Research article Special Issues

An integrated group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information and its application to the selection of cloud storage provider

  • Received: 16 May 2023 Revised: 29 May 2023 Accepted: 12 June 2023 Published: 19 June 2023
  • MSC : 94D05, 03B52

  • Cloud storage is crucial in today's digital era due to its accessibility, scalability, cost savings, collaboration and enhanced security features. The selection of a reliable cloud storage provider is a significant multi-attribute group decision-making (MAGDM) problem that involves intrinsic relationships among the various alternatives, attributes and decision DMs. Due to the uncertain and incomplete nature of the evaluation data for cloud storage providers, i.e., quality of service and user feedback, the identification of appropriate cloud storage providers with accurate service ranking remains an open research challenge. To address the above-mentioned challenge, this work proposes the concept of interval-valued probabilistic linguistic T-spherical fuzzy set (IVPLt-SFS). Then, some basic operations and a score function are defined to compare two or more IVPLt-SF numbers (IVPLt-SFNs). For information fusion, two aggregation operators for IVPLt-SFN are also developed. Next, an extended TOPSIS method-based group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information is established to solve the MAGDM problem. Finally, a numerical example is given to illustrate the practicability and usefulness of the designed approach and its suitability as a decision-making tool for selecting a cloud storage provider. Comparative and sensitivity analysis confirmed that this paper enriches the theory and methodology of the selection problem of cloud storage provider and MAGDM analysis.

    Citation: Shahid Hussain Gurmani, Zhao Zhang, Rana Muhammad Zulqarnain. An integrated group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information and its application to the selection of cloud storage provider[J]. AIMS Mathematics, 2023, 8(9): 20223-20253. doi: 10.3934/math.20231031

    Related Papers:

  • Cloud storage is crucial in today's digital era due to its accessibility, scalability, cost savings, collaboration and enhanced security features. The selection of a reliable cloud storage provider is a significant multi-attribute group decision-making (MAGDM) problem that involves intrinsic relationships among the various alternatives, attributes and decision DMs. Due to the uncertain and incomplete nature of the evaluation data for cloud storage providers, i.e., quality of service and user feedback, the identification of appropriate cloud storage providers with accurate service ranking remains an open research challenge. To address the above-mentioned challenge, this work proposes the concept of interval-valued probabilistic linguistic T-spherical fuzzy set (IVPLt-SFS). Then, some basic operations and a score function are defined to compare two or more IVPLt-SF numbers (IVPLt-SFNs). For information fusion, two aggregation operators for IVPLt-SFN are also developed. Next, an extended TOPSIS method-based group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information is established to solve the MAGDM problem. Finally, a numerical example is given to illustrate the practicability and usefulness of the designed approach and its suitability as a decision-making tool for selecting a cloud storage provider. Comparative and sensitivity analysis confirmed that this paper enriches the theory and methodology of the selection problem of cloud storage provider and MAGDM analysis.



    加载中


    [1] P. Prajapati, P. Shah, A review on secure data deduplication: Cloud storage security issue, J. King Saud Univ. Inf. Sci., 34 (2022), 3996–4007. https://doi.org/10.1016/j.jksuci.2020.10.021 doi: 10.1016/j.jksuci.2020.10.021
    [2] C. W. Chang, P. Liu, J. J. Wu, Probability-based cloud storage providers selection algorithms with maximum availability, In: 2012 41st Int. Conf. Parallel Process., IEEE, 2012,199–208. https://doi.org/10.1109/ICPP.2012.51
    [3] S. Liu, F. T. S. Chan, W. Ran, Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes, Expert Syst. Appl., 55 (2016), 37–47. https://doi.org/10.1016/j.eswa.2016.01.059 doi: 10.1016/j.eswa.2016.01.059
    [4] H. Wang, T. Mahmood, K. Ullah, Improved CoCoSo method based on Frank softmax aggregation operators for T-spherical fuzzy multiple attribute group decision-making, Int. J. Fuzzy Syst., 25 (2023), 1275–1310. https://doi.org/10.1007/s40815-022-01442-5 doi: 10.1007/s40815-022-01442-5
    [5] T. Senapati, G. Chen, R. R. Yager, Aczel-Alsina aggregation operators and their application to intuitionistic fuzzy multiple attribute decision making, Int. J. Intell. Syst., 37 (2022), 1529–1551. https://doi.org/10.1002/int.22684 doi: 10.1002/int.22684
    [6] K. Kumar, S. M. Chen, Multiple attribute group decision making based on advanced linguistic intuitionistic fuzzy weighted averaging aggregation operator of linguistic intuitionistic fuzzy numbers, Inf. Sci., 587 (2022), 813–824. https://doi.org/10.1016/j.ins.2021.11.014 doi: 10.1016/j.ins.2021.11.014
    [7] R. M. Zulqarnain, I. Siddique, A. Iampan, D. Baleanu, Aggregation operators for interval-valued Pythagorean fuzzy soft set with their application to solve multi-attribute group decision making problem, Comput. Model. Eng. Sci., 2 (2022), 1–34.
    [8] H. Zhang, G. Wei, X. Chen, SF-GRA method based on cumulative prospect theory for multiple attribute group decision making and its application to emergency supplies supplier selection, Eng. Appl. Artif. Intell., 110 (2022), 104679. https://doi.org/10.1016/j.engappai.2022.104679 doi: 10.1016/j.engappai.2022.104679
    [9] Y. Su, M. Zhao, G. Wei, C. Wei, X. Chen, Probabilistic uncertain linguistic EDAS method based on prospect theory for multiple attribute group decision-making and its application to green finance, Int. J. Fuzzy Syst., 24 (2022), 1318–1331. https://doi.org/10.1007/s40815-021-01184-w doi: 10.1007/s40815-021-01184-w
    [10] X. Zhong, X. Xu, B. Pan, A non-threshold consensus model based on the minimum cost and maximum consensus-increasing for multi-attribute large group decision-making, Inf. Fusion., 77 (2022), 90–106. https://doi.org/10.1016/j.inffus.2021.07.006 doi: 10.1016/j.inffus.2021.07.006
    [11] A. S. Yalcin, H. S. Kilic, D. Delen, The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review, Technol. Forecast. Soc. Change., 174 (2022), 121193. https://doi.org/10.1016/j.techfore.2021.121193 doi: 10.1016/j.techfore.2021.121193
    [12] Y. Xing, M. Cao, Y. Liu, M. Zhou, J. Wu, A Choquet integral based interval Type-2 trapezoidal fuzzy multiple attribute group decision making for Sustainable Supplier Selection, Comput. Ind. Eng., 165 (2022), 107935. https://doi.org/10.1016/j.cie.2022.107935 doi: 10.1016/j.cie.2022.107935
    [13] Y. Yuan, Z. Xu, Y. Zhang, The DEMATEL-COPRAS hybrid method under probabilistic linguistic environment and its application in Third Party Logistics provider selection, Fuzzy Optim. Decis. Mak., 21 (2022), 137–156. https://doi.org/10.1007/s10700-021-09358-9 doi: 10.1007/s10700-021-09358-9
    [14] M. R. Seikh, U. Mandal, Q-rung orthopair fuzzy Frank aggregation operators and its application in multiple attribute decision-making with unknown attribute weights, Granul. Comput., 7 (2022), 709–730. https://doi.org/10.1007/s41066-021-00290-2 doi: 10.1007/s41066-021-00290-2
    [15] A. R. Fayek, Fuzzy logic and fuzzy hybrid techniques for construction engineering and management, J. Constr. Eng. Manag., 146 (2020), 4020064. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001854 doi: 10.1061/(ASCE)CO.1943-7862.0001854
    [16] Z. Wen, H. Liao, E. K. Zavadskas, J. Antuchevičienė, Applications of fuzzy multiple criteria decision making methods in civil engineering: A state-of-the-art survey, J. Civ. Eng. Manag., 27 (2021), 358–371. https://doi.org/10.3846/jcem.2021.15252 doi: 10.3846/jcem.2021.15252
    [17] S. Mehryar, S. Surminski, Investigating flood resilience perceptions and supporting collective decision-making through fuzzy cognitive mapping, Sci. Total Environ., 837 (2022), 155854. https://doi.org/10.1016/j.scitotenv.2022.155854 doi: 10.1016/j.scitotenv.2022.155854
    [18] L. A. Zadeh, Zadeh, fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [19] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [20] R. R. Yager, Pythagorean fuzzy subsets, In: 2013 Jt. IFSA World Congr. NAFIPS Annu. Meet., IEEE, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [21] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [22] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.260400 doi: 10.1109/TFUZZ.2016.260400
    [23] B. C. Cuong, V. Kreinovich, Picture fuzzy sets-a new concept for computational intelligence problems, In: 2013 Third World Congr. Inf. Commun. Technol. (WICT 2013), IEEE, 2013, 1–6. https://doi.org/10.1109/WICT.2013.7113099
    [24] S. He, Y. Wang, Evaluating new energy vehicles by picture fuzzy sets based on sentiment analysis from online reviews, Artif. Intell. Rev., 56 (2023), 2171–2192. https://doi.org/10.1007/s10462-022-10217-1 doi: 10.1007/s10462-022-10217-1
    [25] M. R. Seikh, U. Mandal, Some picture fuzzy aggregation operators based on Frank t-norm and t-conorm: Application to MADM process, Informatica, 45 (2021). https://doi.org/10.31449/inf.v45i3.3025 doi: 10.31449/inf.v45i3.3025
    [26] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [27] H. Wang, Sustainable circular supplier selection in the power battery industry using a linguistic T-spherical fuzzy MAGDM model based on the improved ARAS method, Sustainability, 14 (2022), 7816. https://doi.org/10.3390/su14137816 doi: 10.3390/su14137816
    [28] M. R. Khan, K. Ullah, Q. Khan, Multi-attribute decision-making using Archimedean aggregation operator in T-spherical fuzzy environment, Reports Mech. Eng., 4 (2023), 18–38. https://doi.org/10.31181/rme20031012023k doi: 10.31181/rme20031012023k
    [29] R. G. Pirbalouti, M. K. Dehkordi, J. Mohammadpour, E. Zarei, M. Yazdi, An advanced framework for leakage risk assessment of hydrogen refueling stations using interval-valued spherical fuzzy sets (Ⅳ-SFS), Int. J. Hydrogen Energ., 2023. https://doi.org/10.1016/j.ijhydene.2023.03.028 doi: 10.1016/j.ijhydene.2023.03.028
    [30] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—Ⅰ, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [31] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—Ⅱ, Inf. Sci., 8 (1975), 301–357. https://doi.org/10.1016/0020-0255(75)90046-8 doi: 10.1016/0020-0255(75)90046-8
    [32] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—Ⅲ, Inf. Sci., 9 (1975), 43–80. https://doi.org/10.1016/0020-0255(75)90017-1 doi: 10.1016/0020-0255(75)90017-1
    [33] M. Yazdi, Linguistic methods under fuzzy information in system safety and reliability analysis, Springer, 2022. https://doi.org/10.1007/978-3-030-93352-4
    [34] Z. Chen, P. Liu, Z. Pei, An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers, Int. J. Comput. Intell. Syst., 8 (2015), 747–760. https://doi.org/10.1080/18756891.2015.1061394 doi: 10.1080/18756891.2015.1061394
    [35] H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision‐making process, Int. J. Intell. Syst., 33 (2018), 1234–1263.
    [36] D. Liu, Y. Luo, Z. Liu, The linguistic picture fuzzy set and its application in multi-criteria decision-making: An illustration to the TOPSIS and TODIM methods based on entropy weight, Symmetry (Basel)., 12 (2020), 1170. https://doi.org/10.3390/sym12071170 doi: 10.3390/sym12071170
    [37] H. Jin, S. Ashraf, S. Abdullah, M. Qiyas, M. Bano, S. Zeng, Linguistic spherical fuzzy aggregation operators and their applications in multi-attribute decision making problems, Mathematics, 7 (2019), 413. https://doi.org/10.3390/math7050413 doi: 10.3390/math7050413
    [38] S. H. Gurmani, H. Chen, Y. Bai, Dombi operations for linguistic T-spherical fuzzy number: An approach for selection of the best variety of maize, Soft Comput., 26 (2022), 9083–9100. https://doi.org/10.1007/s00500-022-07307-1 doi: 10.1007/s00500-022-07307-1
    [39] S. H. Gurmani, H. Chen, Y. Bai, Multi-attribute group decision-making model for selecting the most suitable construction company using the linguistic interval-valued T-spherical fuzzy TOPSIS method, Appl. Intell., 53 (2022), 11768–11785. https://doi.org/10.1007/s10489-022-04103-0 doi: 10.1007/s10489-022-04103-0
    [40] S. H. Gurmani, H. Chen, Y. Bai, An extended MABAC method for multiple-attribute group decision making under probabilistic T-spherical hesitant fuzzy environment, Kybernetes, 2022. https://doi.org/10.1108/K-01-2022-0137 doi: 10.1108/K-01-2022-0137
    [41] S. Luo, J. Liu, The probabilistic interval-valued hesitant pythagorean fuzzy set and its application in selecting processes of project private partner, IEEE Access, 7 (2019), 170304–170321. https://doi.org/10.1109/ACCESS.2019.2954995 doi: 10.1109/ACCESS.2019.2954995
    [42] D. Liu, A. Huang, Consensus reaching process for fuzzy behavioral TOPSIS method with probabilistic linguistic q‐rung orthopair fuzzy set based on correlation measure, Int. J. Intell. Syst., 35 (2020), 494–528.
    [43] Y. Xu, S. Liu, J. Wang, X. Shang, A novel two-stage TOPSIS approach based on interval-valued probabilistic linguistic q-rung orthopair fuzzy sets with its application to MAGDM problems, Eng. Appl. Artif. Intell., 116 (2022), 105413. https://doi.org/10.1016/j.engappai.2022.105413 doi: 10.1016/j.engappai.2022.105413
    [44] Q. Pang, H. Wang, Z. Xu, Probabilistic linguistic term sets in multi-attribute group decision making, Inf. Sci., 369 (2016), 128–143. https://doi.org/10.1016/j.ins.2016.06.021 doi: 10.1016/j.ins.2016.06.021
    [45] C. L. Hwang, M. J. Lin, Group decision making under multiple criteria: methods and applications, Springer Science & Business Media, 2012.
    [46] S. Opricovic, Multicriteria optimization of civil engineering systems, Fac. Civ. Eng. Belgrade., 2 (1998), 5–21.
    [47] T. L. Saaty, A scaling method for priorities in hierarchical structures, J. Math. Psychol., 15 (1977), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5 doi: 10.1016/0022-2496(77)90033-5
    [48] D. Pamučar, G. Ćirović, The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC), Expert Syst. Appl., 42 (2015), 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057 doi: 10.1016/j.eswa.2014.11.057
    [49] L. Gomes, M. Lima, From modeling individual preferences to multicriteria ranking of discrete alternatives: A look at prospect theory and the additive difference model, Found. Comput. Decis. Sci., 17 (1992), 171–184.
    [50] L. F. A. M. Gomes, M. M. P. P. Lima, Todimi: Basics and application to multicriteria ranking, Found. Comput. Decis. Sci., 16 (1991), 113–127.
    [51] S. H. Gurmani, H. Chen, Y. Bai, Extension of TOPSIS method under q-rung orthopair fuzzy hypersoft environment based on correlation coefficients and its applications to multi-attribute group decision-making, Int. J. Fuzzy Syst., 25 (2023), 1–14. https://doi.org/10.1007/s40815-022-01386-w doi: 10.1007/s40815-022-01386-w
    [52] T. Mahmood, Z. Ali, T. Panityakul, A method to multi-attribute decision making problems by using heronian mean operators based on linear diophantine uncertain linguistic settings, J. Intell. Fuzzy Syst., 42 (2022), 5291–5319. https://doi.org/10.3233/JIFS-211839 doi: 10.3233/JIFS-211839
    [53] J. Wątróbski, A. Bączkiewicz, E. Ziemba, W. Sałabun, Sustainable cities and communities assessment using the DARIA-TOPSIS method, Sustain. Cities Soc., 83 (2022), 103926. https://doi.org/10.1016/j.scs.2022.103926 doi: 10.1016/j.scs.2022.103926
    [54] Z. Li, Z. Luo, Y. Wang, G. Fan, J. Zhang, Suitability evaluation system for the shallow geothermal energy implementation in region by entropy weight method and TOPSIS method, Renew. Energy., 184 (2022), 564–576. https://doi.org/10.1016/j.renene.2021.11.112 doi: 10.1016/j.renene.2021.11.112
    [55] F. Bilgili, F. Zarali, M. F. Ilgün, C. Dumrul, Y. Dumrul, The evaluation of renewable energy alternatives for sustainable development in Turkey using intuitionistic fuzzy-TOPSIS method, Renew. Energ., 189 (2022), 1443–1458. https://doi.org/10.1016/j.renene.2022.03.058 doi: 10.1016/j.renene.2022.03.058
    [56] Y. Han, Y. Deng, Z. Cao, C. T. Lin, An interval-valued Pythagorean prioritized operator-based game theoretical framework with its applications in multicriteria group decision making, Neural Comput. Appl., 32 (2020), 7641–7659. https://doi.org/10.1007/s00521-019-04014-1 doi: 10.1007/s00521-019-04014-1
    [57] C. Y. Wang, S. M. Chen, A new multiple attribute decision making method based on linear programming methodology and novel score function and novel accuracy function of interval-valued intuitionistic fuzzy values, Inf. Sci., 438 (2018), 145–155. https://doi.org/10.1016/j.ins.2018.01.036 doi: 10.1016/j.ins.2018.01.036
    [58] K. Ullah, N. Hassan, T. Mahmood, N. Jan, M. Hassan, Evaluation of investment policy based on multi-attribute decision-making using interval valued T-spherical fuzzy aggregation operators, Symmetry (Basel), 11 (2019), 357. https://doi.org/10.3390/sym11030357 doi: 10.3390/sym11030357
    [59] B. P. Joshi, A. Singh, P. K. Bhatt, K. S. Vaisla, Interval valued q-rung orthopair fuzzy sets and their properties, J. Intell. Fuzzy Syst., 35 (2018), 5225–5230. https://doi.org/10.3233/JIFS-169806 doi: 10.3233/JIFS-169806
    [60] C. Bai, R. Zhang, L. Qian, Y. Wu, Comparisons of probabilistic linguistic term sets for multi-criteria decision making, Knowl.-Based Syst., 119 (2017), 284–291. https://doi.org/10.1016/j.knosys.2016.12.020 doi: 10.1016/j.knosys.2016.12.020
    [61] C. Bai, R. Zhang, S. Shen, C. Huang, X. Fan, Interval‐valued probabilistic linguistic term sets in multi‐criteria group decision making, Int. J. Intell. Syst., 33 (2018), 1301–1321.
    [62] P. Liu, Y. Li, A novel decision-making method based on probabilistic linguistic information, Cognit. Comput., 11 (2019), 735–747. https://doi.org/10.1007/s12559-019-09648-w doi: 10.1007/s12559-019-09648-w
    [63] F. Lei, G. Wei, H. Gao, J. Wu, C. Wei, TOPSIS method for developing supplier selection with probabilistic linguistic information, Int. J. Fuzzy Syst., 22 (2020), 749–759. https://doi.org/10.1007/s40815-019-00797-6 doi: 10.1007/s40815-019-00797-6
    [64] M. Tang, H. Liao, From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey, Omega, 100 (2021), 102141. https://doi.org/10.1016/j.omega.2019.102141 doi: 10.1016/j.omega.2019.102141
    [65] Y. Li, G. Kou, G. Li, Y. Peng, Consensus reaching process in large-scale group decision making based on bounded confidence and social network, Eur. J. Oper. Res., 303 (2022), 790–802. https://doi.org/10.1016/j.ejor.2022.03.040 doi: 10.1016/j.ejor.2022.03.040
    [66] M. R. Seikh, U. Mandal, Interval-valued Fermatean fuzzy Dombi aggregation operators and SWARA based PROMETHEE Ⅱ method to bio-medical waste management, Expert Syst. Appl., 226 (2023), 120082. https://doi.org/10.1016/j.eswa.2023.120082 doi: 10.1016/j.eswa.2023.120082
    [67] M. R. Seikh, U. Mandal, Multiple attribute group decision making based on quasirung orthopair fuzzy sets: Application to electric vehicle charging station site selection problem, Eng. Appl. Artif. Intell., 115 (2022), 105299. https://doi.org/10.1016/j.engappai.2022.105299 doi: 10.1016/j.engappai.2022.105299
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1208) PDF downloads(101) Cited by(13)

Article outline

Figures and Tables

Figures(4)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog