\diamond} -{{^{\gimel}\nu}^{t}}_{\diamond}- {{^{\gimel}\tau}^{t}}_{\diamond} \right)\right)} \end{array}\right)\\ = & \langle {^{\gimel}\mu}_{\diamond}, {^{\gimel}\nu}_{\diamond}, {^{\gimel}\tau}_{\diamond} \rangle = \aleph_{\diamond}. \end{aligned}

    Theorem 4.5. Assume that \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle and \beth_{i^*} = \langle {^{\gimel}\mu}_{i^*}, {^{\gimel}\nu}_{i^*}, {^{\gimel}\tau}_{i^*} \rangle are the families of T-SPFNs, and also consider

    {\text{T-SPFFWA}}(\beth_{1} , \beth_{2}, \ldots \beth_{e} )\; = \; \beth \; = \; \langle {^{\gimel}\mu}, {^{\gimel}\nu}, {^{\gimel}\tau} \rangle

    and

    {\text{T-SPFFWA}}(\beth_{1^*} , \beth_{2^*}, \ldots \beth_{e^*} ) \; = \; \beth_{^*} \; = \; \langle {^{\gimel}\mu}_{^*}, {^{\gimel}\nu}_{^*}, {^{\gimel}\tau}_{^*} \rangle.

    Then,

    {{^{\gimel}\mu}^{t}}+{{^{\gimel}\nu}^{t}}+{{^{\gimel}\tau}^{t}} \leq {{^{\gimel}\mu}^{t}}_{^*}+ {{^{\gimel}\nu}^{t}}_{^*}+ {{^{\gimel}\tau}^{t}}_{^*}, \; \; \; {\text{if}} \; \; \; {{^{\gimel}\mu}^{t}}_{i}+ {{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i} \leq {{^{\gimel}\mu}^{t}}_{i^*}+ {{^{\gimel}\nu}^{t}}_{i^*}+ {{^{\gimel}\tau}^{t}}_{i^*}

    Proof. By applying Theorem 4.2 on the both collection of T-SPFNs namely, \aleph_{i} = \langle {{^{\gimel}\mu}^{t}}_{i}, {{^{\gimel}\nu}^{t}}_{i}, {{^{\gimel}\tau}^{t}}_{i} \rangle and \aleph_{i^*} = \langle {{^{\gimel}\mu}^{t}}_{i^*}, {{^{\gimel}\nu}^{t}}_{i^*}, {{^{\gimel}\tau}^{t}}_{i^*} \rangle , we get

    \begin{eqnarray*} {{^{\gimel}\mu}^{t}} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)\\\\ {{^{\gimel}\nu}^{t}} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times \left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)\\\\ {{^{\gimel}\tau}^{t}} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right) \end{eqnarray*}

    and

    \begin{eqnarray*} {{^{\gimel}\mu}^{t}}_{^*} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i^*} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i^*} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i^*} - {{^{\gimel}\nu}^{t}}_{i^*} - {{^{\gimel}\tau}^{t}}_{i^*}\right)^{{\daleth}_{i}}\right)\\\\ {{^{\gimel}\nu}^{t}}_{^*} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i^*} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i^*} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i^*} - {{^{\gimel}\nu}^{t}}_{i^*} - {{^{\gimel}\tau}^{t}}_{i^*}\right)^{{\daleth}_{i}}\right)\\\\ {{^{\gimel}\tau}^{t}}_{^*} & = & \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i^*} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i^*} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i^*} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i^*} - {{^{\gimel}\nu}^{t}}_{i^*} - {{^{\gimel}\tau}^{t}}_{i^*}\right)^{{\daleth}_{i}}\right).\\ \end{eqnarray*}

    By this, if {{^{\gimel}\mu}^{t}}_{i}+ {{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i} \leq {{^{\gimel}\mu}^{t}}_{i^*}+ {{^{\gimel}\nu}^{t}}_{i^*}+ {{^{\gimel}\tau}^{t}}_{i^*} then we have,

    {{^{\gimel}\mu}^{t}}+ {{^{\gimel}\nu}^{t}}+ {{^{\gimel}\tau}^{t}} = 1-\prod\limits_{i = 1}^{e} \left(1-\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{{\daleth}_{i}} \leq 1-\prod\limits_{i = 1}^{e} \left(1-\left\{{{^{\gimel}\mu}^{t}}_{i^*}+{{^{\gimel}\nu}^{t}}_{i^*}+{{^{\gimel}\tau}^{t}}_{i^*}\right\}\right)^{{\daleth}_{i}} \leq {{^{\gimel}\mu}^{t}}_{^*}+ {{^{\gimel}\nu}^{t}}_{^*}+ {{^{\gimel}\tau}^{t}}_{^*}.

    Theorem 4.6. Let \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle be the jumble of T-SPFNs. Then for \text{T-SPFFWA} (\beth_1, \beth_2, \ldots, \beth_e) = \langle {^{\gimel}\mu}_{x}, {^{\gimel}\nu}_{x}, {^{\gimel}\tau}_{x} \rangle , we have

    \begin{array}{l} \min\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}+ {{^{\gimel}\tau}^{t}}_{i}\right\} \leq {{^{\gimel}\mu}^{t}}_{x}+{{^{\gimel}\nu}^{t}}_{x} + {{^{\gimel}\tau}^{t}}_{x}\leq \max\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i}\right\}. \end{array}

    Proof. We start with

    \begin{eqnarray*} \min\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i}\right\} & = & 1-\left(1-\min _{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right) \\ & = & 1-\left(1-\min\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{\sum\limits_{i = 1}^{e} {\daleth}_{i}} \\ & = & 1-\prod\limits_{i = 1}^{e} \left(1-\min\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{{\daleth}_{i}} \\ &\leq & 1-\prod\limits_{i = 1}^{e} \left(1-\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{{\daleth}_{i}} \\ &\leq & 1-\prod\limits_{i = 1}^{e} \left(1-\max\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{{\daleth}_{i}} \\ & = & 1- \left(1-\max\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+{{^{\gimel}\tau}^{t}}_{i}\right\}\right)^{\sum\limits_{i = 1}^{e}{\daleth}_{i}} \\ & = & \max\limits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i}\right\}. \end{eqnarray*}

    By Theorem 4.2, we get

    \begin{eqnarray*} {^{\gimel}\mu}_{x} & = & \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}\\\\ {^{\gimel}\nu}_{x} & = & \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}\\\\ {^{\gimel}\tau}_{x} & = & \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{i} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{i} \right)^{{\daleth}_{i}}} \times\left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right)}. \end{eqnarray*}

    From this, we get

    {{^{\gimel}\mu}^{t}}_{x}+ {{^{\gimel}\nu}^{t}}_{x}+ {{^{\gimel}\tau}^{t}}_{x} = \left(1-\prod\limits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{i} - {{^{\gimel}\nu}^{t}}_{i} - {{^{\gimel}\tau}^{t}}_{i}\right)^{{\daleth}_{i}}\right).

    Consequently,

    \begin{array}{l} \min\nolimits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}+ {{^{\gimel}\tau}^{t}}_{i}\right\} \leq {{^{\gimel}\mu}^{t}}_{x}+{{^{\gimel}\nu}^{t}}_{x} + {{^{\gimel}\tau}^{t}}_{x}\leq \max\nolimits_{i}\left\{{{^{\gimel}\mu}^{t}}_{i}+{{^{\gimel}\nu}^{t}}_{i}+ {{^{\gimel}\tau}^{t}}_{i}\right\} \end{array}.

    Definition 4.7. Let \beth_{h} = \langle{^{\gimel}\mu}_{h}, {^{\gimel}\nu}_{h}, {^{\gimel}\tau}_{h} \rangle be the jumble of T-SPFNs, and T-SPFFOWA: \mathscr{R}^n \rightarrow \mathscr{R} , be the mapping. If

    \begin{equation} \text{T-SPFFOWA}(\beth_{1} , \beth_{2}, \ldots \beth_{e} ) = \left( {\daleth}_1 * \beth_{\xi_{(1)}} \tilde{\oplus} {\daleth}_2 * \beth_{\xi_{(2)}} \tilde{\oplus} \ldots , \tilde{\oplus} {\daleth}_e * \beth_{\xi_{(e)}} \right) \end{equation} (4.3)

    then the mapping T-SPFFOWA is called "T-spherical fuzzy fairly ordered weighted averaging (T-SPFFOWA) operator", here {\daleth}_i is the WV of \beth_i with {\daleth}_i > 0 and \sum_{i = 1}^{e} {\daleth}_i = 1 .

    {\xi}: {1, 2, 3, ......., n} \rightarrow {1, 2, 3, ......., n} is a permutation map s.t. \beth_{\xi_{(i-1)}} \geq \beth_{\xi_{(i)}}.

    We may also investigate T-SPFFOWA using proposed operational rules, as demonstrated in the theorem that follows.

    Theorem 4.8. Let \beth_{h} = \langle {^{\gimel}\mu}_{h}, {^{\gimel}\nu}_{h}, {^{\gimel}\tau}_{h} \rangle be the jumble of T-SPFNs, we can also find T-SPFFOWA by

    \begin{array}{l} \text{T-SPFFOWA} ( \beth_1, \beth_2, \ldots, \beth_e) \\ \;\;\;\;\;\;\;\;\begin{aligned} = \left(\begin{array}{l} \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{\xi_{(i)}}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\xi_{(i)}} - {{^{\gimel}\nu}^{t}}_{\xi_{(i)}} - {{^{\gimel}\tau}^{t}}_{\xi_{(i)}}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{\frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\xi_{(i)}} -{{^{\gimel}\nu}^{t}}_{\xi_{(i)}} - {{^{\gimel}\tau}^{t}}_{\xi_{(i)}}\right)^{{\daleth}_{i}}\right)}, \\\\ \sqrt[t]{ \frac{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}}{\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\mu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\nu}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}+\prod\nolimits_{i = 1}^{e}\left({{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}} \times\left(1-\prod\nolimits_{i = 1}^{e}\left(1-{{^{\gimel}\mu}^{t}}_{\xi_{(i)}} -{{^{\gimel}\nu}^{t}}_{\xi_{(i)}}- {{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \right)^{{\daleth}_{i}}\right)} \end{array}\right) \end{aligned} \end{array}

    where {\daleth}_i is the WV of \beth_i with {\daleth}_i > 0 and \sum_{i = 1}^{e} {\daleth}_i = 1 .

    Theorem 4.9. Let \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle be the jumble of T-SPFNs and \beth_{\diamond} = \langle {^{\gimel}\mu}_{\diamond}, {^{\gimel}\nu}_{\diamond}, {^{\gimel}\tau}_{\diamond} \rangle be the T-SPFNs such that, \beth_{i} = \beth_{\diamond} \forall i . Then

    \begin{equation} {T-SPFFOWA} ( \beth_1, \beth_2, \ldots, \beth_e) = \beth_{\diamond}. \end{equation} (4.4)

    Theorem 4.10. Let \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle be the jumble of T-SPFNs. Then for \text{T-SPFFOWA} (\beth_1, \beth_2, \ldots, \beth_e) = \langle {^{\gimel}\mu}_{x}, {^{\gimel}\nu}_{x}, {^{\gimel}\tau}_{x} \rangle , we have

    \begin{array}{l} \min\nolimits_{\xi_{(i)}}\left\{{{^{\gimel}\mu}^{t}}_{\xi_{(i)}}+ {{^{\gimel}\nu}^{t}}_{\xi_{(i)}}+ {{^{\gimel}\tau}^{t}}_{\xi_{(i)}}\right\} \leq {{^{\gimel}\mu}^{t}}_{x}+{{^{\gimel}\nu}^{t}}_{x} + {{^{\gimel}\tau}^{t}}_{x}\leq \max\nolimits_{\xi_{(i)}}\left\{{{^{\gimel}\mu}^{t}}_{\xi_{(i)}}+{{^{\gimel}\nu}^{t}}_{\xi_{(i)}}+ {{^{\gimel}\tau}^{t}}_{\xi_{(i)}}\right\}. \end{array}

    Theorem 4.11. Assume that \beth_{i} = \langle {^{\gimel}\mu}_{i}, {^{\gimel}\nu}_{i}, {^{\gimel}\tau}_{i} \rangle and \beth_{i^*} = \langle {^{\gimel}\mu}_{i^*}, {^{\gimel}\nu}_{i^*}, {^{\gimel}\tau}_{i^*} \rangle are the families of T-SPFNs, and also consider

    {\text{T-SPFFOWA}}(\beth_{1} , \beth_{2}, \ldots \beth_{e} )\; = \; \beth \; = \; \langle {^{\gimel}\mu}, {^{\gimel}\nu}, {^{\gimel}\tau} \rangle

    and

    {\text{T-SPFFOWA}}(\beth_{1^*} , \beth_{2^*}, \ldots \beth_{e^*} ) \; = \; \beth_{^*} \; = \; \langle {^{\gimel}\mu}_{^*}, {^{\gimel}\nu}_{^*}, {^{\gimel}\tau}_{^*} \rangle.

    Then,

    {{^{\gimel}\mu}^{t}}+{{^{\gimel}\nu}^{t}}+{{^{\gimel}\tau}^{t}} \leq {{^{\gimel}\mu}^{t}}_{^*}+ {{^{\gimel}\nu}^{t}}_{^*}+ {{^{\gimel}\tau}^{t}}_{^*}, \; \; \; {\text{if}} \; \; \; {{^{\gimel}\mu}^{t}}_{\xi_{(i)}}+ {{^{\gimel}\nu}^{t}}_{\xi_{(i)}}+ {{^{\gimel}\tau}^{t}}_{\xi_{(i)}} \leq {{^{\gimel}\mu}^{t}}_{\xi_{(i)}^*}+ {{^{\gimel}\nu}^{t}}_{\xi_{(i)}^*}+ {{^{\gimel}\tau}^{t}}_{\xi_{(i)}^*}.

    We explore an MCDM issue by comparing each of the n different options to a set of m distinct qualities. In this circumstance, it is necessary to have a group of p specialists whose ratings must be larger than zero, but whose total is one.

    As one can remember, the alternative {\amalg^{\varsigma}}_{j} (j = 1, 2, \ldots, n) should be provided by a group of experts {\mathscr{P}^{\mathcal{Q}}}_{k} (k = 1, 2, \ldots, p) . The characteristics \mathscr{C}^{\daleth}_{i} (i = 1, 2, \ldots, m) were likewise chosen by experts after deliberation; hence, the evaluation result is supplied in terms of T-SPFNs, {\alpha^{\varphi}}_{ji}^{p} = \Bigg\langle \xi_{ji}^{p}, \rho_{ji}^{p}, \kappa_{ji}^{p} \Bigg\rangle . Assume further that \mathscr{W}_{t} is the WV for the feature \mathscr{C}^{\daleth}_{i} meeting the criteria, \mathscr{W}_{t} \geq 0 and \sum_{t = 1}^{m} \mathscr{W}_{t} = 1 . The proposed operator is used to create an MCDM for the T-SPF data, which includes the following steps:

    Algorithm
    Step 1:
    Determine the ratings of DMs based on the DMs' importance as "linguistics terms" (LTs) as indicated in T-SPFNs. The LTs listed in Table 1. Assume \aleph_{k} = \Big\langle {^{\gimel}\mu}_{k}, {^{\gimel}\nu}_{k}, {^{\gimel}\tau}_{k} \Big\rangle is the T-SPFN for the importance of k -th DM. Then the weight \zeta_{k} of k -th DM can be calculated as follows:

    \begin{equation} \zeta_{k} = \frac{\aleph_{k}}{\sum\nolimits_{k = 1}^{p} \aleph_{k}}, k = 1, 2, 3, \ldots, p \end{equation} (5.1)
    Table 1.  Linguistic terms for DMs.
    LTs T-SPFNs
    Very suitable 0.800, 0.100, 0.050
    Suitable 0.650, 0.150, 0.100
    Medium suitable 0.550, 0.200, 0.150
    Un-suitable 0.300, 0.300, 0.200
    Very un-suitable 0.100, 0.400, 0.400

     | Show Table
    DownLoad: CSV

    where \aleph_{k} = {{^{\gimel}\mu}^{t}}_{k}+ \left(1-{{^{\gimel}\mu}^{t}}_{k}-{{^{\gimel}\nu}^{t}}_{k}-{{^{\gimel}\tau}^{t}}_{k}\right)\left(\frac{{{^{\gimel}\nu}^{t}}_{k}}{{{^{\gimel}\mu}^{t}}_{k}+{{^{\gimel}\nu}^{t}}_{k}+{{^{\gimel}\tau}^{t}}{k}}\right)\left(\frac{{{^{\gimel}\tau}^{t}}_{k}}{{{^{\gimel}\mu}^{t}}_{k}+{{^{\gimel}\nu}^{t}}_{k}+{{^{\gimel}\tau}^{t}}{k}}\right) and clearly \sum_{k = 1}^{p} \zeta_{k} = 1 .

    Step 2:

    Acquire a decision matrix {\mathscr{P}^{\mathcal{Q}}}_{(p)} = (\mathfrak{Y}^{(p)}_{ji})_{n\times m } in the form of T-SPFNs from the DMs.

    Step 3:

    Establish a consolidated T-SPF judgement matrix. It is necessary to note that, while developing the aggregated T-SPF decision matrix, all individual perspectives must be summed and included to generate a collective viewpoint. The proposed AO will provide the things to this end:

    Consider H = \Big(H_{ji}\Big)_{n\times m} is the aggregated T-SPF decision matrix, where

    H_{ji} = T-SPFFWA\; \; \Big( \mathfrak{Y}^{(1)}_{ji}, \mathfrak{Y}^{(2)}_{ji}, \ldots, \mathfrak{Y}^{(p)}_{ji} \Big)

    or

    H_{ji} = T-SPFFOWA \; \; \Big( \mathfrak{Y}^{(1)}_{ji}, \mathfrak{Y}^{(2)}_{ji}, \ldots, \mathfrak{Y}^{(p)}_{ji} \Big).

    For convenience, we take H_{ji} as H_{ji} = \Big\langle {^{\gimel}\mu}_{ji}, {^{\gimel}\nu}_{ji}, {^{\gimel}\tau}_{ji}\Big\rangle

    Step 4:

    If required, normalise the T-SPFNs by changing each cost kind attribute ({^{\gimel}\tau}_{c}) to benefit kind attribute ({^{\gimel}\tau}_{b}) with the help of formula given by:

    \begin{equation} (\aleph^{N}_{ji})_{n\times m } = \begin{cases} ( {\tilde{\eth}}_{ji})^c; & i \in {^{\gimel}\tau}_{c} \\ {\tilde{\eth}}_{ji}; & i \in {^{\gimel}\tau}_{b}, \end{cases} \end{equation} (5.2)

    where ({\tilde{\eth}}_{ji})^c show the compliment of ({\tilde{\eth}}_{ji}) . The normalised decision matrix will be \Gamma_{N} = \Big(\aleph^{N}_{ji}\Big)_{n\times m } = \Big(\breve{{^{\gimel}\mu}}_{ji}, \breve{{^{\gimel}\nu}}_{ji}, \breve{{^{\gimel}\tau}}_{ji} \Big)_{n\times m } .

    Step 5:

    Construct the accuracy matrix, by utilizing the accuracy function of T-SPFNs as \Psi = \Big({\breve{\Theta}^{\zeta}} \Big(\aleph^{N}_{ji}\Big)\Big)_{n\times m }.

    Step 6:

    Just on basis of this scoring matrix \Psi , a "weighted sum of the scores of each alternate {\amalg^{\varsigma}}_j " is calculated by

    \yen({\amalg^{\varsigma}}_j) = \sum\limits_{i = 1}^{m} \mathscr{W}^{\gamma}_{i}\; {\breve{\Theta}^{\zeta}} \Big(\aleph^{N}_{ji}\Big), \; \; \; (j = 1, 2, \ldots, n),

    where, \mathscr{W}^{\gamma}_{1}, \mathscr{W}^{\gamma}_{2}, \ldots \mathscr{W}^{\gamma}_{m} be the WV of the given criterion.

    Assume that the weights are indeterminate and that \overbrace{\coprod} represents a subset of them. We evaluate these indeterminate weights using the underlying computational model:

    Max\; \; g = \sum\limits_{i = 1}^{m} \yen({\amalg^{\varsigma}}_j)

    under the conditions \sum_{i = 1}^{m} \mathscr{W}^{\gamma}_{i} = 1 . By using this methodology, the WV is normalised. Using a linear programming model, we calculate the weights of criteria subject to certain limitations.

    Step 7:

    Using the normalised decision matrix \Gamma_{N} and the WV \mathscr{W}^{\gamma} , analyze the consolidated weighted T-SPF decision matrix. We used the suggested AOs listed below.

    \begin{array}{l} T-SPFFWA(\aleph^{N}_{j1}, \aleph^{N}_{j2}, \ldots, \aleph^{N}_{jm}) \\ \;\;\;\;\;\;\;\; \begin{aligned} = \left(\begin{array}{l} \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}}\right)^{\mathscr{W}^{\gamma}_{i}}\right), \\\\ \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} -\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}}\right)^{\mathscr{W}^{\gamma}_{i}}\right), \\\\ \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} -\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}}- \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}} \right) \end{array}\right) \end{aligned} \end{array}

    or

    \begin{array}{l} T-SPFFOWA(\aleph^{N}_{j1}, \aleph^{N}_{j2}, \ldots, \aleph^{N}_{jm}) \\ \;\;\;\;\;\; \begin{aligned} = \left(\begin{array}{l} \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{{\mathscr{W}^{\gamma}}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}}\right)^{\mathscr{W}^{\gamma}_{i}}\right), \\\\ \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} -\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} - \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}}\right)^{\mathscr{W}^{\gamma}_{i}}\right), \\\\ \frac{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}}{\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}+\prod\nolimits_{j = 1}^{m}\left(\breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}}} \times\left(1-\prod\nolimits_{j = 1}^{m}\left(1-\breve{{{^{\gimel}\mu}^{t}}}_{j\xi_{(i)}} -\breve{{{^{\gimel}\nu}^{t}}}_{j\xi_{(i)}}- \breve{{{^{\gimel}\tau}^{t}}}_{j\xi_{(i)}} \right)^{\mathscr{W}^{\gamma}_{i}} \right) \end{array}\right). \end{aligned} \end{array}

    Step 8:

    Using T-SPF, compute the score value of the whole weighted consolidated result. Rank each option depending on the SF, and afterwards select the most desired one (s).

    Demonstration of the suggested method is shown in Figure 1.

    Figure 1.  Pictorial view of proposed algorithm.

    Food waste treatment and management has become a major concern due to the considerable ecological, sociological, and monetary consequences. Because of the correlation of multiple qualitative and quantitative qualities, selecting the best acceptable food waste treatment procedure from a group of alternatives might be considered an MCDM challenge. The colossal sum of "food waste" (FW) is produced each year around the world, and the sum of the FW era has expanded over time [58]. For occasion, within the Joined together States, FW accounted for 21.1% of the disposed of metropolitan squander stream in 2012 which is identical to 31.4 million tons. In China, 90 million tons of FW was produced in 2010 which made up almost 51% of the "municipal solid waste" (MSW) generation [59]. It is evaluated that over one-fourth of nourishment delivered around the world annually is squandered amid production, handling, dispersion, utilization, and transfer. In developed nations such as Japan, the United Kingdom, South Korea and Australia, the sums of FW produced per year were 9.9, 7.0, 5.7 and 4.4 million tons respectively on normal [60].

    It is calculated that 1.6 billion tons of "primary product equivalents" are lost due to food waste throughout the world every year. The edible portion of this represents 1.3 billion tones of foodstuff that is lost or wasted every year. It is projected that 3.3 billion tones of CO _{2} equivalence of greenhouse gases are emitted into the sky each year as a result of food being wasted. The entire amount of water utilized each year in the production of food that is either lost over time (250 km3) is similar to the yearly flow of the Volga River in Russia or 3 times the volume of Lake Geneva. This is a significant issue that has to be addressed. In a similar vein, each year, 1.4 billion hectares of land, which accounts for 28 percent of the total agricultural acreage on the planet, is used to produce food that is either not consumed or is wasted. Agriculture is the primary cause of the bulk of the dangers that face endangered plant and animal species that are monitored by the International Union for the Conservation of Nature (IUCN). Composting only accounts for a small fraction of the total amount of wasted food; the vast majority of it is transferred to landfills, where it contributes significantly to the volume of municipal solid waste. One of the most significant contributors to greenhouse gas emissions from the waste industry is the methane that is released from landfills. Composting at home has the ability to divert up to 150 kg per household per year of food waste away from the collecting authority in the community. FW at the retail and consumer level is often greater in areas with middle- and high-incomes, but food losses during agricultural production are more common in developing nations. To exclude fish and seafood from the calculation, the yearly cost of the direct economic effects of food waste is estimated to be 750 billion dollars. Total FW per year and estimated FW per capita for different countries given in Figures 2 and 3 respectively [57].

    Figure 2.  Total food waste in year 2021 for different countries.
    Figure 3.  Total food waste in year 2021 per capita for different countries.

    FW presents transfer challenges basically due to its tall dampness substance, oil substance, and heterogeneous nature. The choice of waste management technology could be a complex issue from two major perspectives. Firstly, it requires thought of data and investigation from a few distinctive disciplines, to be specific financial matters, supply administration, designing, material science, and chemistry. Besides, determination requires communication and understanding of diverse viewpoints from inside an organization from providers to handlers, and security officers to administration [61]. A recent review of MCDM within the improvement of industrial waste administration approaches universally appears how the goals of these frameworks have become progressively complex over later decades. Babalola conducted a ponder to assess diverse treatment choices for large volumes of nourishment and natural squander and their reasonableness for Japan utilizing MCDM [62]. Additionally in 2016, Mir et al. utilized MCDM to compare and rank 11 MSW treatment strategy scenarios for Malaysia ecologically and financially [63]. The choice investigation, in this manner, has been broadly supported and executed as a implies to supply a straightforward examination and a way to consider and reconcile diverse points of view within the determination of waste administration. Partner engagement utilizing MCDM to back metropolitan solid waste administration has been detailed to facilitate communication, assess clashes and bolster the positioning of diverse techniques.

    FW demands several treatment techniques. Burning, anaerobic assimilation, landfilling, pyrolysis, ethanol ageing, and gasification are a few innovations for FW treatment (FWT) that involve diverse financial guesses and have diverse social and environmental repercussions. Various writers have conducted a small number of investigations in this area. In general, FWTT determination necessitates a full analysis of arrangement planning, country's GDP, garbage collection, transparency index, availability of suitable technology, people's awareness of supportability, etc., in which several viable technological options are studied. Consequently, it can be acknowledged that determining an optimal FWTT may involve a complex decision-making process governed by a variety of variables. MCDM methods are applied well for this purpose.

    In this section, we actualize the presented decision-making strategy on the choice of alluring FWTT among a set of choices, which uncovers the viability and practicality of the developed strategy. After a preparatory investigation, a gather of specialists ( {\mathscr{P}^{\mathcal{Q}}}_1 , {\mathscr{P}^{\mathcal{Q}}}_2 , {\mathscr{P}^{\mathcal{Q}}}_3 ) has chosen, five technologies as the candidate of FWTT, which are anaerobic absorption {\amalg^{\varsigma}}_1 , incineration {\amalg^{\varsigma}}_2 , composting {\amalg^{\varsigma}}_3 , landfill {\amalg^{\varsigma}}_4 , and gasification {\amalg^{\varsigma}}_5 . DMs evaluating the five technologies under the criterion given in Table 2. Here we take t = 3 .

    Table 2.  Criterion for land selection.
    Criterion
    \mathscr{C}^{\daleth}_1 Environmental capacity involvement with the developed scenario
    \mathscr{C}^{\daleth}_2 Time and space are required for residential waste management
    \mathscr{C}^{\daleth}_3 number of eco-friendly purchases
    \mathscr{C}^{\daleth}_3 Number of participants in promoting the model

     | Show Table
    DownLoad: CSV

    Step 1:

    LTs for each DM given in Table 3. By the LTs find the DMs weights by the Eq (5.1), Then the DMs weight are \zeta_{1} = 0.3990 , \zeta_{2} = 0.2760 and \zeta_{3} = 0.3250 .

    Table 3.  Linguistic terms for DMs.
    DM Linguistic terms
    {\mathscr{P}^{\mathcal{Q}}}_1 Very suitable
    {\mathscr{P}^{\mathcal{Q}}}_2 Medium suitable
    {\mathscr{P}^{\mathcal{Q}}}_3 Suitable

     | Show Table
    DownLoad: CSV

    Step 2:

    Obtain the decision matrix {\mathscr{P}^{\mathcal{Q}}}_{(p)} = (\mathfrak{Y}^{(p)}_{ji})_{n\times m } in the format of T-SPFNs from DMs. The judgement values, given by three DMs, are given in Tables 46.

    Table 4.  Assessment matrix acquired from {\mathscr{P}^{\mathcal{Q}}}_1 .
    \mathscr{C}^{\daleth}_1 \mathscr{C}^{\daleth}_2 \mathscr{C}^{\daleth}_3 \mathscr{C}^{\daleth}_4
    {\amalg^{\varsigma}}_1 (0.425, 0.255, 0.155) (0.352, 0.256, 0.106) (0.359, 0.215, 0.178) (0.313, 0.243, 0.212)
    {\amalg^{\varsigma}}_2 (0.356, 0.154, 0.221) (0.332, 0.312, 0.211) (0.290, 0.312, 0.145) (0.434, 0.255, 0.157)
    {\amalg^{\varsigma}}_3 (0.203, 0.178, 0.248) (0.154, 0.287, 0.246) (0.257, 0.235, 0.153) (0.275, 0.385, 0.213)
    {\amalg^{\varsigma}}_4 (0.345, 0.120, 0.158) (0.483, 0.268, 0.121) (0.472, 0.181, 0.231) (0.335, 0.265, 0.235)
    {\amalg^{\varsigma}}_5 (0.165, 0.370, 0.135) (0.480, 0.260, 0.195) (0.280, 0.315, 0.320) (0.115, 0.175, 0.335)

     | Show Table
    DownLoad: CSV
    Table 5.  Assessment matrix acquired from {\mathscr{P}^{\mathcal{Q}}}_2 .
    \mathscr{C}^{\daleth}_1 \mathscr{C}^{\daleth}_2 \mathscr{C}^{\daleth}_3 \mathscr{C}^{\daleth}_4
    {\amalg^{\varsigma}}_1 (0.340, 0.335, 0.120) (0.560, 0.125, 0.130) (0.345, 0.140, 0.115) (0.515, 0.310, 0.111)
    {\amalg^{\varsigma}}_2 (0.515, 0.235, 0.134) (0.165, 0.355, 0.220) (0.370, 0.425, 0.120) (0.452, 0.111, 0.123)
    {\amalg^{\varsigma}}_3 (0.240, 0.121, 0.315) (0.175, 0.470, 0.265) (0.255, 0.375, 0.240) (0.253, 0.135, 0.145)
    {\amalg^{\varsigma}}_4 (0.135, 0.240, 0.265) (0.280, 0.330, 0.145) (0.275, 0.255, 0.340) (0.253, 0.235, 0.365)
    {\amalg^{\varsigma}}_5 (0.365, 0.201, 0.235) (0.281, 0.240, 0.355) (0.280, 0.135, 0.330) (0.154, 0.253, 0.335)

     | Show Table
    DownLoad: CSV
    Table 6.  Assessment matrix acquired from {\mathscr{P}^{\mathcal{Q}}}_3 .
    \mathscr{C}^{\daleth}_1 \mathscr{C}^{\daleth}_2 \mathscr{C}^{\daleth}_3 \mathscr{C}^{\daleth}_4
    {\amalg^{\varsigma}}_1 (0.475, 0.145, 0.110) (0.345, 0.252, 0.203) (0.555, 0.303, 0.115) (0.425, 0.135, 0.111)
    {\amalg^{\varsigma}}_2 (0.335, 0.245, 0.145) (0.145, 0.225, 0.335) (0.230, 0.153, 0.420) (0.235, 0.435, 0.245)
    {\amalg^{\varsigma}}_3 (0.370, 0.265, 0.275) (0.135, 0.210, 0.545) (0.235, 0.152, 0.220) (0.265, 0.225, 0.433)
    {\amalg^{\varsigma}}_4 (0.220, 0.465, 0.135) (0.250, 0.415, 0.245) (0.415, 0.152, 0.140) (0.265, 0.445, 0.135)
    {\amalg^{\varsigma}}_5 (0.143, 0.154, 0.465) (0.270, 0.458, 0.165) (0.120, 0.415, 0.260) (0.215, 0.115, 0.435)

     | Show Table
    DownLoad: CSV

    Step 3:

    To construct the aggregated T-SPF decision matrix, all individual opinions must be totalled up and integrated to form a group opinion.

    H = \Big({\tilde{\eth}}_{ji}\Big)_{5\times 4} be the aggregated T-SPF decision matrix, where

    {\tilde{\eth}}_{ji} = T-SPFFWA\; \; \Big(\mathfrak{Y}^{(1)}_{ji}, \mathfrak{Y}^{(2)}_{ji}, \mathfrak{Y}^{(3)}_{ji} \Big) = \left(\zeta_1 * \mathfrak{Y}^{(1)}_{ji} \tilde{\oplus} \zeta_2 * \mathfrak{Y}^{(2)}_{ji} \tilde{\oplus} \zeta_3 * \mathfrak{Y}^{(3)}_{ji} \right) . Aggregated T-SPF decision matrix given in Table 7.

    Table 7.  Aggregated T-SPF decision matrix.
    \mathscr{C}^{\daleth}_1 \mathscr{C}^{\daleth}_2
    {\amalg^{\varsigma}}_1 (0.285906, 0.114804, 0.050480) (0.272807, 0.114013, 0.056356)
    {\amalg^{\varsigma}}_2 (0.254533, 0.094056, 0.078675) (0.117772, 0.178783, 0.139180)
    {\amalg^{\varsigma}}_3 (0.142084, 0.088203, 0.156125) (0.077527, 0.205063, 0.236169)
    {\amalg^{\varsigma}}_4 (0.180479, 0.147796, 0.104477) (0.240093, 0.212379, 0.072306)
    {\amalg^{\varsigma}}_5 (0.124448, 0.185574, 0.161027) (0.253588, 0.199940, 0.113938)
    \mathscr{C}^{\daleth}_3 \mathscr{C}^{\daleth}_4
    {\amalg^{\varsigma}}_1 (0.294449, 0.114730, 0.0600663) (0.274437, 0.145051, 0.0669727)
    {\amalg^{\varsigma}}_2 (0.198061, 0.180828, 0.110345) (0.268425, 0.153467, 0.0866869)
    {\amalg^{\varsigma}}_3 (0.139668, 0.122039, 0.0922995) (0.174100, 0.165420, 0.151573)
    {\amalg^{\varsigma}}_4 (0.195787, 0.090117, 0.113357) (0.182522, 0.204743, 0.117831)
    {\amalg^{\varsigma}}_5 (0.116394, 0.175757, 0.193227) (0.060994, 0.072372, 0.232129)

     | Show Table
    DownLoad: CSV

    Step 4:

    Here is no cost type attribute so, the normalized decision matrix will be \Gamma_{N} = \Big(\aleph^{N}_{ji}\Big)_{n\times m } = \Big(\breve{{^{\gimel}\mu}}_{ji}, \breve{{^{\gimel}\nu}}_{ji}, \breve{{^{\gimel}\tau}}_{ji} \Big)_{5\times 4 } , given in Table 8.

    Table 8.  Normalized T-SPF decision matrix.
    \mathscr{C}^{\daleth}_1 \mathscr{C}^{\daleth}_2
    {\amalg^{\varsigma}}_1 (0.285906, 0.114804, 0.050480) (0.272807, 0.114013, 0.056356)
    {\amalg^{\varsigma}}_2 (0.254533, 0.094056, 0.078675) (0.117772, 0.178783, 0.139180)
    {\amalg^{\varsigma}}_3 (0.142084, 0.088203, 0.156125) (0.077527, 0.205063, 0.236169)
    {\amalg^{\varsigma}}_4 (0.180479, 0.147796, 0.104477) (0.240093, 0.212379, 0.072306)
    {\amalg^{\varsigma}}_5 (0.124448, 0.185574, 0.161027) (0.253588, 0.199940, 0.113938)
    \mathscr{C}^{\daleth}_3 \mathscr{C}^{\daleth}_4
    {\amalg^{\varsigma}}_1 (0.294449, 0.114730, 0.0600663) (0.274437, 0.145051, 0.0669727)
    {\amalg^{\varsigma}}_2 (0.198061, 0.180828, 0.110345) (0.268425, 0.153467, 0.0866869)
    {\amalg^{\varsigma}}_3 (0.139668, 0.122039, 0.0922995) (0.174100, 0.165420, 0.151573)
    {\amalg^{\varsigma}}_4 (0.195787, 0.090117, 0.113357) (0.182522, 0.204743, 0.117831)
    {\amalg^{\varsigma}}_5 (0.116394, 0.175757, 0.193227) (0.060994, 0.072372, 0.232129)

     | Show Table
    DownLoad: CSV

    Step 5:

    Construct the score matrix, by utilizing the SF of T-SPFNs as \Psi = \Big({\breve{\Theta}^{\zeta}} \Big(\aleph^{N}_{ji}\Big)\Big)_{5\times 4 } .

    Step 6:

    Consider that the DMs provide the following partial weight details about the attribute weights:

    \Psi = 0.10 \leq \mathscr{W}^{\gamma}_{1} \leq 0.35 , 0.20 \leq \mathscr{W}^{\gamma}_{2} \leq 0.53 , 0.10 \leq \mathscr{W}^{\gamma}_{3} \leq 0.70 , 0.15 \leq \mathscr{W}^{\gamma}_{4} \leq 0.65

    Relying on this data, the following optimization framework can be developed:

    \begin{eqnarray*} Max\; \; g & = & 0.0250124 \mathscr{W}^{\gamma}_{1} + 0.0178093 \mathscr{W}^{\gamma}_{1} + 0.0073595 \mathscr{W}^{\gamma}_{1} + 0.0102475 \mathscr{W}^{\gamma}_{1} + 0.0124935 \mathscr{W}^{\gamma}_{1}\\ &&0.0219643 \mathscr{W}^{\gamma}_{2} + 0.0100441 \mathscr{W}^{\gamma}_{2} + 0.0222615 \mathscr{W}^{\gamma}_{2} + 0.0237974 \mathscr{W}^{\gamma}_{2} + 0.0257794 \mathscr{W}^{\gamma}_{2}\\ &&0.0272556 \mathscr{W}^{\gamma}_{3} + 0.0150260 \mathscr{W}^{\gamma}_{3} + 0.0053284 \mathscr{W}^{\gamma}_{3} + 0.0096936 \mathscr{W}^{\gamma}_{3} + 0.0142206 \mathscr{W}^{\gamma}_{3}\\ &&0.0240217 \mathscr{W}^{\gamma}_{4} + 0.0236064 \mathscr{W}^{\gamma}_{4} + 0.0132859 \mathscr{W}^{\gamma}_{4} + 0.0162993 \mathscr{W}^{\gamma}_{4} + 0.0131140 \mathscr{W}^{\gamma}_{4}, \end{eqnarray*}

    such that,

    0.10 \leq \mathscr{W}^{\gamma}_{1} \leq 0.35 , 0.20 \leq \mathscr{W}^{\gamma}_{2} \leq 0.53 , 0.10 \leq \mathscr{W}^{\gamma}_{3} \leq 0.70 , 0.15 \leq \mathscr{W}^{\gamma}_{4} \leq 0.65 , \mathscr{W}^{\gamma}_{1} + \mathscr{W}^{\gamma}_{2}+ \mathscr{W}^{\gamma}_{3}+ \mathscr{W}^{\gamma}_{4} = 1 , \mathscr{W}^{\gamma}_{1}, \mathscr{W}^{\gamma}_{2}, \mathscr{W}^{\gamma}_{3}, \mathscr{W}^{\gamma}_{4} \geq 0 .

    By solving this model we get, \mathscr{W}^{\gamma}_{1} = 0.1, \mathscr{W}^{\gamma}_{2} = 0.53, \mathscr{W}^{\gamma}_{3} = 0.1, \mathscr{W}^{\gamma}_{4} = 0.27.

    Step 7:

    Evaluate the aggregated weighted T-SPF decision matrix by using proposed AOs given by Table 9.

    Table 9.  Aggregated weighted T-SPF decision matrix.
    {\amalg^{\varsigma}}_1 (0.277325, 0.122136, 0.058918)
    {\amalg^{\varsigma}}_2 (0.189635, 0.182495, 0.128065)
    {\amalg^{\varsigma}}_3 (0.120535, 0.187258, 0.202940)
    {\amalg^{\varsigma}}_4 (0.221568, 0.194255, 0.093429)
    {\amalg^{\varsigma}}_5 (0.186953, 0.187209, 0.189453)

     | Show Table
    DownLoad: CSV

    Step 8:

    Compute the score values of all alternatives.

    S\left( {\amalg^{\varsigma}}_1 \right)\; = \; 0.0211243
    S\left( {\amalg^{\varsigma}}_2 \right)\; = \; 0.00471918
    S\left( {\amalg^{\varsigma}}_3 \right)\; = \; -0.0066068
    S\left( {\amalg^{\varsigma}}_4 \right)\; = \; 0.01006180
    S\left( {\amalg^{\varsigma}}_5 \right)\; = \; -0.0002658.

    At the end, the final ranking will be

    {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5.

    Thus, we conclude that the optimal FWTT option is incineration {\amalg^{\varsigma}}_1 .

    To check the validity and authenticity of the proposed AOs in this article, we solve our given problem employing fundamental averaging AOs suggested by [37]. We take the "normalized T-SPF decision matrix" from Step 4 and the WV obtained from the partial weight details from Step 6 as \mathscr{W}^{\gamma}_{1} = 0.32, \mathscr{W}^{\gamma}_{2} = 0.20, \mathscr{W}^{\gamma}_{3} = 0.33, \mathscr{W}^{\gamma}_{4} = 0.15 . We apply "T-spherical fuzzy weighted average (T-SPFWA) operator", on the T-SPFNs given in Table 10 and get the following results given in Table 11.

    Table 10.  T-SPF decision matrix.
    \mathscr{C}^{\daleth}_1 \mathscr{C}^{\daleth}_2
    {\amalg^{\varsigma}}_1 (0.431824, 0.235033, 0.135906) (0.411300, 0.229910, 0.143730)
    {\amalg^{\varsigma}}_2 (0.395850, 0.203841, 0.180950) (0.234851, 0.310206, 0.262513)
    {\amalg^{\varsigma}}_3 (0.267909, 0.194961, 0.285270) (0.171292, 0.327612, 0.359957)
    {\amalg^{\varsigma}}_4 (0.295482, 0.258636, 0.205240) (0.374920, 0.345483, 0.168449)
    {\amalg^{\varsigma}}_5 (0.229988, 0.300186, 0.273095) (0.386231, 0.329630, 0.226572)
    \mathscr{C}^{\daleth}_3 \mathscr{C}^{\daleth}_4
    {\amalg^{\varsigma}}_1 (0.435387, 0.232267, 0.150877) (0.415799, 0.271811, 0.162375)
    {\amalg^{\varsigma}}_2 (0.325725, 0.306545, 0.220540) (0.403580, 0.278008, 0.189969)
    {\amalg^{\varsigma}}_3 (0.263540, 0.240870, 0.199947) (0.299333, 0.289299, 0.272920)
    {\amalg^{\varsigma}}_4 (0.329464, 0.196406, 0.228867) (0.313588, 0.338549, 0.234237)
    {\amalg^{\varsigma}}_5 (0.233374, 0.307167, 0.327199) (0.154416, 0.173071, 0.376405)

     | Show Table
    DownLoad: CSV
    Table 11.  Aggregated weighted T-SPF decision matrix by using T-SPFWA operator.
    {\amalg^{\varsigma}}_1 (0.277183, 0.121832, 0.124118)
    {\amalg^{\varsigma}}_2 (0.178633, 0.161073, 0.167273)
    {\amalg^{\varsigma}}_3 (0.119849, 0.168856, 0.182187)
    {\amalg^{\varsigma}}_4 (0.215161, 0.186141, 0.198276)
    {\amalg^{\varsigma}}_5 (0.151333, 0.148903, 0.176793)

     | Show Table
    DownLoad: CSV

    Compute the score values of all alternatives.

    S\left( {\amalg^{\varsigma}}_1 \right)\; = \; 0.0193839
    S\left( {\amalg^{\varsigma}}_2 \right)\; = \; 0.0010198
    S\left( {\amalg^{\varsigma}}_3 \right)\; = \; -0.004325
    S\left( {\amalg^{\varsigma}}_4 \right)\; = \; 0.0021658
    S\left( {\amalg^{\varsigma}}_5 \right)\; = \; -0.002060.

    At the end, the final ranking will be

    {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5.

    We achieve the same optimum solution employing the T-SPFWA operator, illustrating the resilience of our proposed AOs.

    By analyzing the inputs with specific pre-existing AOs and obtaining an equal optimal solution, we equalize our outcomes. This proves the robustness and reliability of the suggested AOs. Due to its unbiased or neutral operation for T-SPFNs, the offered technique is more practicable and preferable to some previous AOs. The comparison of proposed AOs with some existing operators are given in Table 12.

    Table 12.  Comparison of proposed AOs with some exiting operators.
    Authors AOs Ranking of alternatives The optimal alternative
    Mahmood et al. [37] TSFWG {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 {\amalg^{\varsigma}}_1
    Munir et al. [38] T-SFEWA {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 {\amalg^{\varsigma}}_1
    T-SFEOWA {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_5 {\amalg^{\varsigma}}_1
    Zeng et al. [39] T-SFEWIG {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 {\amalg^{\varsigma}}_1
    T-SFEOWIG {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 {\amalg^{\varsigma}}_1
    Liu et al. [40] SPFPMM {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 {\amalg^{\varsigma}}_1
    SPFPDMM {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4 {\amalg^{\varsigma}}_1
    Kifayat-Ullah et al. [41] TSFHWA {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_3 {\amalg^{\varsigma}}_1
    TSFOHWA {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 {\amalg^{\varsigma}}_1
    Khan et al. [42] T-SPHFSSPHEM {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_5\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4 {\amalg^{\varsigma}}_1
    T-SPHFSSPGHEM {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_5 {\amalg^{\varsigma}}_1
    Proposed T-SPFFWA {\amalg^{\varsigma}}_1 \succ {\amalg^{\varsigma}}_4\succ {\amalg^{\varsigma}}_2\succ {\amalg^{\varsigma}}_3\succ {\amalg^{\varsigma}}_5 {\amalg^{\varsigma}}_1

     | Show Table
    DownLoad: CSV

    Present research indicates that when a DM provides an equal number of membership, abstinence and non-membership evaluations for an object, the resulting aggregate assessments are uneven. In this scenario, we proposed some novel fairly or neutrality operations based on T-SPFS and proportional distribution rules for membership, abstinence and non-membership functions, with an emphasis on correctness and applicability throughout decision making impacted by the DM's attitude. We contributed some "T-spherical fuzzy fairly weighted averaging (T-SPFFWA) operator" and "T-spherical fuzzy fairly ordered weighted averaging (T-SPFFOWA) operator" for the T-SPFN information, inspired by fairly operations. We discussed the prospective AOs' characteristics in considerable detail. The primary benefit of the suggested operators is that they facilitate not just interaction amongst pairs of diverse T-SPFNs, but also the exploration of DM attitude characteristics by enabling for a categorical treatment of the T-SPFS degrees. The developed strategy was compared with extant strategies to confirm its legitimacy. The results gotten by the proposed strategy confirm that it encompasses a better than average viability and soundness and is reliable with extant models. There is no interaction between the membership, abstention, and non-membership degrees as we discuss the limitations of proposed AOs. On this side of the proposed AOs, the hybrid structure of interactive AOs is implemented. This model was expanded to incorporate the global dynamics of a three-species spatial food chain model [64] and a multi-source fluid queue-based stochastic model [65].

    The authors declare that they have no conflict of interest.



    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] B. C. Cuong, Picture fuzzy sets-first results, part 1, Seminar neuro-fuzzy systems with applications, Institute of Mathematics, Hanoi, 2013.
    [4] B. C. Cuong, Picture fuzzy sets-first results, part 2, Seminar neuro-fuzzy systems with applications, Institute of Mathematics, Hanoi, 2013.
    [5] B. C. Cuong, P. V. Hai, Some fuzzy logic operators for picture fuzzy sets, In 2015 Seventh International Conference on Knowledge and Systems Engineering, Vietnam, IEEE, 2015,132–137. https://doi.org/10.1109/KSE.2015.20
    [6] B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Technol., 30 (2014), 409–420.
    [7] P. H. Phong, D. T. Hieu, R. T. H. Ngan, P. T. Them, Some compositions of picture fuzzy relations, In proceedings of the 7th national conference on fundamental and applied information technology research, FAIR'7, Thai Nguyen, 2014, 19–20.
    [8] G. W. Wei, F. E. Alsaadi, T. Hayat, A. Alsaedi, Projection models for multiple attribute decision making with picture fuzzy information, Int. J. Mach. Learn. Cyb., 9 (2018), 713–719. https://doi.org/10.1007/s13042-016-0604-1 doi: 10.1007/s13042-016-0604-1
    [9] G. W. Wei, H. Gao, The generalized dice similarity measures for picture fuzzy sets and their applications, Informatica, 29 (2018), 107–124.
    [10] G. W. Wei, Some similarity measures for picture fuzzy sets and their applications, Iran. J. Fuzzy Syst., 15 (2018), 77–89.
    [11] P. Singh, Correlation coefficients for picture fuzzy sets, J. Intell. Fuzzy Syst., 27 (2014), 2857–2868. https://doi.org/10.3233/IFS-141247 doi: 10.3233/IFS-141247
    [12] L. H. Son, DPFCM: A novel distributed picture fuzzy clustering method on picture fuzzy sets, Expert Syst. Appl., 2 (2015), 51–66.
    [13] M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, Comput. Model. Eng. Sci., 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699
    [14] H. Garg, Some picture fuzzy aggregation operators and their applications to multicriteria decision-making, Arab. J. Sci. Eng., 42 (2017), 5275–5290. https://doi.org/10.1007/s13369-017-2625-9 doi: 10.1007/s13369-017-2625-9
    [15] G. W. Wei, Picture fuzzy hamacher aggregation operators and their application to multiple attribute decision making, Fund. Inform., 157 (2018), 271–320. https://doi.org/10.3233/FI-2018-1628 doi: 10.3233/FI-2018-1628
    [16] C. Jana, T. Senapati, M. Pal, R. R. Yager, Picture fuzzy Dombi aggregation operators: Application to MADM process, Appl. Soft Comput., 74 (2019), 99–109. https://doi.org/10.1016/j.asoc.2018.10.021 doi: 10.1016/j.asoc.2018.10.021
    [17] C. Tian, J. J. Peng, S. Zhang, W. Y. Zhang, J. Q. Wang, Weighted picture fuzzy aggregation operators and their applications to multi-criteria decision-making problems, Comput. Ind. Eng., 137 (2019), 106037. https://doi.org/10.1016/j.cie.2019.106037 doi: 10.1016/j.cie.2019.106037
    [18] L. Wang, H. Y. Zhang, J. Q. Wang, G. F. Wu, Picture fuzzy multi-criteria group decision-making method to hotel building energy efficiency retrofit project selection, RAIRO Oper. Res., 54 (2020), 211–229. https://doi.org/10.1051/ro/2019004 doi: 10.1051/ro/2019004
    [19] R. Wang, J. Wang, H. Gao, G. Wei, Methods for MADM with picture fuzzy muirhead mean operators and their application for evaluating the financial investment risk, Symmetry, 11 (2019), 6. https://doi.org/10.3390/sym11010006 doi: 10.3390/sym11010006
    [20] B. Li, J. Wang, L. Yang, X. Li Novel generalized simplified neutrosophic number Einstein aggregation operator, Int. J. Appl. Math., 48 (2016), 1–6.
    [21] M. Riaz, H. M. A. Farid, M. Aslam, D. Pamucar, D. Bozanic, Novel approach for third-party reverse logistic provider selection process under linear Diophantine fuzzy prioritized aggregation operators, Symmetry, 13 (2021), 1152. https://doi.org/10.3390/sym13071152 doi: 10.3390/sym13071152
    [22] A. Iampan, G. S. Garcia, M. Riaz, H. M. A. Farid, R. Chinram, Linear diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems, J. Math., 2021 (2021), 5548033. https://doi.org/10.1155/2021/5548033 doi: 10.1155/2021/5548033
    [23] H. M. A. Farid, M. Riaz, Some generalized q-rung orthopair fuzzy Einstein interactive geometric aggregation operators with improved operational laws, Int. J. Intell. Syst., 36 (2021), 7239–7273. https://doi.org/10.1002/int.22587 doi: 10.1002/int.22587
    [24] S. Ashraf, S. Abdullah, T. Mahmood, M, Aslam, Cleaner production evaluation in gold mines using novel distance measure method with cubic picture fuzzy numbers, Int. J. Fuzzy Syst., 21 (2019), 2448–2461. https://doi.org/10.1007/s40815-019-00681-3 doi: 10.1007/s40815-019-00681-3
    [25] S. Ashraf, S. Abdullah, T. Mahmood, Aggregation operators of cubic picture fuzzy quantities and their application in decision support systems, Korean J. Math., 28 (2020), 1976–8605.
    [26] A. Saha, D. Dutta, S. Kar, Some new hybrid hesitant fuzzy weighted aggregation operators based on Archimedean and Dombi operations for multi-attribute decision making, Neural Comput. Appl., 33 (2021), 8753–8776. https://doi.org/10.1007/s00521-020-05623-x doi: 10.1007/s00521-020-05623-x
    [27] A. Saha, P. Majumder, D. Dutta, B. K. Debnath, Multi-attribute decision making using q-rung orthopair fuzzy weighted fairly aggregation operators, J. Amb. Intell. Humaniz. Comput., 12 (2021), 8149–8171. https://doi.org/10.1007/s12652-020-02551-5 doi: 10.1007/s12652-020-02551-5
    [28] G. Wei, Z. Zhang, Some single-valued neutrosophic bonferroni power aggregation operators in multiple attribute decision making, J. Amb. Intell. Humaniz. Comput., 10 (2019), 863–882. https://doi.org/10.1007/s12652-018-0738-y doi: 10.1007/s12652-018-0738-y
    [29] F. Karaaslan, S. Ozlu, Correlation coefficients of dual type-2 hesitant fuzzy sets and their applications in clustering analysis, Int. J. Intell. Syst., 35 (2020), 1200–1229. https://doi.org/10.1002/int.22239 doi: 10.1002/int.22239
    [30] J. C. R. Alcantud, The relationship between fuzzy soft and soft topologies, J. Intell. Fuzzy Syst., 2022. https://doi.org/10.1007/s40815-021-01225-4 doi: 10.1007/s40815-021-01225-4
    [31] M. Akram, K. Ullah, D. Pamucar, Performance evaluation of solar energy cells using the interval-valued T-spherical fuzzy Bonferroni mean operators, Energies, 15 (2022), 292. https://doi.org/10.3390/en15010292 doi: 10.3390/en15010292
    [32] A. Hussain, K. Ullah, M. S. Yang, D. Pamucar, Aczel-Alsina aggregation operators on T-spherical fuzzy (TSF) information with application to TSF multi-attribute decision making, IEEE Access, 10 (2022), 26011–26023. https://doi.org/10.1109/ACCESS.2022.3156764 doi: 10.1109/ACCESS.2022.3156764
    [33] B. Cao, Y. Yan, Y. Wang, X. Liu, J. C. W. Lin, A. K. Sangaiah, et al., A multiobjective intelligent decision-making method for multistage placement of PMU in power grid enterprises, IEEE Trans. Industr. Inform., 2022.
    [34] K. Liu, Z. Yang, W. Wei, B. Gao, D. Xin, C. Sun, et al., Novel detection approach for thermal defects: Study on its feasibility and application to vehicle cables, High Volt., 2022. https://doi.org/10.1049/hve2.12258 doi: 10.1049/hve2.12258
    [35] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. https://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [36] F. K. Gundogdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2019), 337–352. https://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [37] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach towards decision making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural. Comput. Appl., 31 (2018), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [38] M. Munir, H. Kalsoom, K. Ullah, T. Mahmood, Y. M. Chu, T-spherical fuzzy Einstein hybrid aggregation operators and their applications in multi-attribute decision making problems, Symmetry, 12 (2020), 365. https://doi.org/10.3390/sym12030365 doi: 10.3390/sym12030365
    [39] S. Zeng, M. Munir, T. Mahmood, M. Naeem, Some T-spherical fuzzy Einstein interactive aggregation operators and their application to selection of photovoltaic cells, Math. Probl. Eng., 2020 (2020), 1904362.
    [40] P. Liu, Q. Khan, T. Mahmood, N. Hassan, T-spherical fuzzy power Muirhead mean operator based on novel operational laws and their application in multi-attribute group decision making, IEEE Access, 7 (2019), 22613–22632. https://doi.org/10.1109/ACCESS.2019.2896107 doi: 10.1109/ACCESS.2019.2896107
    [41] K. Ullah, T. Mahmood, H. Garg, Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators, Int. J. Fuzzy Syst., 22 (2020), 570–582. https://doi.org/10.1007/s40815-020-00803-2 doi: 10.1007/s40815-020-00803-2
    [42] Q. Khan, J. Gwak, M. Shahzad, M. K. Alam, A novel approached based on T-spherical fuzzy Schweizer-Sklar power Heronian mean operator for evaluating water reuse applications under uncertainty, Sustainability, 13 (2021), 7108. https://doi.org/10.3390/su13137108 doi: 10.3390/su13137108
    [43] X. Gou, P. Xiao, D. Huang, F. Deng, Probabilistic double hierarchy linguistic alternative queuing method for real economy development evaluation under the perspective of economic financialization, Econ. Res.-Ekon. Istraž., 34 (2021), 3225–3244. https://doi.org/10.1080/1331677X.2020.1870520 doi: 10.1080/1331677X.2020.1870520
    [44] X. Gou, Z. Xu, H. Liao, F. Herrera, Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: The application in smart healthcare, J. Oper. Res. Soc., 72 (2021), 2611–2630. https://doi.org/10.1080/01605682.2020.1806741 doi: 10.1080/01605682.2020.1806741
    [45] X. Gou, Z. Xu, W. Zhou, E. H. Viedma, The risk assessment of construction project investment based on prospect theory with linguistic preference orderings, Econ. Res.-Ekon. Istraž., 34 (2021), 709–731.
    [46] J. C. R. Alcantud, G. S. García, M. Akram, OWA aggregation operators and multi-agent decisions with N-soft sets, Expert Syst. Appl., 203 (2022), 1–17. https://doi.org/10.1016/j.eswa.2022.117430 doi: 10.1016/j.eswa.2022.117430
    [47] M. Sitara, M. Akram, M. Riaz, Decision-making analysis based on q-rung picture fuzzy graph structures, J. Appl. Math. Comput., 67 (2021), 541–577. https://doi.org/10.1007/s12190-020-01471-z doi: 10.1007/s12190-020-01471-z
    [48] F. Feng, Y. Zheng, B. Sun, M. Akram, Novel score functions of generalized orthopair fuzzy membership grades with application to multiple attribute decision making, Granular Comput., 7 (2022), 95–111. https://doi.org/10.1007/s41066-021-00253-7 doi: 10.1007/s41066-021-00253-7
    [49] T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Amb. Intel. Hum. Comp., 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0
    [50] F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, Rehoboth, American Research Press, 1999, 1–141.
    [51] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single-valued neutrosophic sets, Infinite study, 2010, 1–4.
    [52] P. Rani, A. R. Mishra, A. Saha, I. M. Hezam, D. Pamucar, Fermatean fuzzy Heronian mean operators and MEREC-based additive ratio assessment method: An application to food waste treatment technology selection, Int. J. Intell. Syst., 37 (2022), 2612–2647. https://doi.org/10.1002/int.22787 doi: 10.1002/int.22787
    [53] A. M. Buyuk, G. T. Temur, Food waste treatment option selection through spherical fuzzy AHP, J. Intell. Fuzzy Syst., 42 (2022), 97–107. https://doi.org/10.3233/JIFS-219178 doi: 10.3233/JIFS-219178
    [54] P. Rani, A. R. Mishra, R. Krishankumar, K. S. Ravichandran, S. Kar, Multi-criteria food waste treatment method selection using single-valued neutrosophic-CRITIC-MULTIMOORA framework, Appl. Soft Comput., 111 (2021), 107657. https://doi.org/10.1016/j.asoc.2021.107657 doi: 10.1016/j.asoc.2021.107657
    [55] T. Chen, Y. Jin, X. Qiu, X. Chen, A hybrid fuzzy evaluation method for safety assessment of food-waste feed based on entropy and the analytic hierarchy process methods, Expert Syst. Appl., 41 (2014), 7328–7337. https://doi.org/10.1016/j.eswa.2014.06.006 doi: 10.1016/j.eswa.2014.06.006
    [56] J. Y. Ho, J. Ooi, Y. K. Wan, V. Andiappan, Synthesis of wastewater treatment process (WWTP) and supplier selection via Fuzzy Analytic Hierarchy Process (FAHP), J. Clean. Prod., 314 (2021), 128104. https://doi.org/10.1016/j.jclepro.2021.128104 doi: 10.1016/j.jclepro.2021.128104
    [57] UNEP food waste index report 2021. Available from: https://www.unep.org/resources/report/unep-food-waste-index-report-2021.
    [58] K. L. Thyberg, D. J. Tonjes, J. Gurevitch, Quantification of food waste disposal in the United States: A meta-analysis, Environ. Sci. Technol., 49 (2015), 13946–13953. https://doi.org/10.1021/acs.est.5b03880 doi: 10.1021/acs.est.5b03880
    [59] Z. Wen, Y. Wang, D. D. Clercq, What is the true value of food waste? A case study of technology integration in urban food waste treatment in Suzhou City China, J. Clean. Prod., 118 (2016), 88–96. https://doi.org/10.1016/j.jclepro.2015.12.087 doi: 10.1016/j.jclepro.2015.12.087
    [60] A. Ahamed, K. Yin, B. J. H. Ng, F. Ren, V. W. C. Chang, J. Y. Wang, Life cycle assessment of the present and proposed food waste management technologies from environmental and economic impact perspectives, J. Clean. Prod., 131 (2016), 607–614. https://doi.org/10.1016/j.jclepro.2016.04.127 doi: 10.1016/j.jclepro.2016.04.127
    [61] N. R. Khalili, S. Duecker, Application of multi-criteria decision analysis in design of sustainable environmental management system framework, J. Clean. Prod., 47 (2016), 188–198.
    [62] M. A. Babalola, A multi-criteria decision analysis of waste treatment options for food and biodegradable waste management in Japan, Environments, 2 (2015), 471–488. https://doi.org/10.3390/environments2040471 doi: 10.3390/environments2040471
    [63] M. A. Mir, P. T. Ghazvine, N. M. N. Sulaiman, N. E. A. Basri, S. Saheri, N. Z. Mahmood, et al., Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model, J. Environ. Manag., 166 (2016), 109–115. https://doi.org/10.1016/j.jenvman.2015.09.028 doi: 10.1016/j.jenvman.2015.09.028
    [64] H. Y. Jin, Z. A. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equ., 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
    [65] H. Zheng, S. Jin, A multi-source fluid queue based stochastic model of the probabilistic offloading strategy in a MEC system with multiple mobile devices and a single MEC server, Int. J. Math. Comput. Sci., 32 (2022), 125–138. http://dx.doi.org/10.34768/amcs-2022-0010 doi: 10.34768/amcs-2022-0010
  • This article has been cited by:

    1. Haolun Wang, Tingjun Xu, Liangqing Feng, Kifayat Ullah, An Improved ARAS Approach with T-Spherical Fuzzy Information and Its Application in Multi-attribute Group Decision-Making, 2024, 26, 1562-2479, 2132, 10.1007/s40815-024-01718-y
    2. Jawad Ali, Muhammad Naeem, Ahmad N. Al-Kenani, Complex T-Spherical Fuzzy Frank Aggregation Operators and Their Application to Decision Making, 2023, 11, 2169-3536, 88971, 10.1109/ACCESS.2023.3298845
    3. Ahmet Aytekin, Selçuk Korucuk, Şule Bayazit Bedirhanoğlu, Vladimir Simic, Selecting the ideal sustainable green strategy for logistics companies using a T-spherical fuzzy-based methodology, 2024, 127, 09521976, 107347, 10.1016/j.engappai.2023.107347
    4. Muhammad Azeem, Ayesha Ilyas, Jawad Ali, Madiha Ghamkhar, Muhammad I. Syam, Group decision-making algorithm with sine trigonometric r,s,t-spherical fuzzy aggregation operators and their application, 2024, 14, 2045-2322, 10.1038/s41598-024-61382-y
    5. Jawad Ali, Analysis and application of \text {r},\text {s},\text {t}-spherical fuzzy Aczel–Alsina aggregation operators in multiple criteria decision-making, 2024, 9, 2364-4966, 10.1007/s41066-023-00432-8
    6. Bartosz Radomski, Tomasz Mróz, Application of the Hybrid MCDM Method for Energy Modernisation of an Existing Public Building—A Case Study, 2023, 16, 1996-1073, 3475, 10.3390/en16083475
    7. Muhammad Rahim, Shah Zeb Khan, Adel M. Widyan, A. Almutairi, Hamiden Abd El-Wahed Khalifa, A novel complex (p,q,r)- spherical fuzzy TOPSIS framework for sustainable urban development assessment, 2025, 09574174, 127288, 10.1016/j.eswa.2025.127288
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2117) PDF downloads(178) Cited by(7)

Figures and Tables

Figures(3)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog