Establishing a reasonable and effective feature system is the basis of credit risk early warning. Whether the system design is appropriate directly determines the accuracy of the credit risk evaluation results. In this paper, we proposed a feature system through a validity index with maximum discrimination and commercial banks' loan profit maximization. First, the first objective function is the minimum validity index constructed by the intra-class, between-class, and partition coefficients. The maximum difference between the right income and wrong cost is taken as the second objective function to obtain the optimal feature combination. Second, the feature weights are obtained by calculating the change in profit after deleting each feature with replacement to the sum of all change values. An empirical analysis of 3, 425 listed companies from t-1 to t-5 time windows reveals that five groups of feature systems selected from 614 features can distinguish between defaults and non-defaults. Compared with 14 other models, it is found that the feature systems can provide at least five years' prediction and enable financial institutions to obtain the maximum profit.
Citation: Meng Pang, Zhe Li. A novel profit-based validity index approach for feature selection in credit risk prediction[J]. AIMS Mathematics, 2024, 9(1): 974-997. doi: 10.3934/math.2024049
Establishing a reasonable and effective feature system is the basis of credit risk early warning. Whether the system design is appropriate directly determines the accuracy of the credit risk evaluation results. In this paper, we proposed a feature system through a validity index with maximum discrimination and commercial banks' loan profit maximization. First, the first objective function is the minimum validity index constructed by the intra-class, between-class, and partition coefficients. The maximum difference between the right income and wrong cost is taken as the second objective function to obtain the optimal feature combination. Second, the feature weights are obtained by calculating the change in profit after deleting each feature with replacement to the sum of all change values. An empirical analysis of 3, 425 listed companies from t-1 to t-5 time windows reveals that five groups of feature systems selected from 614 features can distinguish between defaults and non-defaults. Compared with 14 other models, it is found that the feature systems can provide at least five years' prediction and enable financial institutions to obtain the maximum profit.
[1] | C. Liu, W. Wang, M. Konan, S. Wang, L. Huang, Y. Tang, et al., A new validity index of feature subset for evaluating the dimensionality reduction algorithms, Knowl.-Based Syst., 121 (2017), 83–98. https://doi.org/10.1016/j.knosys.2017.01.017 doi: 10.1016/j.knosys.2017.01.017 |
[2] | N. Kozodoi, S. Lessmann, K. Papakonstantinou, Y. Gatsoulis, B. Baesens, A multi-objective approach for profit-driven feature selection in credit scoring, Decis. Support Syst., 120 (2019), 106–117. https://doi.org/10.1016/j.dss.2019.03.011 doi: 10.1016/j.dss.2019.03.011 |
[3] | F. Chen, F. Li, Combination of feature selection approaches with SVM in credit scoring, Expert Syst. Appl., 37 (2010), 4902–4909. https://doi.org/10.1016/j.eswa.2009.12.025 doi: 10.1016/j.eswa.2009.12.025 |
[4] | M. Doumpos, J. R. Figueira, A multicriteria outranking approach for modeling corporate credit ratings: An application of the Electre Tri-nC method, Omega, 82 (2019), 166–180. https://doi.org/10.1016/j.omega.2018.01.003 doi: 10.1016/j.omega.2018.01.003 |
[5] | D. Mateos-García, J. García-Gutiérrez, J. C. Riquelme-Santos, On the evolutionary weighting of neighbours and features in the k-nearest neighbour rule, Neurocomputing, 326 (2019), 54–60. https://doi.org/10.1016/j.neucom.2016.08.159 doi: 10.1016/j.neucom.2016.08.159 |
[6] | F. N. Koutanaei, H. Sajedi, M. Khanbabaei, A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring, J. Retail. Consum. Serv., 27 (2015), 11–23. https://doi.org/10.1016/j.jretconser.2015.07.003 doi: 10.1016/j.jretconser.2015.07.003 |
[7] | S. Lessmann, B. Baesens, H. V. Seow, L. C. Thomas, Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research, Eur. J. Oper. Res., 247 (2015), 124–136. https://doi.org/10.1016/j.ejor.2015.05.030 doi: 10.1016/j.ejor.2015.05.030 |
[8] | S. A. Sridharan, Volatility forecasting using financial statement information, Account. Rev. 90 (2015), 2079–2106. https://doi.org/10.2308/accr-51025 doi: 10.2308/accr-51025 |
[9] | S. Maldonado, J. Pérez, C. Bravo, Cost-based feature selection for support vector machines: An application in credit scoring, Eur. J. Oper. Res., 261 (2017), 656–665. https://doi.org/10.1016/j.ejor.2017.02.037 doi: 10.1016/j.ejor.2017.02.037 |
[10] | P. Bertolazzi, G. Felici, P. Festa, G. Fiscon, E. Weitschek, Integer programming models for feature selection: New extensions and a randomized solution algorithm, Eur. J. Oper. Res., 250 (2016), 389–399. https://doi.org/10.1016/j.ejor.2015.09.051 doi: 10.1016/j.ejor.2015.09.051 |
[11] | Y. Xia, C. Liu, Y. Li, N. Liu, A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring, Expert Syst. Appl., 78 (2017), 225–241. https://doi.org/10.1016/j.eswa.2017.02.017 doi: 10.1016/j.eswa.2017.02.017 |
[12] | S. Jadhav, H. He, K. Jenkins, Information gain directed genetic algorithm wrapper feature selection for credit rating, Appl. Soft Comput., 69 (2018), 541–553. https://doi.org/10.1016/j.asoc.2018.04.033 doi: 10.1016/j.asoc.2018.04.033 |
[13] | N. Arora, P. D. Kaur, A Bolasso based consistent feature selection enabled random forest classification algorithm: An application to credit risk assessment, Appl. Soft Comput., 86 (2020), 105936. https://doi.org/10.1016/j.asoc.2019.105936 doi: 10.1016/j.asoc.2019.105936 |
[14] | W. Gu, M. Basu, Z. Chao, L. Wei, A unified framework for credit evaluation for internet finance companies: Multi-criteria analysis through AHP and DEA, Int. J. Inf. Tech. Decis., 16 (2017), 597–624. https://doi.org/10.1142/S0219622017500134 doi: 10.1142/S0219622017500134 |
[15] | Z. Li, N. Hou, J. Su, Y. Liu, Model of credit rating of micro enterprise based on fuzzy integration, Filomat, 32 (2018), 1831–1842. https://doi.org/10.2298/FIL1805831L doi: 10.2298/FIL1805831L |
[16] | A. Karaaslan, K. Ö. Özden, Forecasting Turkey's credit ratings with multivariate grey model and grey relational analysis, J. Quant. Econ., 15 (2017), 583–610. https://doi.org/10.1007/s40953-016-0064-1 doi: 10.1007/s40953-016-0064-1 |
[17] | X. Zhu, J. Li, D. Wu, H. Wang, C. Liang, Balancing accuracy, complexity and interpretability in consumer credit decision making: A C-TOPSIS classification approach, Knowl.-Based Syst., 52 (2013), 258–267. https://doi.org/10.1016/j.knosys.2013.08.004 doi: 10.1016/j.knosys.2013.08.004 |
[18] | H. Chen, T. Li, X. Fan, C. Luo, Feature selection for imbalanced data based on neighborhood rough sets, Inform. Sciences, 483 (2019), 1–20. https://doi.org/10.1016/j.ins.2019.01.041 doi: 10.1016/j.ins.2019.01.041 |
[19] | D. Panday, R. C. de Amorim, P. Lane, Feature weighting as a tool for unsupervised feature selection, Inform. Process. Lett., 129 (2018), 44–52. https://doi.org/10.1016/j.ipl.2017.09.005 doi: 10.1016/j.ipl.2017.09.005 |
[20] | Y. O. Serrano-Silva, Y. Villuendas-Rey, C. Yáñez-Márquez, Automatic feature weighting for improving financial Decision Support Systems, Decis. Support Syst., 107 (2018), 78–87. https://doi.org/10.1016/j.dss.2018.01.005 doi: 10.1016/j.dss.2018.01.005 |
[21] | M. Mercadier, J. P. Lardy, Credit spread approximation and improvement using random forest regression, Eur. J. Oper. Res., 277 (2019), 351–365. https://doi.org/10.1016/j.ejor.2019.02.005 doi: 10.1016/j.ejor.2019.02.005 |
[22] | M. M. Chijoriga, Application of multiple discriminant analysis (MDA) as a credit scoring and risk assessment model, Int. J. Emerg. Mark., 6 (2011), 132–147. https://doi.org/10.1108/17468801111119498 doi: 10.1108/17468801111119498 |
[23] | L. Kao, C. Chiu, F. Chiu, A Bayesian latent variable model with classification and regression tree approach for behavior and credit scoring, Knowl.-Based Syst., 36 (2012), 245–252. https://doi.org/10.1016/j.knosys.2012.07.004 doi: 10.1016/j.knosys.2012.07.004 |
[24] | N. Mahmoudi, E. Duman, Detecting credit card fraud by modified Fisher discriminant analysis, Expert Syst. Appl., 42 (2015), 2510–2516. https://doi.org/10.1016/j.eswa.2014.10.037 doi: 10.1016/j.eswa.2014.10.037 |
[25] | S. Y. Sohn, D. H. Kim, J. H. Yoon, Technology credit scoring model with fuzzy logistic regression, Appl. Soft Comput., 43 (2016), 150–158. https://doi.org/10.1016/j.asoc.2016.02.025 doi: 10.1016/j.asoc.2016.02.025 |
[26] | M. S. Colak, A new multivariate approach for assessing corporate financial risk using balance sheets, Borsa Istanb. Rev., 21 (2021), 239–255. https://doi.org/10.1016/j.bir.2020.10.007 doi: 10.1016/j.bir.2020.10.007 |
[27] | N. Dwarika, The risk-return relationship and volatility feedback in South Africa: a comparative analysis of the parametric and nonparametric Bayesian approach, Quant. Financ. Econ., 7 (2023), 119–146. https://doi.org/10.3934/QFE.2023007 doi: 10.3934/QFE.2023007 |
[28] | Y. Guo, Y. Bai, C. Li, Y. Shao, Y. Ye, C. Jiang, Reverse nearest neighbors Bhattacharyya bound linear discriminant analysis for multimodal classification, Eng. Appl. Artif. Intel., 97 (2021), 104033. https://doi.org/10.1016/j.engappai.2020.104033 doi: 10.1016/j.engappai.2020.104033 |
[29] | N. Chukhrova, A. Johannssen, Fuzzy regression analysis: systematic review and bibliography, Appl. Soft Comput., 84 (2019), 105708. https://doi.org/10.1016/j.asoc.2019.105708 doi: 10.1016/j.asoc.2019.105708 |
[30] | A. Khashman, Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes, Expert Syst. Appl., 37 (2010), 6233–6239. https://doi.org/10.1016/j.eswa.2010.02.101 doi: 10.1016/j.eswa.2010.02.101 |
[31] | S. Maldonado, C. Bravo, J. López, J. Pérez, Integrated framework for profit-based feature selection and SVM classification in credit scoring, Decis. Support Syst., 104 (2017), 113–121. https://doi.org/10.1016/j.dss.2017.10.007 doi: 10.1016/j.dss.2017.10.007 |
[32] | A. Bequé, S. Lessmann, Extreme learning machines for credit scoring: An empirical evaluation, Expert Syst. Appl., 86 (2017), 42–53. https://doi.org/10.1016/j.eswa.2017.05.050 doi: 10.1016/j.eswa.2017.05.050 |
[33] | X. Zhang, Y. Han, W. Xu, Q. Wang, HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture, Inform. Sciences, 557 (2021), 302–316. https://doi.org/10.1016/j.ins.2019.05.023 doi: 10.1016/j.ins.2019.05.023 |
[34] | M. Ala'raj, M. F. Abbod, M. Majdalawieh, Modelling customers credit card behaviour using bidirectional LSTM neural networks, J. Big Data, 8 (2021), 69. https://doi.org/10.1186/s40537-021-00461-7 doi: 10.1186/s40537-021-00461-7 |
[35] | F. Zhao, Y. Lu, X. Li, L. Wang, Y. Song, D. Fan, et al., Multiple imputation method of missing credit risk assessment data based on generative adversarial networks, Appl. Soft Comput., 126 (2022), 109273. https://doi.org/10.1016/j.asoc.2022.109273 doi: 10.1016/j.asoc.2022.109273 |
[36] | S. Asadi, S. E. Roshan, A bi-objective optimization method to produce a near-optimal number of classifiers and increase diversity in Bagging, Knowl.-Based Syst., 213 (2021), 106656. https://doi.org/10.1016/j.knosys.2020.106656 doi: 10.1016/j.knosys.2020.106656 |
[37] | Y. C. Chang, K. H. Chang, G. J. Wu, Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions, Appl. Soft Comput., 73 (2018), 914–920. https://doi.org/10.1016/j.asoc.2018.09.029 doi: 10.1016/j.asoc.2018.09.029 |
[38] | Y. Xia, J. Zhao, L. He, Y. Li, X. Yang, Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach, Int. J. Forecasting, 37 (2021), 1590–1613. https://doi.org/10.1016/j.ijforecast.2021.03.002 doi: 10.1016/j.ijforecast.2021.03.002 |
[39] | F. Shen, X. Zhao, G. Kou, F. E. Alsaadi, A new deep learning ensemble credit risk evaluation model with an improved synthetic minority oversampling technique, Appl. Soft Comput., 98 (2021), 106852. https://doi.org/10.1016/j.asoc.2020.106852 doi: 10.1016/j.asoc.2020.106852 |
[40] | J. Forough, S. Momtazi, Ensemble of deep sequential models for credit card fraud detection, Appl. Soft Comput., 99 (2021), 106883. https://doi.org/10.1016/j.asoc.2020.106883 doi: 10.1016/j.asoc.2020.106883 |
[41] | A. Belhadi, S. S. Kamble, V. Mani, I. Benkhati, F. E. Touriki, An ensemble machine learning approach for forecasting credit risk of agricultural SMEs' investments in agriculture 4.0 through supply chain finance, Ann. Oper. Res., 2021 (2021), 1–29. https://doi.org/10.1007/s10479-021-04366-9 doi: 10.1007/s10479-021-04366-9 |
[42] | C. Jiang, W. Xiong, Q. Xu, Y. Liu, Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty, Financ. Res. Lett., 38 (2021) 101487. https://doi.org/10.1016/j.frl.2020.101487 doi: 10.1016/j.frl.2020.101487 |
[43] | J. Donovan, J. Jennings, K. Koharki, J. Lee, Measuring credit risk using qualitative disclosure, Rev. Account. Stud., 26 (2021), 815–863. https://doi.org/10.1007/s11142-020-09575-4 doi: 10.1007/s11142-020-09575-4 |
[44] | N. Camanho, P. Deb, Z. Liu, Credit rating and competition, Int. J. Financ. Econ., 27 (2022) 2873–2897. https://doi.org/10.1002/ijfe.2303 doi: 10.1002/ijfe.2303 |
[45] | H. Zhang, Y. Shi, X. Yang, R. Zhou, A firefly algorithm modified support vector machine for the credit risk assessment of supply chain finance, Res. Int. Bus. Financ., 58 (2021), 101482. https://doi.org/10.1016/j.ribaf.2021.101482 doi: 10.1016/j.ribaf.2021.101482 |
[46] | Z. Ma, W. Hou, D. Zhang, A credit risk assessment model of borrowers in P2P lending based on BP neural network, PLOS one, 16 (2021), e0255216. https://doi.org/10.1371/journal.pone.0255216 doi: 10.1371/journal.pone.0255216 |
[47] | W. Hou, X. Wang, H. Zhang, J. Wang, L. Li, A novel dynamic ensemble selection classifier for an imbalanced data set: an application for credit risk assessment, Knowl.-Based Syst., 208 (2020), 106462. https://doi.org/10.1016/j.knosys.2020.106462 doi: 10.1016/j.knosys.2020.106462 |
[48] | F. O. Sameer, M. R. A. Bakar, A. A. Zaidan, B. B. Zaidan, A new algorithm of modified binary particle swarm optimization based on the Gustafson-Kessel for credit risk assessment, Neural Comput. & Applic., 31 (2019), 337–346. https://doi.org/10.1007/s00521-017-3018-4 doi: 10.1007/s00521-017-3018-4 |
[49] | J. Traczynski, Firm default prediction: A Bayesian model-averaging approach, J. Financ. Quant. Anal., 52 (2017), 1211–1245. https://doi.org/10.1017/S002210901700031X doi: 10.1017/S002210901700031X |
[50] | Y. Zhou, W. Zhang, J. Kang, X. Zhang, X. Wang, A problem-specific non-dominated sorting genetic algorithm for supervised feature selection, Inform. Sciences, 547 (2021), 841–859. https://doi.org/10.1016/j.ins.2020.08.083 doi: 10.1016/j.ins.2020.08.083 |
[51] | Y. Zhu, L. Zhou, C. Xie, G. Wang, T. V. Nguyen, Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach, Int. J. Prod. Econ., 211 (2019), 22–33. https://doi.org/10.1016/j.ijpe.2019.01.032 doi: 10.1016/j.ijpe.2019.01.032 |
[52] | G. Chi, B. Meng, Debt rating model based on default identification: Empirical evidence from Chinese small industrial enterprises, Manage. Decis., 57 (2019), 2239–2260. https://doi.org/10.1108/MD-11-2017-1109 doi: 10.1108/MD-11-2017-1109 |
[53] | A. Bequé, K. Coussement, R. Gayler, S. Lessmann, Approaches for credit scorecard calibration: An empirical analysis, Knowl.-Based Syst., 134 (2017), 213–227. https://doi.org/10.1016/j.knosys.2017.07.034 doi: 10.1016/j.knosys.2017.07.034 |
[54] | R. Geng, I. Bose, X. Chen, Prediction of financial distress: An empirical study of listed Chinese companies using data mining, Eur. J. Oper. Res., 241 (2015), 236–247. https://doi.org/10.1016/j.ejor.2014.08.016 doi: 10.1016/j.ejor.2014.08.016 |
[55] | R.P. Baghai, B. Becker, Reputations and credit ratings: Evidence from commercial mortgage-backed securities, J. Financ. Econ., 135 (2020), 425–444. https://doi.org/10.1016/j.jfineco.2019.06.001 doi: 10.1016/j.jfineco.2019.06.001 |
[56] | N. Chai, B. Wu, W. Yang, B. Shi, A multicriteria approach for modeling small enterprise credit rating: evidence from China, Emerg. Mark. Financ. Tr., 55 (2019), 2523–2543. https://doi.org/10.1080/1540496X.2019.1577237 doi: 10.1080/1540496X.2019.1577237 |
[57] | L. Li, J. Yang, X. Zou, A study of credit risk of Chinese listed companies: ZPP versus KMV, Appl. Econ., 48 (2016), 2697–2710. https://doi.org/10.1080/00036846.2015.1128077 doi: 10.1080/00036846.2015.1128077 |
[58] | M. Livingston, W. P. Poon, L. Zhou, Are Chinese credit ratings relevant? A study of the Chinese bond market and credit rating industry, J. Bank. Financ., 87 (2018), 216–232. https://doi.org/10.1016/j.jbankfin.2017.09.020 doi: 10.1016/j.jbankfin.2017.09.020 |
[59] | M. S. Uddin, G. Chi, M. A. A. Janabi, T. Habib, Leveraging random forest in micro‐enterprises credit risk modelling for accuracy and interpretability, Int. J. Financ. Econ., 27 (2022), 3713–3729. https://doi.org/10.1002/ijfe.2346 doi: 10.1002/ijfe.2346 |
[60] | B. Meng, G. Chi, Evaluation index system of green industry based on maximum information content, Singap. Econ. Rev., 63 (2018), 229–248. https://doi.org/10.1142/S0217590817400094 doi: 10.1142/S0217590817400094 |
[61] | Z. Li, S. Liang, X. Pan, M. Pang, Credit risk prediction based on loan profit: Evidence from Chinese SMEs, Res. Int. Bus. Financ., 67 (2024), 102155. https://doi.org/10.1016/j.ribaf.2023.102155 doi: 10.1016/j.ribaf.2023.102155 |
[62] | J. A. Ohlson, Financial ratios and the probabilistic prediction of bankruptcy, J. Account. Res., 18 (1980), 109–131. https://doi.org/10.2307/2490395 doi: 10.2307/2490395 |
[63] | D. G. Kirikos, An evaluation of quantitative easing effectiveness based on out-of-sample forecasts, National Accounting Review, 4 (2022), 378–389. https://doi.org/10.3934/NAR.2022021 doi: 10.3934/NAR.2022021 |
[64] | M. Peña, M. Cerrada, D. Cabrera, R.-V. Sánchez, Fast feature selection based on cluster validity index applied on data-driven bearing fault detection, 2020 IEEE ANDESCON, Quito, Ecuador, 2020, 1–6. http://doi.org/10.1109/ANDESCON50619.2020.9272146 |
[65] | Y. Zhou, M. S. Uddin, T. Habib, G. Chi, K. Yuan, Feature selection in credit risk modeling: an international evidence, Econ. Res.-Ekon. Istraž., 34 (2021), 3064–3091. http://hdl.handle.net/10.1080/1331677X.2020.1867213 doi: 10.1080/1331677X.2020.1867213 |
[66] | F. Garrido, W. Verbeke, C. Bravo, A Robust profit measure for binary classification model evaluation, Expert Syst. Appl., 92 (2018), 154–160. https://doi.org/10.1016/j.eswa.2017.09.045 doi: 10.1016/j.eswa.2017.09.045 |
[67] | T. M. Luong, H. Scheule, Benchmarking forecast approaches for mortgage credit risk for forward periods, Eur. J. Oper. Res., 299 (2022), 750–767. https://doi.org/10.1016/j.ejor.2021.09.026 doi: 10.1016/j.ejor.2021.09.026 |
[68] | C. Bai, B. Shi, F. Liu, J. Sarkis, Banking credit worthiness: Evaluating the complex relationships, Omega, 83 (2019), 26–38. https://doi.org/10.1016/j.omega.2018.02.001 doi: 10.1016/j.omega.2018.02.001 |
[69] | M. Z. Abedin, C. Guotai, F. E. Moula, A. S. Azad, M. S. U. Khan, Topological applications of multilayer perceptrons and support vector machines in financial decision support systems, Int. J. Financ. Econ., 24 (2019), 474–507. https://doi.org/10.1002/ijfe.1675 doi: 10.1002/ijfe.1675 |
[70] | Q. Lan, X. Xu, H. Ma, G. Li, Multivariable data imputation for the analysis of incomplete credit data, Expert Syst. Appl., 141 (2020), 112926. https://doi.org/10.1016/j.eswa.2019.112926 doi: 10.1016/j.eswa.2019.112926 |
[71] | S. Wu, X. Gao, W. Zhou, COSLE: Cost sensitive loan evaluation for P2P lending, Inform. Sciences, 586 (2022), 74–98. https://doi.org/10.1016/j.ins.2021.11.055 doi: 10.1016/j.ins.2021.11.055 |
[72] | N. Kozodoi, J. Jacob, S. Lessmann, Fairness in credit scoring: Assessment, implementation and profit implications, Eur. J. Oper. Res., 297 (2022) 1083–1094. https://doi.org/10.1016/j.ejor.2021.06.023 doi: 10.1016/j.ejor.2021.06.023 |
[73] | X. Su, S. Zhou, R. Xue, J. Tian, Does economic policy uncertainty raise corporate precautionary cash holdings? Evidence from China, Account. Financ., 60 (2020), 4567–4592. https://doi.org/10.1111/acfi.12674 doi: 10.1111/acfi.12674 |
[74] | L. He, L. Zhang, Z. Zhong, D. Wang, F. Wang, Green credit, renewable energy investment and green economy development: Empirical analysis based on 150 listed companies of China, J. Clean. Prod., 208 (2019), 363–372. https://doi.org/10.1016/j.jclepro.2018.10.119 doi: 10.1016/j.jclepro.2018.10.119 |
[75] | V. Hlasny, Market and home production earnings gaps in Russia, National Accounting Review, 5 (2023), 108–124. https://doi.org/10.3934/NAR.2023007 doi: 10.3934/NAR.2023007 |
[76] | Y. Huang, Y. Ma, Z. Yang, Y. Zhang, A fire sale without fire: An explanation of labor-intensive FDI in China, J. Comp. Econ., 44 (2016), 884–901. https://doi.org/10.1016/j.jce.2016.04.007 doi: 10.1016/j.jce.2016.04.007 |
[77] | Z. Zhao, K. H. Zhang, FDI and industrial productivity in China: Evidence from panel data in 2001-06, Rev. Dev. Econ., 14 (2010), 656–665. https://doi.org/10.1111/j.1467-9361.2010.00580.x doi: 10.1111/j.1467-9361.2010.00580.x |
[78] | Y. Zhang, L. Ma, Board faultlines, innovation strategy decisions, and faultline activation: Research on technology-intensive enterprises in Chinese A-share companies, Front. Psychol., 13 (2022), 855610. https://doi.org/10.3389/fpsyg.2022.855610 doi: 10.3389/fpsyg.2022.855610 |