In this article, a class of fractional coupled nonlinear Schrödinger equations (FCNLS) is suggested to describe the traveling waves in a fractal medium arising in ocean engineering, plasma physics and nonlinear optics. First, the modified Kudryashov method is adopted to solve exactly for solitary wave solutions. Second, an efficient and promising method is proposed for the FCNLS by coupling the Laplace transform and the Adomian polynomials with the homotopy perturbation method, and the convergence is proved. Finally, the Laplace-HPM technique is proved to be effective and reliable. Some 3D plots, 2D plots and contour plots of these exact and approximate solutions are simulated to uncover the critically important mechanism of the fractal solitary traveling waves, which shows that the efficient methods are much powerful for seeking explicit solutions of the nonlinear partial differential models arising in mathematical physics.
Citation: Baojian Hong, Jinghan Wang, Chen Li. Analytical solutions to a class of fractional coupled nonlinear Schrödinger equations via Laplace-HPM technique[J]. AIMS Mathematics, 2023, 8(7): 15670-15688. doi: 10.3934/math.2023800
In this article, a class of fractional coupled nonlinear Schrödinger equations (FCNLS) is suggested to describe the traveling waves in a fractal medium arising in ocean engineering, plasma physics and nonlinear optics. First, the modified Kudryashov method is adopted to solve exactly for solitary wave solutions. Second, an efficient and promising method is proposed for the FCNLS by coupling the Laplace transform and the Adomian polynomials with the homotopy perturbation method, and the convergence is proved. Finally, the Laplace-HPM technique is proved to be effective and reliable. Some 3D plots, 2D plots and contour plots of these exact and approximate solutions are simulated to uncover the critically important mechanism of the fractal solitary traveling waves, which shows that the efficient methods are much powerful for seeking explicit solutions of the nonlinear partial differential models arising in mathematical physics.
[1] | R. F. Zhang, S. Bilige, Bilinear, neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation, Nonlinear Dyn., 95 (2019), 3041–3048. https://doi.org/10.1007/s11071-018-04739-z |
[2] | M. S. Tavazoei, M. Haeri, S. Jafari, S. Bolouki, M. Siami, Some applications of fractional calculus in suppression of chaotic oscillations, IEEE Trans. Ind. Electron., 55 (2008), 4094–4101. https://doi.org/10.1109/TIE.2008.925774 doi: 10.1109/TIE.2008.925774 |
[3] | A. Almutairi, H. El-Metwally, M. A. Sohaly, I. M. Elbaz, Lyapunov stability analysis for nonlinear delay systems under random effects and stochastic perturbations with applications in finance and ecology, Adv. Differ. Equ., 2021 (2021), 1–32. https://doi.org/10.1186/s13662-021-03344-6 doi: 10.1186/s13662-021-03344-6 |
[4] | J. H. He, Seeing with a single scale is always unbelieving: from magic to two-scale fractal, Therm. Sci., 25 (2021), 1217–1219. https://doi.org/10.2298/TSCI2102217H doi: 10.2298/TSCI2102217H |
[5] | P. Korn, A regularity-aware algorithm for variational data assimilation of an idealized coupled atmosphere–ocean model, J. Sci. Comput., 79 (2019), 748–786. https://doi.org/10.1007/s10915-018-0871-y doi: 10.1007/s10915-018-0871-y |
[6] | A. Yokus, H. M. Baskonus, Dynamics of traveling wave solutions arising in fiber optic communication of some nonlinear models, Soft Comput., 26 (2022), 13605–13614. https://doi.org/10.1007/s00500-022-07320-4 doi: 10.1007/s00500-022-07320-4 |
[7] | H. G. Abdelwahed, E. K. El-Shewy, M. A. E. Abdelrahman, A. F. Alsarhana, On the physical nonlinear (n+1)-dimensional Schrödinger equation applications, Results Phys., 21 (2021), 103798. https://doi.org/10.1016/j.rinp.2020.103798 doi: 10.1016/j.rinp.2020.103798 |
[8] | M. E. Samei, L. Karimi, M. K. A. Kaabar, To investigate a class of multi-singular pointwise defined fractional q-integro-differential equation with applications, AIMS Math., 7 (2022), 7781–7816. https://doi.org/10.3934/math.2022437 doi: 10.3934/math.2022437 |
[9] | C. H. Gu, Soliton theory and its applications, Springer-Verlag Berlin and Heidelberg GmbH & Co. K, Berlin, 1995. https://doi.org/10.1007/978-3-662-03102-5 |
[10] | D. C. Lu, B. J. Hong, L. X. Tian, Bäcklund transformation and n-soliton-like solutions to the combined KdV-Burgers equation with variable coefficients, Int. J. Nonlinear Sci., 2 (2006), 3–10. |
[11] | V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Springer Berlin, Heidelberg, 1991. |
[12] | K. L. Geng, D. S. Mou, C. Q. Dai, Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations, Nonlinear Dyn., 111 (2023), 603–617. https://doi.org/10.1007/s11071-022-07833-5 doi: 10.1007/s11071-022-07833-5 |
[13] | D. C. Lu, B. J. Hong, L. X. Tian, New explicit exact solutions for the generalized coupled Hirota–Satsuma KdV system, Comput. Math. Appl., 53 (2007), 1181–1190. https://doi.org/10.1016/j.camwa.2006.08.047 doi: 10.1016/j.camwa.2006.08.047 |
[14] | B. J. Hong, New Jacobi elliptic functions solutions for the variable-coefficient mKdV equation, Appl. Math. Comput., 215 (2009), 2908–2913. https://doi.org/10.1016/j.amc.2009.09.035 doi: 10.1016/j.amc.2009.09.035 |
[15] | P. R. Kundu, M. R. A. Fahim, M. E. lslam, M. A. Akbar, The sine-Gordon expansion method for higher-dimensional NLEEs and parametric analysis, Heliyon, 7 (2021), e06459. https://doi.org/10.1016/j.heliyon.2021.e06459 |
[16] | J. J. Fang, D. S. Mou, H. C. Zhang, Y. Y. Wang, Discrete fractional soliton dynamics of the fractional Ablowitz–Ladik model, Optik, 228 (2021), 166186. https://doi.org/10.1016/j.ijleo.2020.166186 doi: 10.1016/j.ijleo.2020.166186 |
[17] | H. F. Ismael, H. Bulut, H. M. Baskonus, Optical soliton solutions to the Fokas-Lenells equation via sine-Gordon expansion method and (m+(G'/G))-expansion method, Pramana, 94 (2020), 1–9. https://doi.org/10.1007/s12043-019-1897-x doi: 10.1007/s12043-019-1897-x |
[18] | Y. Fang, G. Z. Wu, Y. Y. Wang, C. Q. Dai, Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN, Nonlinear Dyn., 105 (2021), 603–616. https://doi.org/10.1007/s11071-021-06550-9 doi: 10.1007/s11071-021-06550-9 |
[19] | S. T. Mohyud-Din, S. Bibi, Exact solutions for nonlinear fractional differential equations using G'/G2-expansion method, Alex. Eng. J., 57 (2018), 1003–1008. https://doi.org/10.1016/j.aej.2017.01.035 doi: 10.1016/j.aej.2017.01.035 |
[20] | A. M. Elsherbeny, R. El-Barkouky, H. M. Ahmed, R. M. El-Hassani, A. H. Arnous, Optical solitons and another solutions for Radhakrishnan-Kundu-Laksmannan equation by using improved modified extended tanh-function method, Opt. Quant. Electron., 53 (2021), 1–15. https://doi.org/10.1007/s11082-021-03382-0 doi: 10.1007/s11082-021-03382-0 |
[21] | H. Durur, A Kurt, O. Tasbozan, New travelling wave solutions for KdV6 equation using sub equation method, Appl. Math. Nonlinear Sci., 5 (2020), 455–460. https://doi.org/10.2478/amns.2020.1.00043 doi: 10.2478/amns.2020.1.00043 |
[22] | W. B. Bo, R. R. Wang, Y. Fang, Y. Y. Wang, C. Q. Dai, Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity, Nonlinear Dyn., 111 (2023), 1577–1588. https://doi.org/10.1007/s11071-022-07884-8 doi: 10.1007/s11071-022-07884-8 |
[23] | R. R. Wang, Y. Y. Wang, C. Q. Dai, Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser, Opt. Laser Technol., 152 (2022), 108103. http://dx.doi.org/10.1016/j.optlastec.2022.108103 doi: 10.1016/j.optlastec.2022.108103 |
[24] | A. M. Nass, Lie symmetry analysis and exact solutions of fractional ordinary differential equations with neutral delay, Appl. Math. Comput., 347 (2019), 370–380. https://doi.org/10.1016/j.amc.2018.11.002 doi: 10.1016/j.amc.2018.11.002 |
[25] | J. S. Zhang, R. Qin, Y. Yu, J. Zhu, Y. Yu, Hybrid mixed discontinuous Galerkin finite element method for incompressible wormhole propagation problem, Comput. Math. Appl., 138 (2023), 23–36. https://doi.org/10.1016/j.camwa.2023.02.023 doi: 10.1016/j.camwa.2023.02.023 |
[26] | S. O. Abdulla, S. T. Abdulazeez, M. Modanli, Comparison of third-order fractional partial differential equation based on the fractional operators using the explicit finite difference method, Alex. Eng. J., 70 (2023), 37–44. https://doi.org/10.1016/j.aej.2023.02.032 doi: 10.1016/j.aej.2023.02.032 |
[27] | A. H. Salas, Computing solutions to a forced KdV equation, Nonlinear Anal., Real World Appl., 12 (2011), 1314–1320. https://doi.org/10.1016/j.nonrwa.2010.09.028 doi: 10.1016/j.nonrwa.2010.09.028 |
[28] | L. N. Song, W. G. Wang, A new improved Adomian decomposition method and its application to fractional differential equations, Appl. Math. Model., 37 (2013), 1590–1598. https://doi.org/10.1016/j.apm.2012.03.016 doi: 10.1016/j.apm.2012.03.016 |
[29] | B. J. Hong, D. C. Lu, Modified fractional variational iteration method for solving the generalized time-space fractional Schrödinger equation, Sci. World J., 2014 (2014), 1–7. https://doi.org/10.1155/2014/964643 doi: 10.1155/2014/964643 |
[30] | M. Nadeem, J. H. He, He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics, J. Math. Chem., 59 (2021), 1234–1245. https://doi.org/10.1007/s10910-021-01236-4 doi: 10.1007/s10910-021-01236-4 |
[31] | G. V. Bhaskar, S. M. R. Bhamidimarri, Approximate analytical solutions for a biofilm reactor model with Monod kinetics and product inhibition, Can. J. Chem. Eng., 69 (1991), 544–547. https://doi.org/10.1002/cjce.5450690220 doi: 10.1002/cjce.5450690220 |
[32] | J. H. He, A coupling method of a homotopy technique and a perturbation technique for nonlinear problems, Int. J. Non-Linear Mech., 35 (2000), 37–43. https://doi.org/10.1016/S0020-7462(98)00085-7 doi: 10.1016/S0020-7462(98)00085-7 |
[33] | J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3 |
[34] | E. K. Jaradat, O. Alomari, M. Abudayah, A. A. M. Al-Faqih, An approximate analytical solution of the nonlinear Schrödinger equation with harmonic oscillator using homotopy perturbation method and Laplace-Adomian decomposition method, Adv. Math. Phys., 2018 (2018), 1–11. https://doi.org/10.1155/2018/6765021 |
[35] | B. J. Hong, D. C. Lu, W. Chen, Exact and approximate solutions for the fractional Schrödinger equation with variable coefficients, Adv. Differ. Equ., 2019 (2019), 1–10. https://doi.org/10.1186/s13662-019-2313-z doi: 10.1186/s13662-019-2313-z |
[36] | A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations, Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020 |
[37] | C. Burgos, J. C. Cortés, L. Villafuerte, R. J. Villanueva, Solving random fractional second-order linear equations via the mean square Laplace transform: theory and statistical computing, Appl. Math. Comput., 418 (2022), 126846. https://doi.org/10.1016/j.amc.2021.126846 doi: 10.1016/j.amc.2021.126846 |
[38] | S. Kumar, A new analytical modelling for fractional telegraph equation via Laplace transform, Appl. Math. Model., 38 (2014), 3154–3163. https://doi.org/10.1016/j.apm.2013.11.035 doi: 10.1016/j.apm.2013.11.035 |
[39] | S. Arbabi, M. Najafi, Exact solitary wave solutions of the complex nonlinear Schrödinger equations, Optik, 127 (2016), 4682–4688. https://doi.org/10.1016/j.ijleo.2016.02.008 doi: 10.1016/j.ijleo.2016.02.008 |
[40] | B. J. Hong, Exact solutions for the conformable fractional coupled nonlinear Schrödinger equations with variable coefficients, J. Low Freq. Noise, V. A., 41 (2022), 1–14. https://doi.org/10.1177/14613484221135478 doi: 10.1177/14613484221135478 |
[41] | B. J. Hong, Abundant explicit solutions for the M-fractional generalized coupled nonlinear Schrödinger KdV equations, J. Low Freq. Noise, V. A., 42 (2023), 1–20. https://doi.org/10.1177/14613484221148411 doi: 10.1177/14613484221148411 |
[42] | K. Hosseini, A. Bekir, R. Ansari, New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method, Optik, 132 (2017), 203–209. https://doi.org/10.1016/j.ijleo.2016.12.032 doi: 10.1016/j.ijleo.2016.12.032 |
[43] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent: part Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x |
[44] | Y. Asıf, D. Hülya, D. Kaya, H. Ahmad, T. A. Nofal, Numerical comparison of Caputo and Conformable derivatives of time fractional Burgers-Fisher equation, Results Phys., 25 (2021), 104247. https://doi.org/10.1016/j.rinp.2021.104247 doi: 10.1016/j.rinp.2021.104247 |
[45] | M. Hadjer, M. Faycal, M. Ahcene, Solution of Sakata-Taketani equation via the Caputo and Riemann-Liouville fractional derivatives, Rep. Math. Phys., 89 (2022), 359–370. https://doi.org/10.1016/S0034-4877(22)00038-6 doi: 10.1016/S0034-4877(22)00038-6 |
[46] | R. W. Boyd, Nonlinear optics, Academic Press, 2020. |
[47] | M. Lakestani, J. Manafian, Analytical treatments of the space-time fractional coupled nonlinear Schrödinger equations, Opt. Quant. Electron., 396 (2018), 1–33. https://doi.org/10.1007/s11082-018-1615-9 doi: 10.1007/s11082-018-1615-9 |
[48] | T. Han, Z. Li, X. Zhang, Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation, Phys. Lett. A, 395 (2021), 127217. https://doi.org/10.1016/j.physleta.2021.127217 doi: 10.1016/j.physleta.2021.127217 |
[49] | B. H. Wang, P. H. Lu, C. Q. Dai, Y. X. Chen, Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation, Results Phys., 17 (2020), 103036. https://doi.org/10.1016/j.rinp.2020.103036 doi: 10.1016/j.rinp.2020.103036 |
[50] | M. Eslami, Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations, Appl. Math. Comput., 285 (2016), 141–148. https://doi.org/10.1016/j.amc.2016.03.032 doi: 10.1016/j.amc.2016.03.032 |
[51] | P. F. Dai, Q. B. Wu, An efficient block Gauss–Seidel iteration method for the space fractional coupled nonlinear Schrödinger equations, Appl. Math. Lett., 117 (2021), 107116. https://doi.org/10.1016/j.aml.2021.107116 doi: 10.1016/j.aml.2021.107116 |
[52] | C. R. Menyuk, Stability of solitons in birefringent optical fibers. Ⅱ. Arbitrary amplitudes, J. Opt. Soc. Am. B, 5 (1988), 392–402. https://doi.org/10.1364/JOSAB.5.000392 doi: 10.1364/JOSAB.5.000392 |
[53] | J. Q. Gu, A. Akbulut, M. Kaplan, M. K. A. Kaabar, X. G. Yue, A novel investigation of exact solutions of the coupled nonlinear Schrödinger equations arising in ocean engineering, plasma waves, and nonlinear optics, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.06.014 |
[54] | S. Alshammari, N. Iqba, M. Yar, Analytical investigation of nonlinear fractional Harry Dym and Rosenau-Hyman equation via a novel transform, J. Funct. Spaces, 2022 (2022), 8736030. https://doi.org/10.1155/2022/8736030 doi: 10.1155/2022/8736030 |
[55] | J.Singh, D. Kumar, S. Kuma, New treatment of fractional Fornberg-Whitham equation via Laplace transform, Ain Shams Eng. J., 4 (2013), 557–562. https://doi.org/10.1016/j.asej.2012.11.009 doi: 10.1016/j.asej.2012.11.009 |
[56] | R. A. Khan, Y. J. Li, F. Jarad, Exact analytical solutions of fractional order telegraph equations via triple Laplace transform, Discrete Cont. Dyn. Syst.-S, 14 (2021), 2387–2397. http://dx.doi.org/10.3934/dcdss.2020427 doi: 10.3934/dcdss.2020427 |
[57] | J. H. He, Recent development of the homotopy perturbation method, Topol. Methods Nonlinear Anal., 31 (2008), 205–209. |
[58] | J. H. He, M. L. Jiao, C. H. He, Homotopy perturbation method for fractal Duffing oscillator with arbitrary conditions, Fractals, 30 (2022), 1–10. https://doi.org/10.1142/S0218348X22501651 doi: 10.1142/S0218348X22501651 |