This paper proposes a stochastic intestinal chemostat model considering microbial migration, intraspecific competition and stochastic perturbation. First, the extinction and persistence in mean of the intestinal microbe of the chemostat model are investigated by constructing the appropriate Lyapunov functions. Second, we explore and obtain sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the model by using ergodic theory. The results show stochastic interference has a critical impact on the extinction and sustainable survival of the intestinal microbe. Eventually, numerical simulations are carried out to verify the theoretical results.
Citation: Yue Dong, Xinzhu Meng. Stochastic dynamic analysis of a chemostat model of intestinal microbes with migratory effect[J]. AIMS Mathematics, 2023, 8(3): 6356-6374. doi: 10.3934/math.2023321
This paper proposes a stochastic intestinal chemostat model considering microbial migration, intraspecific competition and stochastic perturbation. First, the extinction and persistence in mean of the intestinal microbe of the chemostat model are investigated by constructing the appropriate Lyapunov functions. Second, we explore and obtain sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the model by using ergodic theory. The results show stochastic interference has a critical impact on the extinction and sustainable survival of the intestinal microbe. Eventually, numerical simulations are carried out to verify the theoretical results.
[1] | J. A. Gilbert, R. A. Quinn, J. Debelius, Z. Z. Xu, J. Morton, N. Garg, et al., Microbiome-wide association studies link dynamic microbial consortia to disease, Nature, 535 (2016), 94–103. https://doi.org/10.1038/nature18850 doi: 10.1038/nature18850 |
[2] | G. W. Tannock, Normal microflora: an introduction to microbes inhabiting the human body, Springer Science Business Media, 1995. |
[3] | L. V. Hooper, D. R. Littman, A. J. Macpherson, Interactions between the microbiota and the immune system, Science, 336 (2012), 1268–1273. https://science.org/doi/abs/10.1126/science.1223490 |
[4] | J. Halfvarson, C. J. Brislawn, R. Lamendella, Y. Vázquez-Baeza, W. A. Walters, L. M. Bramer, et al., Dynamics of the human gut microbiome in inflammatory bowel disease, Nat. Microbiol., 2 (2017), 1–7. https://doi.org/10.1038/nmicrobiol.2017.4 doi: 10.1038/nmicrobiol.2017.4 |
[5] | B. Tang, Mathematical investigations of growth of microorganisms in the gradostat, J. Math. Biol., 23 (1986), 319–339. https://doi.org/10.1007/BF00275252 doi: 10.1007/BF00275252 |
[6] | A. Mitchell, Y. Pilpel, A mathematical model for adaptive prediction of environmental changes by microorganisms, Proc. Natl. Acad. Sci. U S A, 108 (2011), 7271–7276. https://doi.org/10.1073/pnas.1019754108 doi: 10.1073/pnas.1019754108 |
[7] | B. Hall, X. Han, P. E. Kloeden, H. W. Van Wyk, A nonautonomous chemostat model for the growth of gut microbiome with varying nutrient, Discrete Cont. Dyn. Syst., 15 (2022), 2889–2908. https://doi.org/10.3934/dcdss.2022075 doi: 10.3934/dcdss.2022075 |
[8] | H. Qi, X. Leng, X. Meng, T. Zhang, Periodic solution and ergodic stationary distribution of SEIS dynamical systems with active and latent patients, Qual. Theory Dyn. Syst., 18 (2019), 347–369. https://doi.org/10.1007/s12346-018-0289-9 doi: 10.1007/s12346-018-0289-9 |
[9] | C. Fritsch, J. Harmand, F. Campillo, A modeling approach of the chemostat, Ecol. Modell., 299 (2015), 1–13. https://doi.org/10.1016/j.ecolmodel.2014.11.021 doi: 10.1016/j.ecolmodel.2014.11.021 |
[10] | J. Monod, Technique, theory and applications of continuous culture, Ann. Inst. Pasteur, 79 (1950), 390–410. |
[11] | A. Novick, L. Szilard, Description of the chemostat, Science, 112 (1950), 715–716. https:/10.1126/science.112.2920.715 doi: 10.1126/science.112.2920.715 |
[12] | Z. Liu, R. Tan, Impulsive harvesting and stocking in a Monod-Haldane functional response predator-prey system, Chaos Solitons Fract., 34 (2007), 454–464. https://doi.org/10.1016/j.chaos.2006.03.054 doi: 10.1016/j.chaos.2006.03.054 |
[13] | X. Zhang, R. Yuan, A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function, Appl. Math. Comput., 394 (2021), 125833. https://doi.org/10.1016/j.amc.2020.125833 doi: 10.1016/j.amc.2020.125833 |
[14] | M. Gao, D. Jiang, Stationary distribution of a chemostat model with distributed delay and stochastic perturbations, Appl. Math. Lett., 123 (2020), 107585. https://doi.org/10.1016/j.aml.2021.107585 doi: 10.1016/j.aml.2021.107585 |
[15] | Y. Cai, Y. Kang, W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003 |
[16] | R. Liu, W. Ma, Noise-induced stochastic transition: a stochastic chemostat model with two complementary nutrients and flocculation effect, Chaos Solitons Fract., 147 (2021), 110951. https://doi.org/10.1016/j.chaos.2021.110951 doi: 10.1016/j.chaos.2021.110951 |
[17] | G. Liu, H. Qi, Z. Chang, X. Meng, Asymptotic stability of a stochastic may mutualism system, Comput. Math. Appl., 79 (2020), 735–745. https://doi.org/10.1016/j.camwa.2019.07.022 doi: 10.1016/j.camwa.2019.07.022 |
[18] | F. Li, S. Zhang, X. Meng, Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function, Comput. Appl. Math., 38 (2019), 95. https://doi.org/10.1007/s40314-019-0857-x doi: 10.1007/s40314-019-0857-x |
[19] | R. S. Liptser, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217–228. https://doi.org/10.1080/17442508008833146 doi: 10.1080/17442508008833146 |
[20] | R. Khasminskii, Stochastic stability of differential equations, Springer Science and Business Media, 2011. |
[21] | H. Qi, X. Meng, T. Hayat, A. Hobiny, Stationary distribution of a stochastic predator-prey model with hunting cooperation, Appl. Math. Lett., 124 (2022), 107662. https://doi.org/10.1016/j.aml.2021.107662 doi: 10.1016/j.aml.2021.107662 |
[22] | H. Qi, X. Meng, Mathematical modeling, analysis and numerical simulation of HIV: the influence of stochastic environmental fluctuations on dynamics, Math. Comput. Simulat., 187 (2021), 700–719. https://doi.org/10.1016/j.matcom.2021.03.027 doi: 10.1016/j.matcom.2021.03.027 |
[23] | C. Zeng, B. Liao, J. Huang, Dynamics of the stochastic chemostat model with Monod-Haldane response function, J. Nonlinear. Mod. Anal., 1 (2019), 335–354. https://doi.org/10.12150/jnma.2019.335 doi: 10.12150/jnma.2019.335 |
[24] | B. Cao, M. Shan, Q. Zhang, W. Wang, A stochastic SIS epidemic model with vaccination, Phys. A, 486 (2017), 127–143. https://doi.org/10.1016/j.physa.2017.05.083 doi: 10.1016/j.physa.2017.05.083 |
[25] | Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Stationary distribution of a stochastic delayed SVEIR epidemic model with vaccination and saturation incidence, Phys. A, 512 (2018), 849–863. https://doi.org/10.1016/j.physa.2018.08.054 doi: 10.1016/j.physa.2018.08.054 |
[26] | M. Liu, K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 410 (2014), 750–763. https://doi.org/10.1016/j.jmaa.2013.07.078 doi: 10.1016/j.jmaa.2013.07.078 |
[27] | S. Zhang, S. Yuan, T. Zhang, A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments, Appl. Math. Comput., 413 (2022), 126598. https://doi.org/10.1016/j.amc.2021.126598 doi: 10.1016/j.amc.2021.126598 |
[28] | T. Feng, X. Meng, T. Zhang, Z. Qiu, Analysis of the predator-prey interactions: a stochastic model incorporating disease invasion, Qual. Theory Dyn. Syst., 19 (2020), 55. https://doi.org/10.1007/s12346-020-00391-4 doi: 10.1007/s12346-020-00391-4 |
[29] | Y. Zhou, W. Zhang, S. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244 (2014), 118–131. https://doi.org/10.1016/j.amc.2014.06.100 doi: 10.1016/j.amc.2014.06.100 |
[30] | G. Falsone, Stochastic differential calculus for Gaussian and non-Gaussian noises: a critical review, Commun. Nonlinear Sci., 56 (2018), 198–216. http://dx.doi.org/10.1016/j.cnsns.2017.08.001 doi: 10.1016/j.cnsns.2017.08.001 |