Research article Special Issues

Fractional orthotriple fuzzy Choquet-Frank aggregation operators and their application in optimal selection for EEG of depression patients

  • Received: 22 October 2022 Revised: 22 December 2022 Accepted: 23 December 2022 Published: 03 January 2023
  • MSC : 03E72, 47S40

  • The fractional orthotriple fuzzy sets (FOFSs) are a generalized fuzzy set model that is more accurate, practical, and realistic. It is a more advanced version of the present fuzzy set models that can be used to identify false data in real-world scenarios. Compared to the picture fuzzy set and Spherical fuzzy set, the fractional orthotriple fuzzy set (FOFS) is a powerful tool. Additionally, aggregation operators are effective mathematical tools for condensing a set of finite values into one value that assist us in decision making (DM) challenges. Due to the generality of FOFS and the benefits of aggregation operators, we established two new aggregation operators in this article using the Frank t-norm and conorm operation, which we have renamed the fractional orthotriple fuzzy Choquet-Frank averaging (FOFCFA) and fractional orthotriple fuzzy Choquet-Frank geometric (FOFCFG) operators. A few of these aggregation operators' characteristics are also discussed. To demonstrate the efficacy of the introduced work, the multi-attribute decision making (MADM) algorithm is discussed along with applications. To demonstrate the validity and value of the suggested work, a comparison of the proposed work has also been provided.

    Citation: Muhammad Qiyas, Muhammad Naeem, Neelam Khan. Fractional orthotriple fuzzy Choquet-Frank aggregation operators and their application in optimal selection for EEG of depression patients[J]. AIMS Mathematics, 2023, 8(3): 6323-6355. doi: 10.3934/math.2023320

    Related Papers:

  • The fractional orthotriple fuzzy sets (FOFSs) are a generalized fuzzy set model that is more accurate, practical, and realistic. It is a more advanced version of the present fuzzy set models that can be used to identify false data in real-world scenarios. Compared to the picture fuzzy set and Spherical fuzzy set, the fractional orthotriple fuzzy set (FOFS) is a powerful tool. Additionally, aggregation operators are effective mathematical tools for condensing a set of finite values into one value that assist us in decision making (DM) challenges. Due to the generality of FOFS and the benefits of aggregation operators, we established two new aggregation operators in this article using the Frank t-norm and conorm operation, which we have renamed the fractional orthotriple fuzzy Choquet-Frank averaging (FOFCFA) and fractional orthotriple fuzzy Choquet-Frank geometric (FOFCFG) operators. A few of these aggregation operators' characteristics are also discussed. To demonstrate the efficacy of the introduced work, the multi-attribute decision making (MADM) algorithm is discussed along with applications. To demonstrate the validity and value of the suggested work, a comparison of the proposed work has also been provided.



    加载中


    [1] K. T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Set. Syst., 33 (1989), 37–45. https://doi.org/10.1016/0165-0114(89)90215-7 doi: 10.1016/0165-0114(89)90215-7
    [2] M. Akram, W. A. Dudek, F. Ilyas, Group decision-making based on pythagorean fuzzy TOPSIS method, Int. J. Intell. Syst., 34 (2019), 1455–1475. https://doi.org/10.1002/int.22103 doi: 10.1002/int.22103
    [3] S. S. Abosuliman, S. Abdullah, M. Qiyas, Three-way decisions making using covering based fractional Orthotriple fuzzy rough set model, Mathematics, 8 (2020), 1121. https://doi.org/10.3390/math8071121 doi: 10.3390/math8071121
    [4] S. Ashraf, S. Abdullah, T. Mahmood, Spherical fuzzy Dombi aggregation operators and their application in group decision making problems, J. Amb. Intell. Hum. Comput., 11 (2020), 2731–2749. https://doi.org/10.1007/s12652-019-01333-y doi: 10.1007/s12652-019-01333-y
    [5] M. K. Alaoui, F. M. Alharbi, S. Zaland, Novel analysis of fuzzy physical models by generalized fractional fuzzy operators, J. Funct. Space., 2022. https://doi.org/10.1155/2022/2504031
    [6] G. Büyüközkan, G. Çifçi, A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers, Expert Syst. Appl., 39 (2012), 3000–3011. https://doi.org/10.1016/j.eswa.2011.08.162 doi: 10.1016/j.eswa.2011.08.162
    [7] O. Barukab, S. Abdullah, S. Ashraf, M. Arif, S. A. Khan, A new approach to fuzzy TOPSIS method based on entropy measure under spherical fuzzy information, Entropy, 21 (2019), 1231. https://doi.org/10.3390/e21121231 doi: 10.3390/e21121231
    [8] T. Calvo, B. De Baets, J. Fodor, The functional equations of Frank and Alsina for uninorms and nullnorms, Fuzzy Set. Syst., 120 (2001), 385–394. https://doi.org/10.1016/S0165-0114(99)00125-6 doi: 10.1016/S0165-0114(99)00125-6
    [9] J. Casasnovas, J. Torrens, An axiomatic approach to fuzzy cardinalities of finite fuzzy sets, Fuzzy Set. Syst., 133 (2003), 193–209. https://doi.org/10.1016/S0165-0114(02)00345-7 doi: 10.1016/S0165-0114(02)00345-7
    [10] T. Y. Chou, C. L. Hsu, M. C. Chen, A fuzzy multi-criteria decision model for international tourist hotels location selection, Int. J. Hosp. Manag., 27 (2008), 293–301. https://doi.org/10.1016/j.ijhm.2007.07.029 doi: 10.1016/j.ijhm.2007.07.029
    [11] B. C. Cuong, V. Kreinovich, Picture fuzzy sets-a new concept for computational intelligence problems, In 2013 Third World Congress on Information and Communication Technologies, 2013, 1–6. https://doi.org/10.1109/WICT.2013.7113099
    [12] G. Deschrijver, Generalized arithmetic operators and their relationship to t-norms in interval-valued fuzzy set theory, Fuzzy Set. Syst., 160 (2009), 3080–3102. https://doi.org/10.1016/j.fss.2009.05.002 doi: 10.1016/j.fss.2009.05.002
    [13] X. Deng, H. Gao, TODIM method for multiple attribute decision making with 2-tuple linguistic pythagorean fuzzy information, J. Intell. Fuzzy Syst., 37 (2019), 1769–1780. https://doi.org/10.3390/sym10100486 doi: 10.3390/sym10100486
    [14] H. Garg, J. Gwak, T. Mahmood, Z. Ali, Power aggregation operators and VIKOR methods for complex q-rung orthopair fuzzy sets and their applications, Mathematics, 8 (2020), 538. https://doi.org/10.3390/math8040538 doi: 10.3390/math8040538
    [15] K. Hayat, M. I. Ali, F. Karaaslan, B. Y. Cao, M. H. Shah, Design concept evaluation using soft sets based on acceptable and satisfactory levels: An integrated TOPSIS and Shannon entropy, Soft Comput., 24 (2020), 2229–2263. https://doi.org/10.1007/s00500-019-04055-7 doi: 10.1007/s00500-019-04055-7
    [16] M. Z. Hanif, N. Yaqoob, M. Riaz, M. Aslam, Linear Diophantine fuzzy graphs with new decision-making approach, AIMS Math., 7 (2022), 14532–14556. https://doi.org/10.3934/math.2022801 doi: 10.3934/math.2022801
    [17] Y. L. Lin, L. H. Ho, S. L. Yeh, T. Y. Chen, A Pythagorean fuzzy TOPSIS method based on novel correlation measures and its application to multiple criteria decision analysis of inpatient stroke rehabilitation, Int. J. Comput. Intel. Syst., 12 (2019), 410–425. https://doi.org/10.2991/ijcis.2018.125905657 doi: 10.2991/ijcis.2018.125905657
    [18] M. Lin, W. Xu, Z. Lin, R. Chen, Determine OWA operator weights using kernel density estimation, Econ. Res.-Ekon. Istraž., 33 (2020), 1441–1464. https://doi.org/10.1080/1331677X.2020.1748509 doi: 10.1080/1331677X.2020.1748509
    [19] M. Lin, X. Li, L. Chen, Linguistic q-rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators, Int. J. Intell. Syst., 35 (2020), 217–249. https://doi.org/10.1002/int.22136 doi: 10.1002/int.22136
    [20] Y. Liu, G. Wei, S. Abdullah, J. Liu, L. Xu, H. Liu, Banzhaf-Choquet-copula-based aggregation operators for managing q-rung orthopair fuzzy information, Soft Comput., 25 (2021), 6891–6914. https://doi.org/10.1007/s00500-021-05714-4 doi: 10.1007/s00500-021-05714-4
    [21] M. Lin, X. Li, R. Chen, H. Fujita, J. Lin, Picture fuzzy interactional partitioned Heronian mean aggregation operators: An application to MADM process, Artif. Intell. Rev., 55 (2022), 1171–1208. https://doi.org/10.1007/S10462-021-09953-7 doi: 10.1007/S10462-021-09953-7
    [22] P. Meksavang, H. Shi, S. M. Lin, H. C. Liu, An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry, Symmetry, 11 (2019), 468. https://doi.org/10.3390/sym11040468 doi: 10.3390/sym11040468
    [23] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [24] S. Mahnaz, J. Ali, M. A. Malik, Z. Bashir, T-spherical fuzzy Frank aggregation operators and their application to decision making with unknown weight information, IEEE Access, 10 (2021), 7408–7438. https://doi.org/10.1109/ACCESS.2022.3156764 doi: 10.1109/ACCESS.2022.3156764
    [25] M. Naeem, M. Qiyas, M. M. Al-Shomrani, S. Abdullah, Similarity measures for fractional orthotriple fuzzy sets using cosine and cotangent functions and their application in accident emergency response, Mathematics, 8 (2020), 1653. https://doi.org/10.3390/math8101653 doi: 10.3390/math8101653
    [26] M. Qiyas, S. Abdullah, F. Khan, M. Naeem, Banzhaf-Choquet-Copula-based aggregation operators for managing fractional orthotriple fuzzy information, Alex. Eng. J., 61 (2022), 4659–4677. https://doi.org/10.1016/j.aej.2021.10.029 doi: 10.1016/j.aej.2021.10.029
    [27] M. Qiyas, M. Naeem, S. Abdullah, F. Khan, N. Khan, H. Garg, Fractional orthotriple fuzzy rough Hamacher aggregation operators and-their application on service quality of wireless network selection, Alex. Eng. J., 61 (2022), 10433–10452. https://doi.org/10.1016/j.aej.2022.03.002 doi: 10.1016/j.aej.2022.03.002
    [28] M. Riaz, D. Pamucar, A. Habib, N. Jamil, Innovative bipolar fuzzy sine trigonometric aggregation operators and SIR method for medical tourism supply chain, Math. Probl. Eng., 2022. https://doi.org/10.1155/2022/4182740
    [29] M. Riaz, H. M. A. Farid, W. Wang, D. Pamucar, Interval-valued linear Diophantine fuzzy Frank aggregation operators with multi-criteria, Decis.-Making Math., 10 (2022), 1811. https://doi.org/10.3390/math10111811 doi: 10.3390/math10111811
    [30] M. Sugeno, Theory of fuzzy integrals and its applications, Doct. Thesis, Tokyo Institute of technology, 1974.
    [31] E. Szmidt, J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Set. Syst., 118 (2001), 467–477. https://doi.org/10.1016/S0165-0114(98)00402-3 doi: 10.1016/S0165-0114(98)00402-3
    [32] X. Tang, S. Yang, W. Pedrycz, Multiple attribute decision-making approaches based on dual hesitant fuzzy Frank aggregation operators, Appl. Soft Comput., 68 (2018), 525–547. https://doi.org/10.1016/j.asoc.2018.03.055 doi: 10.1016/j.asoc.2018.03.055
    [33] W. S. Wang, H. C. He, Research on flexible probability logic operator based on Frank T/S norms, Acta Elect. Sin., 37 (2009), 1141. https://doi.org/10.31449/inf.v45i3.3025 doi: 10.31449/inf.v45i3.3025
    [34] Y. Xing, R. Zhang, J. Wang, X. Zhu, Some new Pythagorean fuzzy Choquet-Frank aggregation operators for multi-attribute decision making, Int. J. Intell. Syst., 33 (2018), 2189–2215. https://doi.org/10.1002/int.22025 doi: 10.1002/int.22025
    [35] Y. Xing, R. Zhang, Z. Zhou, J. Wang, Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making, Soft Comput., 23 (2019), 11627–11649. https://doi.org/10.1007/s00500-018-03712-7 doi: 10.1007/s00500-018-03712-7
    [36] R. R. Yager, On some new classes of implication operators and their role in approximate reasoning, Inform. Sci., 167 (2004), 193–216. https://doi.org/10.1016/j.ins.2003.04.001 doi: 10.1016/j.ins.2003.04.001
    [37] R. R. Yager, Pythagorean fuzzy subsets, In 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [38] R. R. Yager, Generalized orthopedic fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [39] M. Yahya, S. Abdullah, R. Chinram, Y. D. Al-Otaibi, M. Naeem, Frank aggregation operators and their application to probabilistic hesitant fuzzy multiple attribute decision-making, Int. J. Fuzzy Syst., 23 (2021), 194–215. https://doi.org/10.1007/s40815-020-00970-2 doi: 10.1007/s40815-020-00970-2
    [40] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.2307/2272014
    [41] S. Zeng, M. Qiyas, M. Arif, T. Mahmood, Extended version of linguistic picture fuzzy TOPSIS method and its applications in enterprise resource planning systems, Math. Probl. Eng., 2019. https://doi.org/10.1155/2019/8594938
    [42] F. Zhou, T. Y. Chen, An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance measure for multicriteria decision-making problems, Neural Comput. Appl., 33 (2021), 11821–11844. https://doi.org/10.1007/s00521-021-05829-7 doi: 10.1007/s00521-021-05829-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1288) PDF downloads(70) Cited by(5)

Article outline

Figures and Tables

Figures(2)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog