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Abstract: Cloud storage is crucial in today's digital era due to its accessibility, scalability, cost savings, 
collaboration and enhanced security features. The selection of a reliable cloud storage provider is a 
significant multi-attribute group decision-making (MAGDM) problem that involves intrinsic 
relationships among the various alternatives, attributes and decision DMs. Due to the uncertain and 
incomplete nature of the evaluation data for cloud storage providers, i.e., quality of service and user 
feedback, the identification of appropriate cloud storage providers with accurate service ranking 
remains an open research challenge. To address the above-mentioned challenge, this work proposes 
the concept of interval-valued probabilistic linguistic T-spherical fuzzy set (IVPLt-SFS). Then, some 
basic operations and a score function are defined to compare two or more IVPLt-SF numbers (IVPLt-
SFNs). For information fusion, two aggregation operators for IVPLt-SFN are also developed. Next, an 
extended TOPSIS method-based group decision-making technique under interval-valued probabilistic 
linguistic T-spherical fuzzy information is established to solve the MAGDM problem. Finally, a 
numerical example is given to illustrate the practicability and usefulness of the designed approach and 
its suitability as a decision-making tool for selecting a cloud storage provider. Comparative and 
sensitivity analysis confirmed that this paper enriches the theory and methodology of the selection 
problem of cloud storage provider and MAGDM analysis. 
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1. Introduction 

Cloud storage is the practice of storing digital data on remote servers accessed via the internet 
instead of local physical devices. In comparison to conventional storage techniques, it has many 
benefits. It allows users to store, access, and manage their data from any location with an internet 
connection [1]. The selection of a cloud storage provider is crucial. It guarantees the safety, 
dependability and accessibility of data that has been saved. Strong data security measures are provided 
by a reliable source, lowering the possibility of breaches or illegal access [2]. When several decision-
makers (DMs) or stakeholders with varied preferences and opinions are participating in the selection 
process, the cloud storage provider selection problem changes into a multi-attribute group decision-
making (MAGDM) problem. Multiple attributes or criteria must be taken into account in these 
circumstances in order to reach a wise and unified choice [3]. 

Multiple decision-makers (DMs) evaluate and rank alternatives using a variety of attributes or 
criteria in a decision-making process known as MAGDM. The attributes or criteria might be qualitative 
or quantitative, such as cost, quality, efficiency or subjective aspects. MAGDM aims to incorporate the 
preferences of several DMs into a collective decision or rating while taking into account each one's 
unique priorities, opinions and areas of skills. It entails using strategies and tactics to compile and 
evaluate the DMs' ideas, sometimes using mathematical or statistical methods, in order to facilitate group 
decision-making and find common ground or a compromise between opposing points of view [4–10]. 
MAGDM is frequently utilized in numerous fields, including business [11], management [12–14], 
engineering [15,16] and social sciences [17], where decisions often require input from multiple 
stakeholders with different perspectives. For the MAGDM process to be successful, the DMs must 
communicate, work together and coordinate effectively. However, it can also be challenging due to 
potential conflicts, differing opinions and the need for effective decision-making processes to account 
for varying perspectives. Properly executed, MAGDM can lead to better decision-making outcomes 
that reflect a more comprehensive consideration of various attributes and perspectives. 

1.1. Relevant literature, research gap and motivations 

MAGDM problems often involve uncertain or ambiguous information, such as subjective 
preferences or incomplete data. Due to its capacity to handle uncertainty, linguistic modeling and assist 
group decision-making, DMs use fuzzy set (FS) theory proposed by Zadeeh [18] in the context of 
MAGDM. Classical FSs allow for the representation of uncertainty using membership degree (MD) 
and are capable of handling vague or ambiguous information. However, it does not explicitly capture 
the hesitation or uncertainty in making decisions or assigning non-membership degree (NMD) to 
elements. The development of an intuitionistic fuzzy set (IFS) [19] has been motivated by the need for 
a more comprehensive and nuanced approach to decision-making, especially in situations where DMs 
may have varying levels of confidence or hesitation in their judgments. It uses separate MD and NMD 
to represent uncertainty more precisely, with the restriction that the sum of MD and NMD must lie 
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between zero and one. Yager [20,21] introduced Pythagorean fuzzy set (PyFS) by expanding the 
condition that the square sum of the MD and NMD must be within [0,1]. Later, he generalized this 
idea by presenting a parameter ‘q’ such that the sum of the qth power of MD and qth power of NMD 
must lie between zero and one [22]. This kind of set was named as q-rung orthopair fuzzy set (q-ROFs). 
q-ROF is a more general and flexible approach to modeling uncertainty and decision-making problems.  

Although, many developments have been made in providing freedom to the DMs by introducing 
various extended and hybrid fuzzy sets. However, there are instances in which the decision-making 
process becomes complicated by the involvement of abstinence, and then the DMs have no tool to 
tackle this type of issues. For example, in the voting system, some individuals refuse to give their 
opinions. Cuong and Kreinovich developed the concept of the picture fuzzy set (PFS) to address this 
kind of situation [23]. The authors introduced abstinence degree (AD) together with MD and NMD 
and defined the requirement that MD, AD and NMD added together must be less than or equal to one. 
PFS-based regret theory was proposed by He and Wang [24] for the evaluation of new energy vehicles 
from an online review. Frank t-norm and t-conform-based new operations for PFS were offered by 
Seikh et al. in [25]. PFS can describe AD information that IFS, PyFS and q-ROFS cannot, but it has 
the limitation of failing if the sum of 3 degrees exceeds one. Mahmood et al. [26] expanded the idea 
of the spherical fuzzy set (SFS) in this regard. Then they promoted it to the generalized form, i.e., T-
spherical fuzzy set (t-SFS), in order to free DMs from the constraints of MD, AD,and ND allocation 
with a larger decision space and allow them to express their preferences and opinions more freely. The 
extended fuzzy sets discussed above are all special instances of t-SFS, which has received much 
attention from academics due to its generalized t-SFS without any restrictions. t-SFS have been used 
in several research areas, such as decision-making, pattern recognition, image processing and more. 
For example, in [27] the proposed method considers both the economic and environmental aspects of 
supplier selection. In [28], the authors proposed Archimedean aggregation operators using t-SF 
information and developed an MAGM technique to use it for the selection of surgical instruments. 
Interval-valued T-SFS-based decision-making framework was utilized by Pirbalouti et al. [29] to 
manage hydrogen refueling station leakage. 

However, DMs frequently deal with difficult issues including ambiguous and inaccurate 
information. This type of information is frequently expressed in natural language, but linguistic 
expressions are difficult for traditional mathematical models to represent and handle. By emergence 
of the concept of a linguistic term set (LTS) [30–32] in fuzzy set theory, DMs have a tool that allows 
them to represent and manipulate linguistic variables in a flexible and accurate way. This implies that 
professionals can use linguistic terms to deal with ambiguous and imprecise information in a more 
natural and intuitive way and to make better decisions based on the available data. For instance, in a 
medical diagnosis system, the expert might want to use linguistic terms like “mild”, “moderate”, and 
“severe” to indicate the severity of a patient’s symptoms. The expert can use fuzzy set operations to 
combine the various symptoms and make a diagnosis by associating each term with a fuzzy set, 
modeling the uncertainty in each term’s meaning. Various fuzzy sets have been combined with LTSs. 
For example, Yazdi [33] explained system safety and reliability analysis using different linguistic 
methods under a fuzzy environment. Chen et al. [34] suggested the linguistic IFS (LIFS), which 
combines the IFS and LTS. Extensions of the LIFS have been suggested for some cases where the 
LIFS fails, such as the linguistic PYFS (LPYFS) [35], linguistic PFS [36], linguistic SFSs [37], 
linguistic t-SFS and linguistic interval valued t-SFSs [38,39]. 

Fuzzy set theory is a mathematical framework that allows for the representation of uncertainty 
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and imprecision in data. It does this by allowing for partial membership in a set, meaning that an 
element can belong to a set to a degree or with a certain level of certainty, rather than simply being a 
member or not. Probability theory, on the other hand, is a mathematical framework for dealing with 
uncertainty and randomness. It allows for the quantification of the likelihood of a particular event 
occurring, based on available evidence or prior knowledge. By combining probability and fuzzy set 
theory, researchers have created more powerful models for dealing with uncertainty in complex 
systems. For example, in [40], the authors have assigned probability to the occurrence of each event 
in t-SFSs. Luo and Liu applied the probabilistic interval-valued hesitant PyFS for the selection process 
of project private partners [41]. Liu and Huang [42] introduced the idea of probabilistic linguistic q-
rung orthopair fuzzy set and used it to construct a consensus reaching process. Xu et al. [43] extended 
the TOPSIS method under interval-valued probabilistic Lq-ROF information. In [44], Pang et al. 
introduced the concept of probabilistic linguistic term set (PLTS). 

Furthermore, MAGDM techniques have been thoroughly studied using aggregation operators, 
similarity and distance measures, as well as some other well-known traditional decision-making 
methods, such as the TOPSIS method [45], VIKOR method [46], AHP method [47], multi-attributive 
border approximation area comparison (MABAC) method [48] and TODIM model [49,50]. These 
approaches indicated above have been extended by numerous researchers employing various types of 
fuzzy information. For example, Gurmani et al [51] extended TOPSIS method under q-rung orthopair 
hypersoft set. In [52], Tahir et al. designed an aggregation operator based MADM methodology. 
Wątróbski et al. [53] prolonged the DARIA-TOPSIS method and used it for the assessment of 
sustainable cities and communities. The TOPSIS technique is being extended in our study to the IVPLt-
SF scenario. The TOPSIS methodology is a quick and efficient method for making decisions that aims 
to find the best option that is the closest to the positive ideal solution (PIS) and farthest from the 
negative ideal solution (NIS). Numerous academics have proposed TOPSIS adaptations for various 
fuzzy environments during the last few decades [54,55]. 

The selection of a cloud storage provider is a highly intricate matter characterized by considerable 
uncertainty. It should be noted that different companies offer distinct facilities based on a variety of 
terms and conditions. As an authority in the field, decision-making relies heavily on personal 
experience and skill. Given the presence of numerous uncertain factors, the evaluator faces multiple 
values when assessing a company's attributes, each having a different level of significance. To capture 
these differences in decision-making information provided by DMs, the introduction of probability 
serves the purpose of quantifying the significance levels. In this context, the data is presented using 
the IVPLt-SFS format, which incorporates interval-valued probability values that account for 
membership, abstinence and non-membership degrees. Even though the studies mentioned above have 
been proven to be useful and adaptable in a variety of situations, some DMs could choose to use 
interval values to convey their uncertainty and irresolution in complicated systems [56–59]. In this 
paper, we introduce interval values into the probability and propose the idea of interval-valued 
probabilistic linguistic T-spherical fuzzy set (IVPLt-SFS). As an extension of Lt-SFS, the IVPLt-SFS 
significantly broadens the field of information description. The IVPLt-SFS has a strong capacity to 
manage heterogeneous information concurrently, which makes it more versatile, adaptive and accurate. 
DMs have more freedom to communicate their assessment values and clearly articulate their 
perspectives regarding potential candidate alternatives when using IVPLt-SFSs. 
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1.2. Major contributions of the study 

The primary contributions of this study are as follows: 
(1) The interval-valued probabilistic linguistic T-spherical fuzzy set (IVPLt-SFS) notion is one we 

put out. 
(2) For IVPLt-SF information, several fundamental operations, comparison rules, Euclidean 

distance and two aggregation operators are defined. Additionally, some of their characteristics 
are also investigated. 

(3) An extended IVPt-SF TOPSIS method-based MAGDM technique is designed for the selection 
of cloud storage provider. 

(4) Finally, the comparison and sensitivity analysis is carried out, which shows the robustness and 
effectiveness of the proposed model. 

The organization of this paper is as follow: Section 2 presents the fundamental concepts related 
to this paper. Section 3 is devoted to the inception of IVPLt-SFS. In Section 4, two aggregation 
operators for IVPLt-SFNs are presented. Section 5 is about the development of TOPSIS method-based 
MAGDM technique under IVPLt-SF environment. Practical example and comparison analysis is 
provided in Section 6. Finally, Section 7 provides a brief conclusion of the study. 

2. Preliminaries 

In this section, some basic concept related to t-SFSs have been reviewed. 
Definition 2.1. [38] Let X   be a universe of discourse and  | 0,1,...,tS s t    be a continuous 

linguistic term set; then a Lt-SFS is defined as, 

      ,s , ,sT x x x x x Xs     

where      s , ,x x xs Ss      are knows as linguistic membership degree, linguistic abstinence 

degree and linguistic non-membership degrees of the element x X  to the set T  , respectively, 
satisfying the constraint 0 ( ) ( ) ( )q q q qx x x t        for a positive number 1q    and 

 ( ) ( ) ( )q q q qqT t x x x
s

  


  
  is known as linguistic refusal degree of x in T . For simplicity, the triplet 

 , ,T s s s    is known as an Lt-SF number (Lt-SFN). 

Definition 2.2. [38] Let  , ,T s s s   ,  
1 1 11 , ,T s s s   and  

2 2 22 , ,T s s s    be three Lt-SFNs and 

0  . Then, following are the Dombi operations for Lt-SFNs: 

(i) 
1 1 1

1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 1 1

, ,
q q q

q

q q q q q qq q q qq q q

q q q q q qq q

t t t
t

t t t t

t t

T T s s s
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(ii) 
1 1 1

1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 1 1

, ,
q q q

q q

q q q q q qq qq q q

q q q q q qq q q q
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t t

t t t t
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(iii) 
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(iv)  
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3. Interval-valued probabilistic linguistic T-spherical fuzzy set 

This section presents the concept of IVPLt-SFS, beginning with its definition. It also includes 
algebraic operations, a comparison rule for IVLPLt-SF numbers (IVLPLt-SF) and a distance measure 
between them. 

Definition 3.1. Let X  be a universal set and   0 , 0,tS s s s s t       continuous linguistic 

term set. An interval-valued probabilistic linguistic T-SFS (IVPLt-SFS) Ã  defined on X   is 
expressed as 

            , , , ,x x p x x h x v x d x x X  Ã Ã Ã Ã Ã ÃÃ =     (3.1) 

where  xÃ ,  xÃ ,  v x SÃ  are three sets of some linguistic terms, which are called as LMD, 

LAD and LNMD of the element x X  to Ã   respectively.      ,L Up x p x p x   Ã Ã Ã  , 

   infLp x p xÃ Ã   and    supUp x p xÃ Ã  ;      ,L Uh x h x h x   Ã Ã Ã  ,    infLh x h xÃ Ã   and 

   supUh x h xÃ Ã  ;      ,L Ud x d x d x   Ã Ã Ã  ,    infLd x d xÃ Ã   and    supUd x d xÃ Ã   are 

three interval values, denoting the interval-valued probabilistic information of  p xÃ ,  h xÃ  and 

 d xÃ  respectively. 

Additionally, , ,s s s S     ,      q q q qt         for a positive integer  1q   , where 

     , ,s x s x s v x     Ã Ã Ã  and    maxs xs s
   

Ã
 ,    maxs xs s

    
Ã

  and 

   maxs xs s
    

Ã
, # , # , #v   denote the number of values in ,   and v  respectively. Here, 
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       , , 0,1p x h x d x Ã Ã Ã  such that  
#

1

1U

i
i

p x




 Ã ,  
#

1

1U

j
j

h x




 Ã  and  
#

1

1
v

U

k
k

d x


 Ã . We call 

the triplet             , , ,x p x x h x v x d x Ã Ã Ã Ã Ã ÃÃ = an IVPLt-SF number (IVPLt-SFN) and is 

simply denoted as  , , vp h v d  ã . 

Example 1. Let   0 7 , 0,7S s s s s      be LTS. Suppose that two DMs are asked to evaluate 

whether a healthcare provider is a good investment in terms of its potential value, they will need to 
conduct a comprehensive assessment of the provider's financial and operational performance. To do 
this, they might review financial statements, analyze operational metrics, evaluate the competitive 
landscape, consider future growth potential and estimate the provider’s overall value based on 
projected cash flows. Ultimately, the DMs will draw on their knowledge and expertise to determine 
whether the healthcare provider is a wise investment choice. For that, the first expert considers 30–50% 
for a positive outcome, 10–20% for abstinence, and 20–40% for a negative outcome. To express his 
opinion, the decision maker uses linguistic variables, specifically “ 5s ” to indicate a positive opinion, 

“ 2s ” to indicate abstinence, and “ 3s ” to indicate a negative opinion. In other words, the expert has 

some degree of uncertainty about the investment opportunity but feels confident enough to express an 
opinion. Using linguistic variables may reflect the decision maker's preference for qualitative or 
subjective assessments rather than strictly numerical or quantitative approaches. The second expert has 
more nuanced opinions about the investment. He considers 20–50% for a positive outcome and uses 
the linguistic expression “ 4s ” to express his opinion. He also believes that there is a 30–50% chance 

that the investment is worth it, and he uses the linguistic expression “ 6s ” to express this opinion. To 

express the abstinence degree, he chooses 10–15% by using the linguistic expression “ 3s ” However, 

he still has some doubts about the investment, as they believe there is a 30–45% chance that it is not 
worth it, and use the linguistic expression “ 2s ” to express this opinion. The evaluation given by the 

two individuals can then be described as 

         1 5 2 30.3,0.5 , 0.1,0.2 , 0.2,0.4s s sã , and 

           1 4 6 3 40.2,0.5 , 0.3,0.5 , 0.1,0.15 , 0.3,0.45s s s sã . 

We can see that the value of linguistic variable in this example is ‘7’ and if we consider 3q   then it 

is easy to spot that 3 3 3 35 2 3 160 343t      and 3 3 3 36 3 4 307 343t     . Which means that 
the constraint holds and meets the definition of IVPLt-SFS. 
Remark 1. From Definition 3.2, it can be seen that 

(1) When 1q  , then Ã  is reduced to interval-valued probabilistic linguistic picture fuzzy set. 

(2) When 2q  , then Ã  is reduced to interval-valued probabilistic linguistic spherical fuzzy set. 

(3) When 1q   ,   0x Ã   then Ã   is reduced to interval-valued probabilistic linguistic 

intuitionistic fuzzy set. 
(4) When 2q   ,   0x Ã   then Ã   is reduced to interval-valued probabilistic linguistic 

Pythagorean fuzzy set. 

(5) When    L Up x p xÃ Ã  ,    L Uh x h xÃ Ã  , and    L Ud x d xÃ Ã  , then Ã   is reduced to 

probabilistic linguistic t-SFS. 
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Definition 3.2. Let  , , vp h v d  ã ,  1 1 11 1 1 1, , vp h v d  ã  

and  2 2 22 2 2 2, , vp h v d  ã  be any three IVPLt-SFNs and 0  , then 

(1) 
     
  

1 2 1 2 1 2 1 21 21 2 1 2

1 1 11 1 1
1 2 1 22 2 22 2 2 1 2

1

1 2
, ,
, ,

, , , ,

,

q q q q q

q L L U U L L U U
tt

L L U Us s s v
s s s v t

s p p p p s h h h h

s d d d d  

    

           

 
    

 

  
  

            
     

ã ã   (3.2) 

(2) 
     
  

2 2 1 2 1 2 1 21 2 1 2

1 1 11 1 1
1 12 2 2 1 2 1 22 2 2

1 2
1, ,

2 2, ,

, , , ,

,q q q q q

L L U U L L U U
t t

q L L U Us s s v
s s s v t

s p p p p s d d d d

s d d d d

 

  

  

        

 
        

  
    

            
     

ã ã     (3.3) 

(3) 
       1

1 1, ,

, , , , ,q
q q

L U L U L U

t t t t
t ts s s v

s p p s h h s d d 

  

       


       

                 
    

ã    (3.4) 

(4)  
  

 

 

1

1

1 1

, ,

1 1

, , , ,

,

q
q q

q
q q

L U L U

t t
t t

s s s v
L U

t t

s p p s h h

s d d

 

  



    


 

 


   
 

  

   
 

                  
       
    

ã        (3.5) 

Theorem 3.1. Let  , , vp h v d  ã ,  1 1 11 1 1 1, , vp h v d  ã  and 

 2 2 22 2 2 2, , vp h v d  ã  be any three IVPLt-SFNs and 1 2, , 0    , then we have 

1) 1 2 2 1  ã ã ã ã  

2) 1 2 2 1  ã ã ã ã  

3)  2 1 1 2    ã ã ã ã  

4)  1 2 1 2    ＝ã ã ã  

5)  1 2 1 2

    ã ã ã ã  

6)      1 2 1 2

c c c
  ã ã ã ã . 

Proof. The proof of (3) and (5) will be discussed in this section and the other proofs are similar. 
(3) By Eq (3.4), we have 
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       1
1 1 1 1 1 11 1

11 1 11 1 1

1
1 1, ,

, , , , ,q
q q

L U L U L U

t t t t
t ts s s v

s p p s h h s d d 

  

       


     
 

                 
    

ã    (3.6) 

       1
2 2 2 2 2 22 2

22 2 2 22 2

2
1 1, ,

, , , , ,q
q q

L U L U L U

t t t t
t ts s s v

s p p s h h s d d 

  

       


     
 

                 
    

ã   (3.7) 

       

      

1
1 1 1 1 1 11 1

11 1 11 1 1

1
2 2 2 2 22 2

2

1 2
1 1, ,

1 1

, , , , ,

, , , , ,

q
q q

q
q q

L U L U L U

t t t t
t ts s s v

L U L U L

t t t t
t t

s p p s h h s d d

s p p s h h s d d

 

  

 

       

      

 
     
 

   
 

                  
    

         
  

ã ã

 2

2 2 2 22 2
, ,

U

s s s v     

     
  


 

Then, by Eq (3.2), we obtain 

 

   

12

1
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2 2

1 11 1
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1
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2

, ,

, , ,

q

q q
i

i

n n
i i i i
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L U
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L U L U

t t t ti i i i
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s p p
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ã ã
 , ; 1,2i ii i

s v i   
  

(5) For any IVPLt-SFN  1 2 1 2    ＝ã ã ã , by Eq (3.4) we have 

       1

1 1, ,

, , , , ,q i iiq q

L U L U L U
i t t t t

t ts s s v

s p p s h h s d d 

  

       


       

                 
    

ã  

where 1, 2i  . 

Then, according to Eqs (3.2), (3.6) and (3.7) 
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2 2

1 11 1

2 2 2 2

1 1 1

1 2
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, , ,

q
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i
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U
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, , , , ,q
q q
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 1 2   ã . 
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Thus, we have shown that  1 2 1 2    ＝ã ã ã  holds. 

Definition 3.3. Let  , , vp h v d  ã   be any IVPLt-SFN defined on LTS 

  0 , 0,tS s s s s t       , where      , ,s x s x s v x     Ã Ã Ã  . Then the definitions of 

score function  SF ã  and  AF ã  of ã  are given as follows: 

         
# # # #

1, 1, 1, 1,

1 1 1 1

# # # #
i i i i

q q q qv v
L U L U

i i i i i i i i
i i i v i v

SF p p d d
v v

 

     

   
        

   
           

   ã   (3.8) 

and 

         
# # # #

1, 1, 1, 1,

1 1 1 1

# # # #
i i i i

q q q qv v
L U L U

i i i i i i i i
i i i v i v

AF p p d d
v v

 

     

   
        

   
           

   ã .  (3.9) 

Definition 3.4. Let  1 1 11 1 1 1, , vp h v d  ã   and  2 2 22 2 2 2, , vp h v d  ã   be any two IVPLt-

SFNs, then 

(1) If    1 2SF SFã ã , then 1 2ã ã ; 

(2) If    1 2SF SFã ã , then 1 2＜ã ã ; 

(3) If    1 2SF SFã ã , then there are two possible situations: 

(i) If    1 2AF AFã ã , then 1 2ã ã ; 

(ii) If    1 2AF AFã ã , then 1 2＝ã ã . 

Definition 3.5. Let  1 1 11 1 1 1, , vp h v d  ã   and  2 2 22 2 2 2, , vp h v d  ã   be any two IVPLt-

SFNs, then the Euclidean distance measure for two IVPLt-SFNs is defined as follows: 
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ã ã .     (3.10) 

4. Aggregation operators for IVPLt-SFNs 

Aggregation operators refer to mathematical functions that are utilized to summarize or combine 
multiple values into a single value. They are commonly used in data analysis, decision-making and 
database management to compute summary statistics like counts, averages, minimum and maximum 
values, sums and more. These operators are useful for analyzing large datasets and can provide 
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valuable insights into the data. Therefore, in this section, two aggregation operators have been 
developed, namely; IVPLt-SF weighted averaging (IVPLt-SFWA) operator and IVPLt-SF weighted 
geometric (IVPLt-SFGA) operator to fuse the DMs assessment information. 

Definition 4.1. Let   1 , , 1, 2,...,
i i ii i i vp h v d i n   ã   be a collection of IVPLt-SFNs and 

 1 2, ,...,
T

nw w w w be the corresponding weight vector, such that 
1

1
n

i
i

w


  and 0 1iw  . Then, the 

IVPLt-SFWA operator of dimension is a mapping : nIVPLt SFWA    such that 

   1
1

2, ,...,
n

i in
i

IVPLt SFWA w


 ã ã ã .      (4.1) 

Theorem 4.1. Let   1 , , 1, 2,...,
i i ii i i vp h v d i n   ã  be a collection of IVPLt-SFNs. Then, the 

aggregation results obtained by IVPLt-SFWA operator is still an IVPLt-SFNs and is expressed as, 
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Proof. According to Eq (3.4), we can get 
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then we can obtain, 
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which completes the proof of Theorem 4.1. 

Definition 4.2. Let   1 , , 1, 2,...,
i i ii i i vp h v d i n   ã   be a collection of IVPLt-SFNs and 

 1 2, ,...,
T

nw w w w be the corresponding weight vector, such that 
1

1
n

i
i

w


  and 0 1iw  . Then, the 

IVPLt-SFWG operator of dimension is a mapping : nIVPLt SFWG    such that 

   1
1

2, ,..., iw

i
i

n

n

IVPLt SFWG 


 ã ã ã        (4.3) 
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Theorem 4.2. Let   1 , , 1, 2,...,
i i ii i i vp h v d i n   ã  be a collection of IVPLt-SFNs. Then, the 

aggregation results obtained by the IVPLt-SFWG operator is still an IVPLt-SFNs and is expressed as, 
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 (4.4) 

Proof of Theorem 4.1 is similar to the Theorem 4.1, which is omitted here. 

5. Multi-attribute group decision-making with IVPLt-SF information 

Multi-attribute group decision-making with interval valued probabilistic linguistic T-spherical 
fuzzy information is a complex process used to evaluate and rank multiple options based on various 
criteria. With this approach, DMs communicate their ideas and preferences by providing IVPLt-SF 
information. Decision maker’s information is a representation of uncertainty that takes into 
consideration their level of confidence in their evaluation of the available options. Compared to 
conventional fuzzy sets, the IVPLt-SFS is a kind of fuzzy set that may represent information in a more 
adaptable and sophisticated manner. The procedure entails establishing the standards and potential 
solutions, gathering and combining the IVPLt-SF data and rating the potential solutions according to 
their overall effectiveness. To address this issue, a variety of tools and procedures are available, such 
as the TOPSIS, VIKOR and ELECTRE methods. 

The TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method is a 
decision-making approach used to rank options based on their similarity to the ideal solution and 
dissimilarity to the negative ideal solution. This method is commonly used for multi-criteria decision-
making and can be adapted to handle the complexity of MAGDM with interval valued probabilistic 
linguistic T-spherical fuzzy information. In this paper, we will extend the TOPSIS method using IVPLt-
SF information. 

Extended TOPSIS method based methodology for MAGDM under IVPLt-SFSs 

In this section, we aim to provide an MAGDM methodology based on extend TOPSIS model 
where the evaluation information of DMs take the form of IVPLt-SFNs. 

Suppose that there are ‘ m ’ alternatives of the form  1,2,...,iX i m  which are to be evaluated 

based on ‘ n ’ attributes  1,2,...,jG j n , whose weighting vector is given as  1 2, ,...,
T

n    , 

satisfying the constraint that 
1

1
n

j
j




   and 0 1j   . Consider that there are ‘ K  ’ DMs 

      1 2, ,..., kE E E  with weighting vector  1 2, ,..., k   . Assume that the ‘ K ’ DMs have evaluated 

the alternatives iX  under the attributes jG  and give their evaluation information in the form IVPLt-

SFNs     ijY y  , 1, 2,..., k   where    , ,kk k
ijij ij

k k k
ij ij ij ij v

y p h v d


  . The TOPSIS technique is 

expanded to the IVPLt-SF scenario in order to determine the best option in the decision-making issue 
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(Figure 1). With all of the given information, the computation procedure can be shown in the following. 

 

Figure 1. Flowchart of the proposed technique. 

Step 1. Get the individual assessments of the DMs in the form of IVPLt-SF setting. 

    ijY y  , 1, 2,..., k          (5.1) 

where 

   , ,kk k
ijij ij

k k k
ij ij ij ij v

y p h v d


  . 

Step 2. The second step involves aggregating all the information the DMs provided into a collective 
one using an IVPLt-SFWA operator. According to Eq (4.2): 

        1 2

1

, ,...,
k

k
ii j ij j i ij jIVPLt SFWA y y y yy 







   .      (5.2) 
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Step 3. Normalize the group IVPLt-SF decision matrix. If all the criteri are of the same type, then do 
nothing; if the criterion is cost type, then the cost type criterion should be converted into a benefit type. 
The normalized group decision matrix is shown as follow: 

   
 

, , ,
, ,

, , , cos

kk k
ijij ij

kk k
ijij ij

kk k
ijij ij

k k k
ij ij ij jv

k k k
ij ij ij ij v

k k k
ij ij ij jv

p h v d for benefit type G
Y y p h v d

v d h p for t type G





 

 
 

 




   



.   (5.3) 

Step 4. The weighted collective decision matrix should be computed in the third stage utilizing the 
attribute weights. According to Eq (3.7): 

   ij j ij m nm n
Y y y


          (5.4) 

where  1,2,..., ; 1,2,...,i m j n  . 

Step 5. In the third step, we must use the following equations to get the IVPLt-SF positive ideal 

solution (IVPLt-SF-PIS) jy  and IVPLt-SF negative ideal solution (IVPLt-SF-NIS) jy  by using the 

following equations: 

 
         

1 2

1 2

, ,...

max , max ,..., max

j n

i i in

y

SF SF SF

   



ã ã ã

ã ã ã
   (5.5) 
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, ,...

min , min ,..., min
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y

SF SF SF

   



ã ã ã

ã ã ã
   (5.6) 

where  1,2,..., ; 1,2,...,i m j n  . 

Step 6. The distances between each alternative with PIS and NIS are calculated based on Euclidean 
distance measure by using Eq (3.10): 

 
1

,
n

i ij j
j

d y y  



  ;         (5.7) 

 
1

,
n

i ij j
j

d y y  



           (5.8) 

where  1,2,...i m  and  1,2,...j n  

Step 7. Now, we will calculate the closeness ratio  1,2,...i i m   of the alternatives by using the 

following equation: 

i
i

i i


 



  


.         (5.9) 

Step 8. Rank all the alternatives in descending order. The best alternative will be the one with greater 
values. 
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6. Application 

In the following part, a numerical example and a comparison with existing techniques are 
provided to further elucidate the applicability of IVPLt-SFSs: 

6.1. Numerical example of an IVPLt-SFN MAGDM problem  

Cloud storage providers offer a third-party service that allows companies to store their digital 
data, such as files, documents, images and videos on remote servers that are hosted by the provider. 
This type of storage enables companies to store and access their data over the internet from anywhere, 
using various devices such as computers, smartphones and tablets. Using cloud storage can provide 
several benefits to companies, including scalability, accessibility, cost savings, security and 
collaboration features. Cloud storage providers offer scalable storage capacity, which means that 
companies can adjust their storage needs based on their business requirements. They also offer easy 
access to data from anywhere and anytime, which is convenient for remote teams or employees. Using 
cloud storage can also save companies money, as they do not have to invest in expensive hardware or 
maintenance. Cloud storage providers offer several security features to protect data from unauthorized 
access or loss, including data encryption, access controls and disaster recovery mechanisms. Finally, 
cloud storage providers offer collaboration features that enable teams to work together more effectively, 
regardless of their location. 

When choosing a cloud storage provider, there are several criteria that companies should consider. 

Let us consider that a company invited three DMs       1 2 3, ,D D D D  with different knowledge and 

experiences having weighting vector  0.36,0.24,0.4    to review some world-renown cloud 

storage providers. These DMs short-listed three alternatives: 

1   Amazon Web Ser sX vice ; 2  AlibabX a Cloud ; and 3  TencenX t Cloud  

The four effective attributes they settled on and used to the company's selection procedure are 
explained as follows: 

Storage capacity and scalability  1Z : The quantity of storage space, the business needs, and the 

provider's ability to grow storage capacity are two key factors to consider when choosing a cloud 
storage provider. This implies that companies should evaluate their current and future demands for 
data storage and select a supplier that can satisfy those needs. It is crucial to choose a supplier that will 
allow the organization to increase its storage capacity without moving providers or buying new gear. 
By only paying for the storage space they actually use, scalability may help businesses save money. It 
is also vital to consider the provider's pricing strategy because some use pay-as-you-go or tiered pricing. 
Ultimately, choosing a cloud storage provider with the appropriate scalability and storage capacity 
helps ensure that the business has the space to retain its data and can quickly adjust its storage 
requirements as it expands. 

Accessibility  2Z : The second aspect to consider when selecting a cloud storage provider is accessibility. 

A provider who offers easy accessibility may boost productivity by enabling customers to access data from 
any place and on any device. Businesses should look for service providers who offer durable connections, 
nimble online and mobile applications and reliable data transfer methods. Consideration must be given to 
the provider's ability to integrate applications while maintaining ease of access. 

Security  3Z  : The third aspect to consider when selecting a cloud storage provider is security. 
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Businesses should seek service providers with robust security processes, such as encryption, access 
controls, data backups and disaster recovery plans. Additionally, service providers must adhere to rules 
particular to their business and have a transparent data privacy policy. The security, integrity and 
accessibility of data stored on the cloud platform must all be guaranteed. 

Vendor Stability  4Z : Vendor stability is a term used to describe a cloud storage provider's financial 

stability, standing and durability. When choosing a cloud storage service, it's crucial to consider 
stability. This entails evaluating their financial standing, performance history and standing within their 
sector. A recognized, financially secure supplier is more likely to provide dependable services and has 
the funds to make changes. The likelihood of unexpected disruptions or the requirement for data 
migration is decreased by longevity in the market, which also shows their dedication. Assessing vendor 
stability aids in ensuring your firm receives dependable and trustworthy cloud storage services. 

The decision hierarchy of the cloud storage provider selection problem is further explained in 
Figure 2.  

 

Figure 2. Decision hierarchy of cloud storage provider selection. 

These four attributes explained above have weighting vector  0.10,0.30,0.15,0.45w , and the 

evaluation matrices provided by DMs are  1R ,  2R  and  3R , which are expressed in the form of 
IVPLt-SFS with 7t   and 3q  , are given in Tables 1–3. In Section 5, the MAGDM technique is 

proposed as a way to determine the optimal alternative by aggregating the opinions of multiple DMs. 
The technique involves various computational processes, and the findings and outcomes are outlined 
and discussed below. 
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Step 1. The three DMs evaluate the short-listed alternatives  1 2 3, ,X X X  and gave their assessment 

in the form of IVPLt-SFN, shown in Tables 1–3. 
Step 2. By using the weights of DMs and Eqs (4.2) and (5.2), the collective decision matrix is given 
in Table 4. 
Step 3. All the attributes are of the same type. Therefore, there is no need for normalization. We will 
proceed to the next step. 

Table 1. Assessment matrix provided by decision-maker  1D . 

 
1Z  

1X           4 5 2.3,.5 , .1,.2 , .2,.4s s s  

2X             3 6 1 4.1,.5 , .4,.5 , .1,.3 , .2,.6s s s s  

3X           4 3 5.1,.8 , .3,.4 , .2,.8s s s  

 
2Z  

1X           2 3 1.2,.6 , .5,.7 , .1,.5s s s  

2X           4 1 3.5,.7 , .2,.4 , .5,.7s s s  

3X             2 1 6 4.4,.7 , .2,.4 , .3,.6 , .1,.3s s s s  

 
3Z  

1X           6 4 1.3,.4 , .2,.5 , .1,.9s s s  

2X             3 4 4 5.2,.5 , .4,.6 , .3,.4 , .3,.6s s s s  

3X           2 1 6.6,.7 , .3,.6 , .2,.4s s s  

 
4Z  

1X               3 4 6 1 2.2,.5 , .1,.6 , .2,.4 , .1,.3 , .1,.4s s s s s  

2X           4 2 3.4,.6 , .4,.7 , , .3,.8s s s  

3X           4 3 5.4,.7 , .1,.4 , .2,.6s s s  

 

 



20240 

AIMS Mathematics  Volume 8, Issue 9, 20223–20253. 

Table 2. Assessment matrix provided by decision-maker  2D . 

 
1Z  

1X           5 4 2.3,.5 , .2,.3 , .4,.5s s s  

2X           4 2 5.4,.5 , .1,.3 , .5,.6s s s  

3X           4 3 2.2,.7 , .5,.8 , .4,.5s s s  

 
2Z  

1X             3 4 3 4.2,.6 , .2,.6 , .2,.4 , .3,.5s s s s  

2X           4 2 5.2,.45 , .2,.25 , .1,.2s s s  

3X           6 2 4.3,.6 , .2,.4 , .3,.6s s s  

 
3Z  

1X           6 4 1.3,.4 , .2,.5 , .1,.9s s s  

2X           5 1 4.3,.4 , .1,.3 , .3,.4s s s  

3X           5 3 3.3,.5 , .4,.5 , .1,.6s s s  

 
4Z  

1X           4 3 5.4,.7 , .1,.4 , .2,.6s s s  

2X             1 4 2 50.4,0.5 , 0.2,0.5 , 0.1,0.3 , 0.5,0.6s s s s  

3X           2 3 2.1,.5 , .2,.4 , .3,.8s s s  
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Table 3. Assessment matrix provided by decision-maker  3D . 

 
1Z  

1X             5 6 2 6.4,.5 , .3,.5 , .3,.9 , .3,.6s s s s  

2X             4 4 2 5.2,.45 , .2,.25 , .1,0.7 , .2,0.3s s s s  

3X           5 3 6.1,.2 , .4,.5 , .6,.9s s s  

 
2Z  

1X             3 5 3 6.2,.45 , .4,.55 , .2,.6 , .7,.9s s s s  

2X           2 6 3.3,.6 , .4,.5 , .3,.9s s s  

3X             5 3 4 6.2,.4 , .3,.2 , .1,.8 , .3,.6s s s s  

 
3Z  

1X             3 5 2 1.3,.6 , .2,.4 , .2,.5 , .4,.7s s s s  

2X           3 3 4.3,.5 , .1,.4 , .4,.6s s s  

3X           6 2 4.3,.6 , .2,.4 , .3,.6s s s  

 
4Z  

1X           3 1 4.5,.6 , .3,.4 , .4,.6s s s  

2X             5 6 3 4.3,.5 , .3,.4 , .1,.4 , .3,.5s s s s  

3X           3 5 4.4,.5 , .2,.5 , .5,.6s s s  
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Table 4. Aggregated group decision matrix. 

 
1Z  

1X             12.0,024.0,054.0,006.0,125.0,027.0,125.0,036.0 1037.3285.33258.5714.4 ssss
 

2X         
     











108.0,02.0,252.0,01.0

,063.0,001.0,1125.0,032.0,1125.0,008.0

6141.41982.3

9193.31024.57135.3

ss

sss
 

3X           4.485 3 4.31660.002,0.112 , 0.06,0.16 , 0.048,0.36s s s  

 
2Z  

1X          
      











225.0,021.0,168.0,02.0

198.0,016.0,198.0,016.0,162.0,008.0,162.0,008.0

856.23

1796.4017.41.37274.2

ss

ssss
 

2X           126.0,015.0,05.0,016.0,189.0,03.0 3913.34183.24985.3 sss  

3X  
  

   
   

  
























108.0,009.0,
192.0,006.0,128.0,004.0

,048.0,018.0,032.0,012.0
,168.0,024.0 7043.4

9193.30562.2

4933.38327.1

9253.4 s
ss

ss
s  

 
3Z  

1X             567.0,004.0,125.0,008.0,064.0,018.0,096.0,027.0 10314.37017.54302.5 ssss  

2X             144.0,036.0,096.0,036.0,072.0,004.0,1.0,018.0 3346.445562.27783.3 ssss  

3X           144.0,006.0,12.0,024.0,21.0,054.0 3198.47176.11676.5 sss  

 
4Z  

1X         
     











144.0,008.0,108.0,008.0

,064.0,006.0,096.0,003.0,21.0,04.0

2881.3562.2

4811.21441.23112.3

ss

sss
 

2X          
      











24.0,045.0,084.0,004.0

,12.0,024.0,12.0,048.0,15.0,024.0,15.0,048.0

8049.33522.2

1844.50548.5485.42646.4

ss

ssss
 

3X           288.0,03.0,08.0,004.0,175.0,016.0 6703.36801.33199.3 sss  

Step 3. By using attributes weight and Eqs (3.7) and (5.4), we compute a weighted aggregated decision 
matrix which is given in Table 5. 
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Table 5. Weighted aggregated group decision matrix. 

 
1Z  

1X             12.0,024.0,054.0,006.0,125.0,027.0,125.0,036.0 4532.649.66845.23068.2 ssss  

2X         
    

1.7653 2.5405 6.6055

6.4726 6.7142

0.008,0.1125 , 0.032,0.1125 , 0.001,0.063 ,

0.01,0.252 , 0.02,0.108

s s s

s s

 
 
 
  

 

3X           36.0,048.0,16.0,06.0,112.0,002.0 6696.64313.61765.2 sss  

 
2Z  

1X          
      











225.0,021.0,168.0,02.0

198.0,016.0,198.0,016.0,162.0,008.0,162.0,008.0

3493.54288.5

8751.27541.20971.28387.1

ss

ssss
 

2X           126.0,015.0,05.0,016.0,189.0,03.0 6322.50889.53782.2 sss  

3X    
   
   

  
























108.0,009.0,
192.0,006.0,128.0,004.0

,048.0,018.0,032.0,012.0
,168.0,024.0 2132.6

8821.58472.4

6825.56827.4

4581.3 s
ss

ss
s  

 
3Z  

1X             567.0,004.0,125.0,008.0,064.0,018.0,096.0,027.0 228.51742.63547.31373.3 ssss  

2X             144.0,036.0,096.0,036.0,072.0,004.0,1.0,018.0 5144.64364.60183.6056.2 ssss  

3X           144.0,006.0,12.0,024.0,21.0,054.0 5111.66698.59428.2 sss  

 
4Z  

1X         
     











144.0,008.0,108.0,008.0

,064.0,006.0,096.0,003.0,21.0,04.0

9823.44531.4

3893.41102.45632.2

ss

sss
 

2X          
      











24.0,045.0,084.0,004.0

,12.0,024.0,12.0,048.0,15.0,024.0,15.0,048.0

3206.52851.4

1549.4035.45308.33433.3

ss

ssss
 

3X           288.0,03.0,08.0,004.0,175.0,016.0 235.52413.55701.2 sss  

Step 4. According to Table 5 and Eqs (5.5) and (5.6), we can compute the IVPLt-SF-PIS 

 1,2,3,4jy j   and IVPLt-SF-NIS  1,2,3,4jy j  , which are given below. 



20244 

AIMS Mathematics  Volume 8, Issue 9, 20223–20253. 

           1 2.3068 2.6845 6.49 6.45320.036,0.125 , 0.027,0.125 , 0.006,0.054 , 0.024,0.12y s s s s 

  
   
   

  4.6827 5.6825

2 3.4581 6.2132

4.8472 5.8821

0.012,0.032 , 0.018,0.048 ,
0.024,0.168 , , 0.009,0.108

0.004,0.128 , 0.006,0.192

s s
y s s

s s


         
     

 

           3 2.056 6.0183 6.4364 6.51440.018,0.1 , 0.004,0.072 , 0.036,0.096 , 0.036,0.144y s s s s   

       
    

2.5632 4.1102 4.3893

4

4.4531 4.9823

0.04,0.21 , 0.003,0.096 , 0.006,0.064 ,

0.008,0.108 , 0.008,0.144

s s s
y

s s



 
   
  

 

         1 2.1765 6.4313 6.66960.002,0.112 , 0.06,0.16 , 0.048,0.36y s s s   

        
     

1.8387 2.0971 2.7541 2.8751

2

5.4288 5.3493

0.008,0.162 , 0.008,0.162 , 0.016,0.198 , 0.016,0.198

0.02,0.168 , 0.021,0.225

s s s s
y

s s


 
   
  

 

           3 3.1373 3.3547 6.1742 5.2280.027,0.096 , 0.018,0.064 , 0.008,0.125 , 0.004,0.567y s s s s   

         4 2.5701 5.2413 5.2350.016,0.175 , 0.004,0.08 , 0.03,0.288y s s s   

Step 5. The distances between each alternative with PIS and NIS are computed by using Eqs (3.8), 
(5.7) and (5.8), which are given below: 

1 0.0410   , 2 0.0405   , 3 0.0735    

1 0.0539   , 2 0.0640   , 3 0.0466    

Step 6. The closeness ratio  1,2,3i i   of the alternatives is computed by using Eq (5.9). 

1 0.5679  , 2 0.6124  , 3 0.3880   

Step 7. The value of the closeness ratio indicates the overall ranking order of the alternatives which is 

2 1 3X X X  . We conclude that ‘ 2  AlibabX a Cloud ’ is the best suitable cloud storage provider 

among all. 
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Sensitivity analysis 

This part examines the effect of the parameter ‘ q ’. Here, we take 3 10q   and the outcomes 

are given in Table 6 and illustrated graphically in Figure 3 as well. According to the closeness ratio 
obtained from using different values of parameter ‘ 3 10q   ’ and again using each stage of the 

suggested process, it was discovered that the alternatives' ranking did not change, which is 
‘ 2 1 3X X X  , with the best alternative being 2X  and worst alternative 3X . 

Table 6. Influence of parameters ‘q ’ on the ranking of alternatives. 

Parameter Closeness ratio Ranking order Best alternative 

3q   1 0.5679  , 2 0.6124  , 3 0.3880   2 1 3X X X   2X  

4q   1 0.5526  , 2 0.6080  , 3 0.3804   2 1 3X X X   2X  

5q   1 0.5314  , 2 0.6027  , 3 0.3740   2 1 3X X X   2X  

6q   1 0.5213  , 2 0.5880  , 3 0.3710   2 1 3X X X   2X  

7q   1 0.5160  , 2 0.5769  , 3 0.3660   2 1 3X X X   2X  

8q   1 0.5100  , 2 0.5700  , 3 0.3590   2 1 3X X X   2X  

9q   1 0.5055  , 2 0.5650  , 3 0.3509   2 1 3X X X   2X  

10q   1 0.4970  , 2 0.5560  , 3 0.3459   2 1 3X X X   2X  

 

Figure 3. Impact of parameter ‘q’ on final ranking of alternatives. 
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One more thing is also worth noting: The closeness ratios decrease as the parameter value 
increases. The value of ‘ q ’ in this study represents the complexity of the decision environment and 
conditions. The complexity is higher when the value of ‘ q ’ means is higher. The final ranking order 
and best alternative obtained by using the different values of parameter ‘ q ’ on our proposed method 

are the same. However, when the data provided by DMs is more complicated and ambiguous, the 
results can differ. In real-world decision problems, the DMs may change the value of ‘ q ’ depending 

on the situation to achieve appropriate decision results. 

6.2. Comparative analysis 

A fuzzy set [18] can only handle situations when the MD of the elements is present and cannot 
handle circumstances where the NMD of the elements is also present. The MD and NMD scenarios 
can be handled by IFSs [19]. There are numerous applications of fuzzy set theory that can cope with 
MD, AD and NMD, and were made possible by the development of PFSs [23]. Later, Mahmood et al. 
[26] developed t-SFSs by improving the restrictions of PFS, which cannot handle the circumstances in 
which the sum of MD, AD and NMD exceeds one. Further, Lt-SFS [38] was offered by providing more 
freedom to the DMs so that they could give their assessments in a qualitative manner. Lt-SFSs thus 
enable professionals the freedom to present their analysis with the fewest limitations. Due to this, we 
employed IVPLt-SFSs to gather evaluation data from professionals for this study. As we discussed in 
the introduction, there is no literature available about the presentation of probability in Lt-SFS. 
However, probabilistic linguistic q‐rung orthopair fuzzy weighted averaging (PLq‐ROFWA) [42] and 
IVPLq-ROFS [43] are the special cases of the proposed approach. For example, when the linguistic 
abstinence degree is considered to be zero or the internal-valued probability is a single-valued 
probability in the above given practical example, the final results obtained by using the techniques 
proposed in [42] and [43] are compared with our suggested method which is shown in Table 7. We can 
see from Table 7 that the final ranking obtained is slightly different than our proposed approach, but 
the best option is still the same, which is 2X . Further, we have discussed the qualitative analysis of our 

designed methodology with some existing approaches. From Table 8 and Figure 4, It has come to light 
that the method suggested in this study is more comprehensive than the ones already in use. 

Table 7. Comparison analysis of the proposed model to the existing techniques using considered data. 

Methods Closeness ratio/Score values Ranking of alternatives Best option 

PLq‐ROFWA [42] 

 
 1 0.4671SC X  ,  2 0.5890SC X  , 

 3 0.3910SC X   

2 1 3X X X   2X  

IVPLq-ROFS [43] 

 
 1 0.4279SC X  ,  2 0.6511SC X  , 

 3 0.6345SC X   

2 3 1X X X   2X  

Continued on next page 
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Methods Closeness ratio/Score values Ranking of alternatives Best option 

Proposed method 
1 0.5679  , 2 0.6124  , 

3 0.3880   

2 1 3X X X   2X  

Table 8. Qualitative comparison analysis of the proposed model with the existing techniques. 

Set Parameter 

Involvement 

of abstinence 

degree 

Involvement 

of linguistic 

term 

Involvement 

of probability 

Involvement 

of interval-

valued 

probability 

Computational 

complexity 

Lt-SFS 

[38] 
Yes Yes Yes No No Relatively high 

PLTS [60] No No Yes Yes No Relatively high 

IVPLTS 

[61] 
No No Yes Yes Yes Relatively high 

PLT [62] No No Yes Yes No Relatively high 

TOPSIS-

based PLTS 

[63] 

No No Yes Yes No Relatively high 

Pt-SHFS 

[40] 
Yes Yes No Yes No Relatively high 

PLq‐

ROFWA) 

[42] 

Yes No Yes Yes No Relatively high 

IVPLq-

ROFS [43] 
Yes No Yes Yes Yes Relatively high 

Proposed 

method 
Yes Yes Yes Yes Yes Low 
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Figure 4. Comparison of existing methods with the proposed approach. 

6.3. Advantages of the proposed method 

Through this investigation and comparison analysis, we have come to the conclusion that our 
suggested strategy provides the following advantages over other existing techniques. (1) Since they 
can handle different types of assessment information by employing the IVPLPFSs, the evaluation 
process is more flexible; (2) Information fusion is more accurate compared with IVPLt-SFWA and 
IVPLt-SFWG operators; (3) More freedom for DMs when offering their opinions because of the 
relaxed restrictions of the novel information expression method; (4) The calculation complexity is 
significantly reduced due to the innovative distance measurement method we have introduced. This 
means that evaluations can be directly utilized without the need for normalization. As a result, our 
proposed methods have a broader range of applications and provide more accurate calculation results 
compared to other existing methods. 

7. Conclusions 

This paper introduces a new way of information expression, based on which a novel MAGDM 
technique is established. We first gave a brief introduction to a few current and inspirational perspectives. 
Then, as a foundation for solving a real-world MAGDM problem, the definition of IVPLt-SFS and a few 
fundamental principles were provided, such as the basic operational laws, the comparison and ranking rules 
and the distance measurement method. In addition, the extension of the IVPLt-SFWA and IVPLt-SFWG 
operators and their mathematical properties were offered. These operators were employed in the following 
section to aggregate assessments from various levels. After that, we presented a comprehensive framework 
to define a typical MAGDM problem and thoroughly propose and exhibit the application procedures of the 
suggested approach. The IVPLt-SFWA-TOPSIS method's specific calculation steps were provided 
throughout the problem of choosing a cloud storage provider. In the end, the impact of the parameter on 
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final decision results and comparison analysis revealed that our technique is more flexible, robust and 
efficient than the other existing methods in describing fuzzy information. 

Limitations and future directions 

However, the idea of large-scale group decision-making (LSGDM) has drawn much attention 
from scholars in today's information-driven cultivation. LSGDM is the term used to describe a 
decision-making procedure including a significant number of participants and requiring consideration 
of several opinions, preferences and criteria which inevitably enhances the intricacy involved in 
reaching a conclusive decision [64]. Furthermore, in real-world LSGDM situations, consensus 
checking and improving, clustering, a more comprehensive information expression approach and an 
automated consensus-reaching mechanism are typically necessary [65]. 

This paper allocates limited attention to the issues mentioned above, and future research 
endeavors could place greater emphasis on addressing these aspects. In the future, it may be 
investigated whether the suggested approach may be used to solve LSGDM issues. It should also be 
noted that the formula for calculating the closeness ratio in the TOPSIS approach used in our work is 
outdated. Future work may also be concentrated using the updated closeness ratio formula. In this 
paper, the proposed method is employed for the selection of cloud storage provider. In the future, our 
goal is to apply this developed method to other real-life decision problems, such as medical diagnosis 
problems [26], bio-medical waste management [66], risk assessment [29] and electric-vehicle site 
selection problems [67]. 
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