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Abstract: In this article, a class of fractional coupled nonlinear Schrédinger equations (FCNLS) is
suggested to describe the traveling waves in a fractal medium arising in ocean engineering, plasma
physics and nonlinear optics. First, the modified Kudryashov method is adopted to solve exactly for
solitary wave solutions. Second, an efficient and promising method is proposed for the FCNLS by
coupling the Laplace transform and the Adomian polynomials with the homotopy perturbation method,
and the convergence is proved. Finally, the Laplace-HPM technique is proved to be effective and
reliable. Some 3D plots, 2D plots and contour plots of these exact and approximate solutions are
simulated to uncover the critically important mechanism of the fractal solitary traveling waves, which
shows that the efficient methods are much powerful for seeking explicit solutions of the nonlinear
partial differential models arising in mathematical physics.
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1. Introduction

In recent years, with the wide applications of fractional calculus, more and more nonlinear
phenomena came down to fractional models: for examples, various discontinuous phenomena in
mechanics [1], chaotic oscillations [2], ecological and economic systems [3], two-scale thermal
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science [4], atmospheric space science [5], optical fiber systems [6], and others [7,8]. Searching for
exact solutions or approximate solutions of these models plays an important role in the study of
dynamical behavior and inner structures of those nonlinear phenomena [9]. Up to now, many authors
have presented various powerful methods for this purpose, such as Bécklund transformation method [10],
Darboux transformation [11], Hirota bilinear method [12], projective Riccati equations method [13],
Jacobi elliptic function expansion method [14], sine-Gordon method [15], exponential function
method [16], improved (m+G'/G)-expansion method [17], PINN method [18], G G*-expansion
method [19], improved extended Tanh technique [20], the sub-equation technique [21], ect [22-24].
However, due to the complexity of nonlinear systems, it is often difficult for us to obtain the exact
solutions; thus, people turn to look for their approximate solutions. So far, many approximate methods
for effective convergence have been established, including finite element method [25], finite difference
method [26], multiple-scale method [27], improved Adomian decomposition method [28], modified
fractional variational iteration method [29], He-Laplace variational iteration method [30], and
homotopy analysis method etc [31], among which the homotopy perturbation method (HPM), which
was first proposed by Ji-Huan He in 1998 [32,33], is the most promising technology for fractal calculus,
besides the applications for traditional differential equation [34,35]. As we all know, the Laplace
transformation method is a powerful tool for us to solve a wide variety of initial-value problems,
especially for the differential equation problems, and this method played an extremely important role
in mathematical physics [36-38].

As we all know, the famous nonlinear Schrodinger equations (NLS) and coupled nonlinear
Schrodinger equations (CNLS) are widely used in optical fiber, ocean engineering, plasma physics,
quantum mechanics, etc [39—41]. In this article, we will utilize the modified Kudryashov method [42]
to find exact solitary solutions of a class of fractional coupled nonlinear Schrodinger equation (FCNLS)
first and then apply the Laplace transformation method combined with HPM to obtain the approximate
solution, with the aid of adomian polynomials, we obtain many good results. The main advantages of
these two methods are the efficient convergence of the iterative sequences and that the exact solutions
can be easily obtained.

Consider the following FCNLS:

iD“u +iaD”u +bD> u + 5(|u|2 + }/|v|2)u =0, O0<a,B<1, )
iD*v —iaD”v +bDv + 5(7|u|2 + |v|2)v =0,

where DS, D’ ,D} = D’(D’) represent the Caputo fractional derivative operator [43—45]. The
coefficients a,b,0,y are real constants, u =u(x,t),v =v(x,t) are two complex valued functions

with respect to the time ¢ and the propagation distance x . Equation (1) occurs in many fields
including nonlinear optics, ocean engineering and plasma waves. If we select a =0, functions u,v

represent the amplitudes of circularly polarized waves in a nonlinear optical fiber, nonzero constant
o represents self-focusing and self-defocusing nonlinearity, nonzero constan y represents cross-
phase modulation and self-phase modulation [46]. Much literature on Eq (1) was available. See, for
examples, [47-53], but the critically important mechanism of the fractal solitary traveling waves has
not yet revealed, and the research on this topic has been preliminary.

Now, we review some basic definitions and properties of the Laplace transform for fractional
calculus, some elementary introduction can be found in [36-38,43—45].

Definition 1. For a function f(¢):[0,0) > R. The Riemann Liouville fractional integral operator
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and Caputo fractional derivative operator of order « are defined as [35]

Jf(t) =—— j (t—7)" f(r)dr,a>0,t>0,J°£(£) = f(1).

[(x)°
1 ! n—-a-1 n
a - mjo(t—r) f"(r)dr,n-1<a<n,neN.
DU f()=J""D"f(x)= 4 £ (6)
T,a:neN.

Definition 2. The Laplace transform and inverse transformation of function f(¢) is defined as [36—
38]

F(s)=L[f@0)]=|, e f)de, f(t) = 2%” J.j:jF(s)e‘“ds,s = A+im,t>0.

Definition 3. The Laplace transform of D u(x,t) is defined as [36-38]

E[D,“u(x,t)] u(x t) nzlu (x,O)s“’l’k, n—l<a<n. 2)

Definition 4. The Adomian polynomials of N(u = Z p'u;) is defined as [54,55]

i=0

4=34,=3 IW[ P, 0 3)

i=0

2. Description of the two methods
2.1. The modified Kudryashov method [42]

Consider the following differential equation

ECf 150" =0 “4)

where f'=——, we assume that the solutions of Eq (4) can be presented as follows

b
d

fo(f)ZZCliFi(f), F(g)_ 5 (5)

d ¢
where N is a balance number, the coefficients a,(i=0,1,---,N) and the variable function
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& =£&(x,t) are evaluated later. The function F(&) satisfies the following form and constraint

condition:

F':dl;—if):F(f)(F(f)—l)lna =F(F-1Dlna. (6)

Substituting Eqs (5) and (6) into Eq (4) and collecting the coefficients of F'(i=0,1,2,---) to
zero yields algebraic equations (AEs) for a,,a,,---,a, and ¢&. Utilizing mathematical software to

solve the AEs, we can obtain the solutions of Eq (4).
2.2. The procedure of Laplace-Homotopy perturbation method (Laplace-HPM)

The basic idea and specific steps of the Laplace transformation and HPM can be seen in [56-58].
Here, we will utilize the efficient method to Eq (1) for finding the approximate solution.

If we let Dfu=u®,D’u=u’, D?’u=u’ and apply the Laplace transform about ¢ on both
sides of the first equation of Eq (1), we have:

LU +il{au’y+Libu*y + £{§(|u|z + }/|v|2)u} -0, 7)

s Llu(x,0)] = s u(x,0) = illiau” +bu’’ + s(u | +y|v|)ul, (8)

Llu(x,t)]= lu(x,O) + %E[iauf + bufxﬁ +o(ul* +y|v[Hul. 9)
s s

Applying inverse Laplace transform to both sides of (9), we obtain
u(x, ) = u(x,0) + £ '[— Lliau? +bu*’ +5(|u [ +y v u]]. (10)
s

Generally, we can construct the homotopy equation as follows:

(1—p)(u—Mo)+p{(u—uo)—5l[?ﬁ[iauf +bull +S(lul’ +y |vull} =0, (11)
where p €[0,1] is a homotopy parameter. %, is an initial guess of u(x,f) that satisfies the

boundary conditions of Eq (1). Obviously, u:u, > u since p:0—>1.

Assuming that the solution for Eq (1) can be written as
u(x,t)= Zunp". (12)
n=0

Substituting Eq (12) into Eq (11) yields
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ZLtnp =u, +p{E [lau +bu2ﬂ+52p”A +5;/Zp (13)

n=0 = =

where A4, and 4, are the »-th term of the Adomian polynomials of nonlinear terms in Eq (11).
Now, equating the coefficients of the identical powers of p, on both sides, we get the following
iterations:

P iuy =uy(x), -, p" i, = [ E(zau +bul + 54, +06yA)],n (14)
Using the same method, we can give following approximations for Eq (1):

Vo =Vo(X),, p" v, = [ E( iav” +bv’ +54 +6yA)],n>0, (15)

nxx

where 4 and A are the »-th term of Adomian polynomials of nonlinear terms for Eq (1). From

Definition 4, we have

2 2 - 2 27 - -
Ay =uy uy, A = uy v, + 2uguug, A, =uy wy +uug + 2uguu, + 2ug, g,

2 2 2
A =uu, +uu, ,+-tuu, L, +2uuu, |+ 2ugu,u, e+ 22U, U, s,

+---+2ukun7ku_0, n>2k,k>1.

A0 uovo vO,A =V, voul + Vvl + Vv,V
A2 =v, v0u2 + VoV, + VyVolly + V Vol + Vi ViU + Y, Vil

A —VOVOM +V1Vl n— 2-|- +Vka n—2k -|-V0V1 +V1VO + +v0vnu0

+---+vnv0u0, n>2k,k>1.

A, = uouovo,A uouov1 +uy UV, +u Uy,
4, = u0u0v2 + U UV, UGU,V, U UV U UV + U UV,

A, =ugugy, Fuuy, U Uy, o, UGy, Uy, e+ Uy,
+eotu uyy,, n>2kk>1.

Ag—vzv_ A =, 4 200V, Ay = vV, 12, + 2000, 4 20V, vy,

— Y0 Yo T Yo M 0"170°4%2 7 Y0 "2 170 07171 07270

" _ 2_ 2 2
An =Vo Vy + Vi Vs +eeet Vi Vaook + 2’VOVI Vi + 2VOVZ Vioa +eeet 2VOVZ,’( Vook

+e 20y, v, n>2kk>1,

where 6 indicates the conjugation of (-).

When p —1, it yields the »-th approximate solution and exact solution for Eq (1) as follows
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Uy =Uo U +Uy +o U,V =Vt Y F Y, ety

no

(n)

u =v=Ilimy,,.

n—>o0

exact exact

=u=limu,,v
n—0

3. Exact and approximate solutions of the FCNLS
3.1. Exact solutions

We can give the following function and traveling wave transformation:

u="P()e",v=0(5)e™, (16)
&= k Y t”,
rp+1 IN'a+1)
(17)
k 5 c u k P c .
n, = X+ ——1" g, =——x+ —2—1",
r(p+1) INa+1) rp+1 INa+1)

where constants k,k,k, and ,c,c, are to be determined latter.

Substituting Eqs (16) and (17) into Eq (1) and separating the real part and the imaginary part, thus
we have

bk*P,, — (kib+ak, + ¢,)P+5(P* + y0)P =0,  (18.1)
bk>Q,, — (k2b —ak, +¢,)0 +8(yP* + 010 =0,  (18.2)

(18)
(@ + ak + 2bkk,)P. =0, (18.3)
(@ — ak + 2bkk,)0O, = 0. (18.4)
From Eq (18.3) and Eq (18.4), we obtain the following exact solution
i« I X,,j(mhynz) k> b—ak, “ i ks x,,j(ymhnz) ~ky*b+ak, o
U =me "FD ‘ T(a+1) v =ne T(B+) T(a+1) . (19)
From Eq (18.3) and Eq (18.2), we obtain
@ =—bk(k, +k,). (20)

According to the homogeneous balance principle and the modified Kudryashov method [47], we
assume Eq (18) have the following solutions

P(&)=a,+aF =a,+ &4

1+ da* dER,
(21)

OE)=b, +bF =b +—2 deR.
1+da®
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Substituting Eqs (6) and (17) into Eq (18), and setting the coefficients of F' to zero yield a set
of AEs for the unknowns a,,a,,a,,b,,b,,b,,k,k,k,,c,,c, and @
F':—aka, —bk’a, + Sa;, + ydab; —a,c, = 0,
ak,a, — bk’a, + bk’ (Ina)’ a, + 36a;a, + ydab; +2yda,b,b, —ac, = 0,
—3bk*(Ina)’a, +38a,a; +2ySabb, + ySahb’ = 0,

F?:
F?:2bk*(Ina)’a, + 8a; + ySab} =

F°: ak,b, — bk,’b, + yda’b, + 5b; —byc, = 0,
Fl 2ySayab, + ak,b, — bk,’b, + bk>(Ina)*b, + y5a§b +36b2b, — b, = 0,
2. y5alb, — 36k (Ina)*b, + 2}/5a0a b, +35bhb’ =

F3 . 2bk>(Ina)’ b, + yda’b, + 5b; =

Solving the AEs along with Egs (5), (16) and (20) results in the following solutions

b, = Fa,,b, =2a,,a, = 2a,,k = ,/_2(1+}/)5,a)=—bk(kl +k,),
lna b

(1+y)Sa, + ak, —bk; .

¢, =(+y)da; —ak, — bk} ,c, =

Thus, the new exact solutions of the CFNLS can be identified as
ki (+y)daj —ak —bk} 1

u=(a, - 2a, ) Trpm” T(a+1)
0 +a0 /—2(1+}/)5[ L blhivk) o ?
1+ da T(B+)  T(a+l)
2 2
; ky x/;%(l+;/)6'a0+ak2—bk2 ]
T(f+1) T(a+l)

2a
=(F + 0
v (+a0_ +a0 —2(1+7)5[ I s b(k1+kz)ta])
1+ da T(A+) T(a+l)

If we select the corresponding values of some parameters, some simulations of 3D plots, 2D plots

and contour plots are given in Figures 1 and 2

A /\\ ’/\ 1.0 /\ /\ '
A T AAMA

Figure 1. The 3D plot, 2D plot and contour plot of u with a=2,q,=d=y=0=1,

b=-1k =k, =1,a=p=1.

Volume 8, Issue 7, 15670-15688.

AIMS Mathematics



15677

Figure 2. The 3D plot, 2D plot and contour plot of u with a=2,a,=d=y=0=1,
b=-Lk =k,=1,a=0.5,=0.7.

3.2. Approximate solutions

Let us consider Eq (1) with the initial condition u, =e",v, =€" . By applying the aforesaid

method in the first iteration, we have:

] i x+£ﬂ . ) . ix s A
U, = Lrl[siaﬁ(iae( ) + 5 4 S (14 7)) = El[%(iae 2 L be™ 1+ 51+ 7))

iZp , ie"t”
= (iae 2" +be™ +5(1+ ,
( (1+7)) Tath)

124

n = L Lliav + byl + 84, + 0y A)] = £ (e ™ +be™ + 51+ 7))
iZp : ie"t”
= (—iae 2" +be™ +5(1+ .
( (1+7)) N+
Further,
ie"t* -iZp : iZp : ie"t”
= ige 2 —be ™ -5 +7))+2@ae? +be™” +5(1+ ,
| F(a+1)( A+7)+2( ( 7))1“(a+1)
A =[2667 + 501+ 7)—iae ? —be ]—ieixt -
1 Ma+1)
A =[2be™ + 51+ y)+ iae_i%ﬁ —be ™ ]—ieiXta
1 Ta+1)
- R A ie"t”
A =[2(-iae > +be™ +0(1+y))—(iae > +be™ +o(1+y))] .
INa+1)
Thus,

AIMS Mathematics Volume 8, Issue 7, 15670-15688.
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U, = El[s%ﬁ(iaulf +bul + 54 + Sy A)]
eix (ita )2 2 2inf . ﬂ inf} 2 @ .
=————[b"e™™ +2iabe * +e7(—a” +3b(1+y)o)+e? (ia(3+y)0)
I'a+1)
—liﬁ .
e 27 (<ia(=1+7)8) + & (~b(1+7)5) + (1 + 7)*57]

v, = t‘[sia L(=iav’ +bv + 54 + 5y 4)]

efX (ita )2 2 2inf . w inf 2 @ .
=————[b"e™™ =2iabe > +e"(—a” +3b(1+y)o)+e ? (—ia(l1+3y)d)
I'Ca+1)
—lm .
ve 27 (Cia(=1+7)8) + ¢ (=b(1+ 1)8) + (1 + 7)*87].

With the same process, after substituting u,,u,, vy, Vy,U;,U;,V,,V,, Uy, U,,V,,V, Into 4,,4,, 4,,4,

and using the iterative equations (14) and (15), we can obtain

u, = El[s%ﬁ(iauzf + buzixﬂ +04, + 57A;)]

ix 3o Sinf
= L{—l‘[ﬁeﬁﬂﬂ +3ab’e 2 — ib[5b(1 + 7)5 _ 3a2]ezmﬂ
ra+3ea)
w .
_a[a2 — 2b(5 + 2}/)5]6 2 _ l5[6b(1 + }/)25 _ 02(5 + 37)]em'ﬂ

inp —liﬂ
+ao[b(1-y)+6(1+y)ole * —ado(l+y)b+0—yd)e ? ’

—éiﬂ' .
—io(1+ p)[—a’ + b(1+ y)S51e™ + 2abS(y —1)e 2 7 ib*5(1+ y)e ™™

, C(1+2a)e"t*” 3inf
—io[a*(y =D+ A+ »CA+») 6> =bH] + 2abde ?
iola”(y =D+ 1+ )3 +y) )1} F(1+a)21“(1+3a){ aboe
inf —li

—ib*5(1+ )™ —ia*(y —1)6e™ —2ab(y —1)Se > —2ad8(b+(y* —1)S)e 2 i

+2ib(1+ ) 8% ™ +is[2a> + (1+ 7)(2b* + (1+ y)* )]},

AIMS Mathematics Volume 8, Issue 7, 15670-15688.
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y, =L [Sia L(=iav,” + b, + 54, + Sy A)]

ix 3o Sinf ‘
— 1 e _3abe * +ib3a’ —5b(1+ 7)S]e
T(1+3a)
3inf )
ra[d® 2652 +50)]e * +id[a*(3+57)—6bS(1 + 7)1
inf

—_ —li/z'ﬂ
e 2

+aolb—by —6yo(1+y)le? +ao(1+y)[b+o(y—1)]

—giﬁ .
+io(1+ p)[a® —=b(1+y)8le™ +2abSs(y —1)e 2 7 ib*5(1+ y)e ™

_ I+ 2a)e"t , .
+io[a*(y =)+ 1+ )[B* =31+ »)* 8} + —ib*6(1+ y)e*™
[a"(y—D)+A+p)] I+y) o1} F(l+a)2F(1+3a){ (I+y)
3inp inf 1

—2abySe * +ia’S(y —1)e™ —2abS(y —1)e > +2ad(by + S — ;/25)e_5mﬁ

+2ibS* (1 +y)’ e +id[2a’y +2b>(1+ )+ (1+ ) 671},
therefore, the Laplace-HPM series approximate solution for Eq (1) is

U, ~=Uy+u +u,+u,-

anpr =V, Vv +v, e

> Vappr

4. Convergence and numerical results

To study the convergence of the Laplace-HPM method, let us state the following theorem.

Theorem. (Sufficient condition of convergence).
Suppose that X and Y are Banach spaces,and N: X — Y is a contract nonlinear mapping,
that is,

Vu,u*e X : ||N(u) - N(u*)” < }/”u —u*

,0<y<1. (22)

Then, according to Banach’s fixed point theorem, N has a unique fixed point u, thatis, N(u)=u.

Assume that the sequence generated by the homotopy perturbation method can be written as

U,=NU,.)U,=>u,u eX,n=123, (23)
i=0
and suppose that
Uy =u, € B,(),B,(u) = {u* € X|Ju*—u| < y}. (24)
Then, we have
i) U,eB (u), (i) limU, =u. (25)

AIMS Mathematics Volume 8, Issue 7, 15670-15688.
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Proof. (1) By the inductive approach, for n=1 we have

[0 =l =[N @y = NG| < 70 ~u

and then

U, —u|=|NU,.)-Nw)|<y"|Uy—u|<y"r=U, € B,(u).

(i) Because of 0<y <1, wehave lim|U, —u|=0, thatis, imU, =u.

n—»0 n—»0

Now, we investigate the error analysis between exact and approximate solutions, as stated by
Tables 1 and 2, indicating that the series solution quickly converges to exact solution. The absolute
errors at various values of 7 and X demonstrate the simplicity and great accuracy of the Laplace-

HPM. The numerical results for U

exact

and u),U,,Us at m=0=k=a=b=1, y=-la=p£=1

are shown in Figures 3 and 4, and we can find that the real part of u,,u,,4; convergeto u and

exact
increases very rapidly with increases in f, while the imaginary part is opposite. The comparison of
real part and modulus between the exact solution v and approximate solution V),V,),V, at
n=0=k,=a=b=Ly=lLa==1 and a=£=09 are simulated through Figures 5-8, which
clearly show that the values of real part decreases as ¢ increases, and V3, iscloserto v than v,

and V,). These approximate values give excellent agreement with exact solutions, and the values of

absolute errors are few. We also note that when the time is small, the accuracy of obtained solution
increase, and the absolute errors decrease. This means that our equation highly relies on instant time.
From the results obtained and presented in figures and tables, we can prove the efficiency of proposed
method.

Im [ul

Figure 3. Comparison of real part and imaginary part between the exact solution « and
approximate solution U,,U,,Us, at m=0=k =a=b=1y=-1, a=p=1.

AIMS Mathematics Volume 8, Issue 7, 15670-15688.
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Table 1. Comparison of exact solution # and approximate solution obtained by Laplace-
HPM with a=f=1.

* t Re[ugxact] Re[u(3)] Re[u(z)] Re[u(l)] ‘Re [t exaer ] = Re[”m]‘
0.1 0.69671 0.69993 0.70049 0.70860 0.0032243
0.2 0.82534 0.83998 0.84447 0.87689 0.0146490
1 0.3 0.92106 0.95710 0.97224 1.04518 0.0360370
0.4 0.98007 1.04790 1.08381 1.21348 0.0678370
0.5 1.00000 1.10904 1.17916 1.38180 0.1090370
0.1 -0.22720 -0.22865 -0.22805 -0.23429 0.0014493
0.2 -0.02920 -0.03231 -0.02746 -0.05243 0.0031090
2 03 0.16997 0.16924 0.18561 0.12943 0.0007230
0.4 0.36236 0.37237 0.41117 0.31129 0.0100120
0.5 0.54030 0.57343 0.64921 0.49320 0.0331290
X t Im[u,,, ] Im[”(3)] Im[”(z)] Im[”m] ‘Im[uexact] - Im[”@)]‘
0.1 0.71736 0.72115 0.72079 0.73341 0.0037926
0.2 0.56464 0.57774 0.57486 0.62535 0.0131010
1 0.3 0.38942 0.41342 0.40369 0.51729 0.0239980
0.4 0.19867 0.23033 0.20728 0.40923 0.0316600
0.5 0.00000 0.03064 -0.01438 0.30120 0.0306420
0.1 0.97385 0.97861 0.97889 0.99253 0.0047623
0.2 0.99957 1.01898 1.02120 1.07576 0.0194050
2 03 0.98545 1.02874 1.03623 1.15899 0.0432900
0.4 0.93204 1.00623 1.02398 1.24221 0.0741890
0.5 0.84147 0.94978 0.98446 1.32540 0.1083080

Figure 4. The 3D plot of the real part of the exact solution u and the approximate solution

Uy at m=8=k=a=b=lLy=-1a=p=1

AIMS Mathematics

Volume 8, Issue 7, 15670-15688.
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Table 2. Comparison of exact solution v and approximate solution obtained by Laplace-
HPM with a =f4=1.

x t Relv, .1 Refv,) ] Re[v,)] Re[v,] ‘Re[vmct] —Re[v;, ]‘
0.1 0.36236 0.36289 0.36120 0.37201 0.0005272
02  0.16997 0.17395 0.16049 0.20371 0.0039861

1 03  -0.02920 -0.01640 -0.06183 0.03542 0.0128040
04  -0.22720 -0.19806 -0.30577 -0.13287 0.0291390
0.5  -0.41615 -0.36095 -0.57132 -0.30120 0.0551950
0.1  -0.58850 -0.58786 -0.58968 -0.59801 0.0006363
02  -0.73739 -0.73203 -0.74657 -0.77987 0.0053684

2 03  -0.85689 -0.83772 -0.88682 -0.96173 0.0191720
04  -0.94222 -0.89403 -1.01042 -1.14358 0.0481950
0.5  -0.98999 -0.89005 -1.11737 -1.32540 0.0999460

x ¢t Abgv,,]  Abs[vy] Abs[v,, ] Abs[v,, ] | 4bs[v,,,.,]— Abs[vy) ]
0.10  1.00000 0.999802 1.000200 1.019804 0.0001978
0.15  1.00000 0.999010 1.001012 1.044031 0.0009899
0.20  1.00000 0.996923 1.003195 1.077033 0.0030765
0.25  1.00000 0.992649 1.007782 1.118034 0.0073508

1 030  1.00000 0.985148 1.016071 1.166190 0.0148510
0.35  1.00000 0.973308 1.029575 1.220656 0.0266910
0.40  1.00000 0.956025 1.049952 1.280625 0.0439748
0.45  1.00000 0.932304 1.078900 1.345360 0.0676955
0.50  1.00000 0.901388 1.118030 1.414210 0.0986117

Re[v]

0.0

Figure 5. The comparison of real part and modulus between the exact solution v and

04

20

06

approximate solution V;),V,),V at n=0=k, =a=b=Ly=1,a=p=1
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Figure 6. The 3D plot of the real part of the exact solution v and the approximate solution
Ve at n=8=k=a=b=ly=1,a=p=1,

Figure 7. The comparison of imaginary part and modulus between the exact solution v
and approximate solution Vy,V,),Vs at n=0=k,=a=b=1y=1,a=5=09.

Figure 8. The 3D plot of the imaginary part of the exact solution v and the approximate
solution V3, at n=0=k,=a=b=1y=1,a=4=09.

5. Discussion and conclusions

In this research, the modified Kudryashov method and Laplace transform method combined with
homotopy perturbation have been successfully applied to solve space-time coupled fractional nonlinear
Schrédinger equation (FCNLS) Eq (1), and some propagation behavior of these obtained solutions are

AIMS Mathematics Volume 8, Issue 7, 15670-15688.
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simulated. The graphs are important for revealing the internal structure of Eq (1). For example,
Figures 1 and 2 show that the waveform of Reu produced a jitter between the intervals (—4,0) in
the case of @ =/=1 while it presents periodic in the right half plane if we selected a=0.5,3=0.7.
The comparison diagram and error analysis diagram of approximate solutions are given to study the
accuracy of the approximate solution. These results show that Laplace homotopy perturbation method
is an effective and reliable method, and a more accurate approximate solution can be obtained through
a few iterations. This paper will open up a flood of opportunities for solving fractional differential
equations such as KP equation, Ginzburg-Landau equation, KdV-Burgers equation, etc. The novel
Laplace-HPM is extremely promising and will be useful for fractional differential equations. The
current definition of the Caputo fractional derivative still has great limitations, and it is difficult to
characterize the necessary connection between two real number order derivatives. On the other hand,
the unified definition of fractional derivatives needs to be further explored and developed for use in
the future.
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