This paper first studies the quantile hedging problem of contingent claims in an uncertain market model. A special kind of no-arbitrage, that is, the absence of immediate profit, is characterized. Instead of the traditional no-arbitrage targeting the whole market, the absence of immediate profit depends on the confidence level of the portfolio manager for hedging risk. We prove that the condition of absence of immediate profit holds if and only if the initial price of each risky asset lies between the $ \alpha $-optimistic value and $ \alpha $-pessimistic value of its discounted price at the end of the period. The bounds of the minimal quantile hedging price are derived under the criterion of no-arbitrage in this paper, that is, the absence of immediate profit. Moreover, numerical experiments are implemented to verify that the condition of absence of immediate profit can be a good substitute for the traditional no-arbitrage, since the latter is difficult to achieve. Thus, it may provide a better principle of pricing due to the flexibility from the optional confidence level for the market participants in the increasingly complex financial market.
Citation: Jun Zhao, Peibiao Zhao. Quantile hedging for contingent claims in an uncertain financial environment[J]. AIMS Mathematics, 2023, 8(7): 15651-15669. doi: 10.3934/math.2023799
This paper first studies the quantile hedging problem of contingent claims in an uncertain market model. A special kind of no-arbitrage, that is, the absence of immediate profit, is characterized. Instead of the traditional no-arbitrage targeting the whole market, the absence of immediate profit depends on the confidence level of the portfolio manager for hedging risk. We prove that the condition of absence of immediate profit holds if and only if the initial price of each risky asset lies between the $ \alpha $-optimistic value and $ \alpha $-pessimistic value of its discounted price at the end of the period. The bounds of the minimal quantile hedging price are derived under the criterion of no-arbitrage in this paper, that is, the absence of immediate profit. Moreover, numerical experiments are implemented to verify that the condition of absence of immediate profit can be a good substitute for the traditional no-arbitrage, since the latter is difficult to achieve. Thus, it may provide a better principle of pricing due to the flexibility from the optional confidence level for the market participants in the increasingly complex financial market.
[1] | Y. Kabanov, M. Safarian, Markets with transaction costs: mathematical theory, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-540-68121-2 |
[2] | N. El Karoui, M. C. Quenez, Dynamic programming and pricing of contingent claims in an incomplete market, SIAM J. Control Optim., 33 (1995), 29–66. https://doi.org/10.1137/S0363012992232579 doi: 10.1137/S0363012992232579 |
[3] | R. C. Dalang, A. Morton, W. Willinger, Equivalent martingale measures and no-arbitrage in stochastic securities market models, Stochastics, 29 (1990), 185–201. https://doi.org/10.1080/17442509008833613 doi: 10.1080/17442509008833613 |
[4] | G. C. dos Santos, P. Zambra, J. A. P. Lopez, Hedge accounting: results and opportunities for future studies, Nat. Account. Rev., 4 (2022), 74–94. https://doi.org/10.3934/NAR.2022005 doi: 10.3934/NAR.2022005 |
[5] | H. Föllmer, P. Leukert, Quantile hedging, Financ. Stoch., 3 (1999), 251–273. https://doi.org/10.1007/s007800050062 doi: 10.1007/s007800050062 |
[6] | A. V. Melnikov, Quantile hedging of equity-linked life insurance policies, Dokl. Math., 69 (2004), 428–430. |
[7] | L. Perez-Hernandez, On the existence of an efficient hedge for an American contingent claim within a discrete time market, Quant. Financ., 7 (2007), 547–551. https://doi.org/10.1080/14697680601158700 doi: 10.1080/14697680601158700 |
[8] | E. Bayraktar, G. Wang, Quantile hedging in a semi-static market with model uncertainty, Math. Methods Oper. Res., 87 (2018), 197–227. https://doi.org/10.1007/s00186-017-0616-y doi: 10.1007/s00186-017-0616-y |
[9] | A. Glazyrina, A. Melnikov, Quantile hedging in models with dividends and application to equity-linked life insurance contracts, Math. Financ. Econ., 14 (2020), 207–224. https://doi.org/10.1007/s11579-019-00252-y doi: 10.1007/s11579-019-00252-y |
[10] | A. Glazyrina, A. Melnikov, Quantile hedging in a defaultable market with life insurance applications, Scand. Actuar. J., 2021 (2021), 248–265. https://doi.org/10.1080/03461238.2020.1830846 doi: 10.1080/03461238.2020.1830846 |
[11] | G. K. Liao, P. Hou, X. Y. Shen, K. Albitar, The impact of economic policy uncertainty on stock returns: the role of corporate environmental responsibility engagement, Int. J. Financ. Econ., 26 (2021), 4386–4392. https://doi.org/10.1002/ijfe.2020 doi: 10.1002/ijfe.2020 |
[12] | Z. H. Li, J. H. Zhong, Impact of economic policy uncertainty shocks on China's financial conditions, Financ. Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303 |
[13] | B. D. Liu, Uncertainty theory, Berlin, Heidelberg: Springer, 2007. https://doi.org/10.1007/978-3-540-73165-8 |
[14] | B. D. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3–10. |
[15] | K. Yao, A no-arbitrage theorem for uncertain stock model, Fuzzy Optim. Decis. Mak., 14 (2015), 227–242. https://doi.org/10.1007/s10700-014-9198-9 doi: 10.1007/s10700-014-9198-9 |
[16] | J. Peng, K. Yao, A new option pricing model for stocks in uncertainty markets, Int. J. Oper. Res., 8 (2011), 18–26. |
[17] | X. C. Yu, A stock model with jumps for uncertain markets, Internat. J. Uncertain. Fuzziness Knowl. Based Syst., 20 (2012), 421–432. https://doi.org/10.1142/S0218488512500213 doi: 10.1142/S0218488512500213 |
[18] | X. W. Chen, American option pricing formula for uncertain financial market, Int. J. Oper. Res., 8 (2011), 27–32. |
[19] | Z. Q. Zhang, W. Q. Liu, Geometric average Asian option pricing for uncertain financial market, J. Uncertain Syst., 8 (2014), 317–320. |
[20] | J. J. Sun, X. W. Chen, Asian option pricing formula for uncertain financial market, J. Uncertain. Anal. Appl., 3 (2015), 1–11. https://doi.org/10.1186/s40467-015-0035-7 doi: 10.1186/s40467-015-0035-7 |
[21] | Y. H. Liu, X. W. Chen, D. A. Ralescu, Uncertain currency model and currency option pricing, Int. J. Intell. Syst., 30 (2015), 40–51. https://doi.org/10.1002/int.21680 doi: 10.1002/int.21680 |
[22] | Y. Gao, X. F. Yang, Z. F. Fu, Lookback option pricing problem of uncertain exponential Ornstein-Uhlenbeck model, Soft Comput., 22 (2018), 5647–5654. https://doi.org/10.1007/s00500-017-2558-y doi: 10.1007/s00500-017-2558-y |
[23] | Y. C. Li, Z. Q. Zhang, X. W. Tang, Valuing credit default swaps in uncertain environments, 4th International Conference on Innovative Development of E-commerce and Logistics (ICIDEL 2018), 688–698. https://doi.org/10.23977/icidel.2018.089 |
[24] | Z. Q. Zhang, W. Q. Liu, J. H. Ding, Valuation of stock loan under uncertain environment, Soft Comput., 22 (2018), 5663–5669. https://doi.org/10.1007/s00500-017-2591-x doi: 10.1007/s00500-017-2591-x |
[25] | G. S. Wang, D. L. Zhao, Risk-neutral measure and its applications in option pricing based on uncertainty theory (Chinese), J. Quant. Econ., 33 (2016), 23–28. |
[26] | J. Baptiste, L. Carassus, E. Lépinette, Pricing without martingale measure, 2018, arXiv: 1807.04612. |
[27] | B. D. Liu, Uncertainty theory: a branch of mathematics for modeling human uncertainty, Berlin: Springer, 2010. |
[28] | B. D. Liu, Uncertain risk analysis and uncertain reliability analysis, J. Uncertain Syst., 4 (2010), 163–170. |
[29] | L. X. Yang, Uncertain variables taking values in a normed linear space, 2021. |
[30] | X. F. Yang, Y. H. Liu, G. K. Park, Parameter estimation of uncertain differential equation with application to financial market, Chaos Solitons Fract., 139 (2020), 110026. http://doi.org/10.1016/j.chaos.2020.110026 doi: 10.1016/j.chaos.2020.110026 |
[31] | F. Corradin, M. Billio, R. Casarin, Forecasting economic indicators with robust factor models, Nat. Account. Rev., 4 (2022), 167–190. https://doi.org/10.3934/NAR.2022010 doi: 10.3934/NAR.2022010 |
[32] | D. G. Kirikos, An evaluation of quantitative easing effectiveness based on out-of-sample forecasts, Nat. Account. Rev., 4 (2022), 378–389. https://doi.org/10.3934/NAR.2022021 doi: 10.3934/NAR.2022021 |