
AIMS Mathematics, 8(7): 15670–15688. 

DOI: 10.3934/math.2023800 

Received: 24 February 2023 

Revised: 3 April 2023 

Accepted:11 April 2023 

Published: 27 April 2023 

http://www.aimspress.com/journal/Math 

 

Research article 

Analytical solutions to a class of fractional coupled nonlinear 

Schrödinger equations via Laplace-HPM technique 

Baojian Hong1,*, Jinghan Wang2 and Chen Li3 

1 Faculty of Mathematical Physics, Nanjing Institute of Technology, Nanjing 211167, China 
2 Faculty of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China 
3 Faculty of Architectural Engineering, Nanjing Institute of Technology, Nanjing 211167, China 

* Correspondence: Email: hbj@njit.edu.cn. 

Abstract: In this article, a class of fractional coupled nonlinear Schrödinger equations (FCNLS) is 
suggested to describe the traveling waves in a fractal medium arising in ocean engineering, plasma 
physics and nonlinear optics. First, the modified Kudryashov method is adopted to solve exactly for 
solitary wave solutions. Second, an efficient and promising method is proposed for the FCNLS by 
coupling the Laplace transform and the Adomian polynomials with the homotopy perturbation method, 
and the convergence is proved. Finally, the Laplace-HPM technique is proved to be effective and 
reliable. Some 3D plots, 2D plots and contour plots of these exact and approximate solutions are 
simulated to uncover the critically important mechanism of the fractal solitary traveling waves, which 
shows that the efficient methods are much powerful for seeking explicit solutions of the nonlinear 
partial differential models arising in mathematical physics. 
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1. Introduction 

In recent years, with the wide applications of fractional calculus, more and more nonlinear 
phenomena came down to fractional models: for examples, various discontinuous phenomena in 
mechanics [1], chaotic oscillations [2], ecological and economic systems [3], two-scale thermal 
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science [4], atmospheric space science [5], optical fiber systems [6], and others [7,8]. Searching for 
exact solutions or approximate solutions of these models plays an important role in the study of 
dynamical behavior and inner structures of those nonlinear phenomena [9]. Up to now, many authors 
have presented various powerful methods for this purpose, such as Bäcklund transformation method [10], 
Darboux transformation [11], Hirota bilinear method [12], projective Riccati equations method [13], 
Jacobi elliptic function expansion method [14], sine-Gordon method [15], exponential function 
method [16], improved (m+G'/G)-expansion method [17], PINN method [18], 2'/G G  -expansion 
method [19], improved extended Tanh technique [20], the sub-equation technique [21], ect [22–24]. 
However, due to the complexity of nonlinear systems, it is often difficult for us to obtain the exact 
solutions; thus, people turn to look for their approximate solutions. So far, many approximate methods 
for effective convergence have been established, including finite element method [25], finite difference 
method [26], multiple-scale method [27], improved Adomian decomposition method [28], modified 
fractional variational iteration method [29], He-Laplace variational iteration method [30], and 
homotopy analysis method etc [31], among which the homotopy perturbation method (HPM), which 
was first proposed by Ji-Huan He in 1998 [32,33], is the most promising technology for fractal calculus, 
besides the applications for traditional differential equation [34,35]. As we all know, the Laplace 
transformation method is a powerful tool for us to solve a wide variety of initial-value problems, 
especially for the differential equation problems, and this method played an extremely important role 
in mathematical physics [36–38]. 

As we all know, the famous nonlinear Schrödinger equations (NLS) and coupled nonlinear 
Schrödinger equations (CNLS) are widely used in optical fiber, ocean engineering, plasma physics, 
quantum mechanics, etc [39–41]. In this article, we will utilize the modified Kudryashov method [42] 
to find exact solitary solutions of a class of fractional coupled nonlinear Schrödinger equation (FCNLS) 
first and then apply the Laplace transformation method combined with HPM to obtain the approximate 
solution, with the aid of adomian polynomials, we obtain many good results. The main advantages of 
these two methods are the efficient convergence of the iterative sequences and that the exact solutions 
can be easily obtained. 

Consider the following FCNLS: 

2 22

2 22

( ) 0,     0< , 1,

( ) 0     

t x x

t x x

iD u iaD u bD u u v u

iD v iaD v bD v u v v

  

  

   

 

      


     ，
   (1) 

where 2, ( )t x x x xD D D D D    ,   represent the Caputo fractional derivative operator [43–45]. The 

coefficients , , ,a b     are real constants, ( , ), ( , )u u x t v v x t    are two complex valued functions 

with respect to the time t  and the propagation distance x . Equation (1) occurs in many fields 
including nonlinear optics, ocean engineering and plasma waves. If we select 0a  , functions ,u v  

represent the amplitudes of circularly polarized waves in a nonlinear optical fiber, nonzero constant 
  represents self-focusing and self-defocusing nonlinearity, nonzero constan   represents cross- 

phase modulation and self-phase modulation [46]. Much literature on Eq (1) was available. See, for 
examples, [47–53], but the critically important mechanism of the fractal solitary traveling waves has 
not yet revealed, and the research on this topic has been preliminary. 

Now, we review some basic definitions and properties of the Laplace transform for fractional 
calculus, some elementary introduction can be found in [36–38,43–45]. 

Definition 1. For a function ( ) : [0, ) .f t R   The Riemann Liouville fractional integral operator 
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and Caputo fractional derivative operator of order   are defined as [35] 
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Definition 2. The Laplace transform and inverse transformation of function ( )f t  is defined as [36–

38] 
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Definition 3. The Laplace transform of ( , )tD u x t  is defined as [36–38] 
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Definition 4. The Adomian polynomials of 
0

( )i
i
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N u p u




   is defined as [54,55] 
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2. Description of the two methods 

2.1. The modified Kudryashov method [42] 

Consider the following differential equation 

( , ', '', ''', ) 0E f f f f  ,         (4) 

where '
df

f
d

 , we assume that the solutions of Eq (4) can be presented as follows 

0

1
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(5) 

where N  is a balance number, the coefficients ( 0,1, , )ia i N   and the variable function 
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( , )x t   are evaluated later. The function ( )F   satisfies the following form and constraint 

condition: 

( )
' ( )( ( ) 1) ln ( 1)ln

dF
F F F a F F a

d

  


     .     (6) 

Substituting Eqs (5) and (6) into Eq (4) and collecting the coefficients of ( 0,1,2, )iF i    to 

zero yields algebraic equations (AEs) for 0 1, , , Na a a  and  . Utilizing mathematical software to 

solve the AEs, we can obtain the solutions of Eq (4). 

2.2. The procedure of Laplace-Homotopy perturbation method (Laplace-HPM) 

The basic idea and specific steps of the Laplace transformation and HPM can be seen in [56–58]. 
Here, we will utilize the efficient method to Eq (1) for finding the approximate solution. 

If we let t , ,t x xD u u D u u     2 2
x xxD u u   and apply the Laplace transform about t  on both 

sides of the first equation of Eq (1), we have: 

 2 22{ } { }+ } { } 0,t x xxi u i au bu u v u                 (7) 

-1 2 2 2[ ( , )] ( ,0) [ (| | | | ) ],x xxs u x t s u x i iau bu u v u               (8) 

2 2 21
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s s
 

             (9) 

Applying inverse Laplace transform to both sides of (9), we obtain 

1 2 2 2( , ) ( ,0) [ [ (| | | | ) ]].x xx

i
u x t u x iau bu u v u

s
 

            (10) 

Generally, we can construct the homotopy equation as follows: 

1 2 2 2
0 0(1 )( ) {( ) [ [ (| | | | ) ]]} 0,x xx
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S
 

              (11) 

where [0,1]p   is a homotopy parameter. 0u  is an initial guess of ( , )u x t  that satisfies the 

boundary conditions of Eq (1). Obviously, 0:u u u  since : 0 1.p   

Assuming that the solution for Eq (1) can be written as 

0

( , ) .n
n

n

u x t u p




           (12) 

Substituting Eq (12) into Eq (11) yields 
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where nA  and '
nA  are the n -th term of the Adomian polynomials of nonlinear terms in Eq (11). 

Now, equating the coefficients of the identical powers of p   on both sides, we get the following 

iterations: 
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Using the same method, we can give following approximations for Eq (1): 
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where ''
nA  and '''

nA  are the n -th term of Adomian polynomials of nonlinear terms for Eq (1). From 

Definition 4, we have 
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where ( )  indicates the conjugation of ( ).  

When 1p  , it yields the n -th approximate solution and exact solution for Eq (1) as follows 
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( ) 0 1 2 ( ) 0 1 2, ,n n n nu u u u u v v v v v          
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3. Exact and approximate solutions of the FCNLS 

3.1. Exact solutions 

We can give the following function and traveling wave transformation: 
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where constants 1 2, ,k k k  and 1 2, ,c c  are to be determined latter. 

Substituting Eqs (16) and (17) into Eq (1) and separating the real part and the imaginary part, thus 
we have 
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From Eq (18.3) and Eq (18.4), we obtain the following exact solution 
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From Eq (18.3) and Eq (18.2), we obtain 

1 2( )bk k k    .         (20) 

According to the homogeneous balance principle and the modified Kudryashov method [47], we 
assume Eq (18) have the following solutions 
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Substituting Eqs (6) and (17) into Eq (18), and setting the coefficients of iF  to zero yield a set 
of AEs for the unknowns 0 1 2 0 1 2 1 2 1 2, , , , , , , , , ,a a a b b b k k k c c  and  . 
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Solving the AEs along with Eqs (5), (16) and (20) results in the following solutions: 
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Thus, the new exact solutions of the CFNLS can be identified as 
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If we select the corresponding values of some parameters, some simulations of 3D plots, 2D plots 
and contour plots are given in Figures 1 and 2. 

     

Figure 1. The 3D plot, 2D plot and contour plot of u  with 02, 1,a a d        
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Figure 2. The 3D plot, 2D plot and contour plot of u  with 02, 1,a a d        
1 21, 1, =0.5, =0.7.b k k       
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With the same process, after substituting 0 0 0 0 1 1 1 1 2 2 2 2, , , , , , , , , , ,u u v v u u v v u u v v  into '
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therefore, the Laplace-HPM series approximate solution for Eq (1) is 

0 1 2 3 0 1 2 3, .appr appru u u u u v v v v v          

4. Convergence and numerical results 

To study the convergence of the Laplace-HPM method, let us state the following theorem. 

Theorem. (Sufficient condition of convergence). 
Suppose that X  and Y  are Banach spaces, and :N X Y  is a contract nonlinear mapping, 

that is, 

, * : ( ) ( *) * ,0 1.u u X N u N u u u              (22) 

Then, according to Banach’s fixed point theorem, N  has a unique fixed point u , that is, ( )N u u . 

Assume that the sequence generated by the homotopy perturbation method can be written as 

1
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n n n i i
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Proof. (i) By the inductive approach, for 1n   we have 

1 0 0( ) ( )U u N U N u U u     , 

and then 

1 0( ) ( ) ( )n n
n n n rU u N U N u U u r U B u         . 

(ii) Because of 0 1  , we have lim 0,n
n

U u


   that is, lim nn
U u


 . 

Now, we investigate the error analysis between exact and approximate solutions, as stated by 
Tables 1 and 2, indicating that the series solution quickly converges to exact solution. The absolute 
errors at various values of t  and x  demonstrate the simplicity and great accuracy of the Laplace-

HPM. The numerical results for exactu   and (1) (2) (3), ,u u u   at 1 1,m k a b       1, 1       

are shown in Figures 3 and 4, and we can find that the real part of (1) (2) (3), ,u u u  converge to exactu  and 

increases very rapidly with increases in t , while the imaginary part is opposite. The comparison of 

real part and modulus between the exact solution v   and approximate solution (1) (2) (3), ,v v v   at 

2 1, 1, 1n k a b             and 0.9     are simulated through Figures 5–8, which 

clearly show that the values of real part decreases as t  increases, and (3)v  is closer to v  than (1)v  

and (2).v  These approximate values give excellent agreement with exact solutions, and the values of 

absolute errors are few. We also note that when the time is small, the accuracy of obtained solution 
increase, and the absolute errors decrease. This means that our equation highly relies on instant time. 
From the results obtained and presented in figures and tables, we can prove the efficiency of proposed 
method. 

 

Figure 3. Comparison of real part and imaginary part between the exact solution  and 

approximate solution (1) (2) (3), ,u u u  at 1 1, 1,m k a b        1   . 

  

u
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Table 1. Comparison of exact solution u  and approximate solution obtained by Laplace-
HPM with 1   . 

  
     

 0.1 0.69671 0.69993 0.70049 0.70860 0.0032243
 0.2 0.82534 0.83998 0.84447 0.87689 0.0146490 

1 0.3 0.92106 0.95710 0.97224 1.04518 0.0360370 
 0.4 0.98007 1.04790 1.08381 1.21348 0.0678370 
 0.5 1.00000 1.10904 1.17916 1.38180 0.1090370 

 0.1 -0.22720 -0.22865 -0.22805 -0.23429 0.0014493 
 0.2 -0.02920 -0.03231 -0.02746 -0.05243 0.0031090 

2 0.3 0.16997 0.16924 0.18561 0.12943 0.0007230 
 0.4 0.36236 0.37237 0.41117 0.31129 0.0100120 
 0.5 0.54030 0.57343 0.64921 0.49320 0.0331290 

       

 0.1 0.71736 0.72115 0.72079 0.73341 0.0037926
 0.2 0.56464 0.57774 0.57486 0.62535 0.0131010

1 0.3 0.38942 0.41342 0.40369 0.51729 0.0239980
 0.4 0.19867 0.23033 0.20728 0.40923 0.0316600
 0.5 0.00000 0.03064 -0.01438 0.30120 0.0306420

 0.1 0.97385 0.97861 0.97889 0.99253 0.0047623 
 0.2 0.99957 1.01898 1.02120 1.07576 0.0194050 

2 0.3 0.98545 1.02874 1.03623 1.15899 0.0432900 
 0.4 0.93204 1.00623 1.02398 1.24221 0.0741890 
 0.5 0.84147 0.94978 0.98446 1.32540 0.1083080 

 

Figure 4. The 3D plot of the real part of the exact solution u   and the approximate solution 

(3)u  at 1 1, 1,m k a b        1   . 

  

x t Re[ ]exactu (3)Re[ ]u (2)Re[ ]u (1)Re[ ]u (3)Re[ ] Re[ ]exactu u

x t Im[ ]exactu (3)Im[ ]u (2)Im[ ]u (1)Im[ ]u (3)Im[ ] Im[ ]exactu u
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Table 2. Comparison of exact solution v  and approximate solution obtained by Laplace-
HPM with 1   . 

       

 0.1 0.36236 0.36289 0.36120 0.37201 0.0005272
 0.2 0.16997 0.17395 0.16049 0.20371 0.0039861 
1 0.3 -0.02920 -0.01640 -0.06183 0.03542 0.0128040 
 0.4 -0.22720 -0.19806 -0.30577 -0.13287 0.0291390 
 0.5 -0.41615 -0.36095 -0.57132 -0.30120 0.0551950 

 0.1 -0.58850 -0.58786 -0.58968 -0.59801 0.0006363 
 0.2 -0.73739 -0.73203 -0.74657 -0.77987 0.0053684 
2 0.3 -0.85689 -0.83772 -0.88682 -0.96173 0.0191720 
 0.4 -0.94222 -0.89403 -1.01042 -1.14358 0.0481950 
 0.5 -0.98999 -0.89005 -1.11737 -1.32540 0.0999460 

  
    

 0.10 1.00000 0.999802 1.000200 1.019804 0.0001978
 0.15 1.00000 0.999010 1.001012 1.044031 0.0009899
 0.20 1.00000 0.996923 1.003195 1.077033 0.0030765
 0.25 1.00000 0.992649 1.007782 1.118034 0.0073508 
1 0.30 1.00000 0.985148 1.016071 1.166190 0.0148510
 0.35 1.00000 0.973308 1.029575 1.220656 0.0266910 
 0.40 1.00000 0.956025 1.049952 1.280625 0.0439748
 0.45 1.00000 0.932304 1.078900 1.345360 0.0676955 
 0.50 1.00000 0.901388 1.118030 1.414210 0.0986117

 

Figure 5. The comparison of real part and modulus between the exact solution v  and 

approximate solution (1) (2) (3), ,v v v  at 2 1, 1,n k a b       1   . 

x t Re[ ]exactv (3)Re[ ]v (2)Re[ ]v (1)Re[ ]v (3)Re[ ] Re[ ]exactv v

x t bs[ ]exactA v (3)bs[ ]A v (2)bs[ ]A v (1)bs[ ]A v (3)[ ] [ ]exactAbs v Abs v
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Figure 6. The 3D plot of the real part of the exact solution v  and the approximate solution 

(3)v  at 2 1, 1,n k a b       1   . 

 

Figure 7. The comparison of imaginary part and modulus between the exact solution v  

and approximate solution (1) (2) (3), ,v v v  at 2 1, 1,n k a b       0.9   . 

 

Figure 8. The 3D plot of the imaginary part of the exact solution v  and the approximate 

solution (3)v  at 2 1, 1,n k a b       0.9   . 

5. Discussion and conclusions 

In this research, the modified Kudryashov method and Laplace transform method combined with 
homotopy perturbation have been successfully applied to solve space-time coupled fractional nonlinear 
Schrödinger equation (FCNLS) Eq (1), and some propagation behavior of these obtained solutions are 
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simulated. The graphs are important for revealing the internal structure of Eq (1). For example, 
Figures 1 and 2 show that the waveform of Reu  produced a jitter between the intervals ( 4,0)  in 

the case of 1    while it presents periodic in the right half plane if we selected 0.5, 0.7   . 

The comparison diagram and error analysis diagram of approximate solutions are given to study the 
accuracy of the approximate solution. These results show that Laplace homotopy perturbation method 
is an effective and reliable method, and a more accurate approximate solution can be obtained through 
a few iterations. This paper will open up a flood of opportunities for solving fractional differential 
equations such as KP equation, Ginzburg-Landau equation, KdV-Burgers equation, etc. The novel 
Laplace-HPM is extremely promising and will be useful for fractional differential equations. The 
current definition of the Caputo fractional derivative still has great limitations, and it is difficult to 
characterize the necessary connection between two real number order derivatives. On the other hand, 
the unified definition of fractional derivatives needs to be further explored and developed for use in 
the future. 
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