Research article Special Issues

Modeling and analysis of fractional order Zika model

  • We propose mathematical model for the transmission of the Zika virus for humans spread by mosquitoes. We construct a scheme for the Zika virus model with Atangna-Baleanue Caputo sense and fractal fractional operator by using generalized Mittag-Leffler kernel. The positivity and boundedness of the model are also calculated. The existence of uniquene solution is derived and stability analysis has been made for the model by using the fixed point theory. Numerical simulations are made by using the Atangana-Toufik scheme and fractal fractional operator with a different dimension of fractional values which support the theoretical outcome of the proposed system. Developed scheme including simulation will provide better understanding in future analysis and for control strategy regarding Zika virus.

    Citation: Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad. Modeling and analysis of fractional order Zika model[J]. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216

    Related Papers:

    [1] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [2] E. Bonyah, C. W. Chukwu, M. L. Juga, Fatmawati . Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law. AIMS Mathematics, 2021, 6(8): 8367-8389. doi: 10.3934/math.2021485
    [3] Kottakkaran Sooppy Nisar, Aqeel Ahmad, Mustafa Inc, Muhammad Farman, Hadi Rezazadeh, Lanre Akinyemi, Muhammad Mannan Akram . Analysis of dengue transmission using fractional order scheme. AIMS Mathematics, 2022, 7(5): 8408-8429. doi: 10.3934/math.2022469
    [4] Bahar Acay, Ramazan Ozarslan, Erdal Bas . Fractional physical models based on falling body problem. AIMS Mathematics, 2020, 5(3): 2608-2628. doi: 10.3934/math.2020170
    [5] Muhammad Altaf Khan, Saif Ullah, Muhammad Farhan . The dynamics of Zika virus with Caputo fractional derivative. AIMS Mathematics, 2019, 4(1): 134-146. doi: 10.3934/Math.2019.1.134
    [6] Muhammad Sajid Iqbal, Nauman Ahmed, Ali Akgül, Ali Raza, Muhammad Shahzad, Zafar Iqbal, Muhammad Rafiq, Fahd Jarad . Analysis of the fractional diarrhea model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(7): 13000-13018. doi: 10.3934/math.2022720
    [7] Muhammad Farman, Aqeel Ahmad, Ali Akgül, Muhammad Umer Saleem, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Dynamical behavior of tumor-immune system with fractal-fractional operator. AIMS Mathematics, 2022, 7(5): 8751-8773. doi: 10.3934/math.2022489
    [8] Muhammad Altaf Khan, Muhammad Ismail, Saif Ullah, Muhammad Farhan . Fractional order SIR model with generalized incidence rate. AIMS Mathematics, 2020, 5(3): 1856-1880. doi: 10.3934/math.2020124
    [9] Mdi Begum Jeelani, Abeer S. Alnahdi, Mohammed A. Almalahi, Mohammed S. Abdo, Hanan A. Wahash, M. A. Abdelkawy . Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(2): 2001-2018. doi: 10.3934/math.2022115
    [10] Miguel Vivas-Cortez, Muhammad Uzair Awan, Sehrish Rafique, Muhammad Zakria Javed, Artion Kashuri . Some novel inequalities involving Atangana-Baleanu fractional integral operators and applications. AIMS Mathematics, 2022, 7(7): 12203-12226. doi: 10.3934/math.2022678
  • We propose mathematical model for the transmission of the Zika virus for humans spread by mosquitoes. We construct a scheme for the Zika virus model with Atangna-Baleanue Caputo sense and fractal fractional operator by using generalized Mittag-Leffler kernel. The positivity and boundedness of the model are also calculated. The existence of uniquene solution is derived and stability analysis has been made for the model by using the fixed point theory. Numerical simulations are made by using the Atangana-Toufik scheme and fractal fractional operator with a different dimension of fractional values which support the theoretical outcome of the proposed system. Developed scheme including simulation will provide better understanding in future analysis and for control strategy regarding Zika virus.



    The virus name Zika is first time found in 1947 in monkeys and the first patient was reported in Uganda in 1952. The genus of Zika is also found in dengue, yellow fever, and West Nile virus [1]. Since the 1950s, it has been found in a very narrow area. During 2007–2016 it spread across the Pacific Ocean to the Americas which cause 2015-16 Zika virus epidemics [2]. Zika virus often causes only mild symptoms which are very similar to dengue. There is no specific treatment for this virus [3,4].

    Mathematicians and biologist's main theme is to study disease. Many mathematicians tried to represent the mathematical model in a very natural way such as in the approach of Baleanu et al. [5,6,7]. In recent years, fractional calculus has fascinated the attention of researchers and the various features of that study under investigation. This is because genetic mutations are an important tool for defining the dynamic function of various body systems. The power of these component operators is their non-local features that are not in the integer separator operator. Separated features of differentiated statistics that define the memory and transfer structures of many mathematical models. As a fact that fractional-order models are more realistic and useful than classical integer-order models. Fractional order findings produce a greater degree of freedom in these models. Unnecessary order outsourcing is a powerful tool for understanding the dynamic behavior of various bio objects and systems. The most repetitive feature of these models is in their global (non-local) features that are not in the old order models. Fractional calculus has acquired great rating and significance over the last few years in various branches of science and engineering. Effective systematic and statistical techniques have been established but they still require special care. This distinctive problem aims to create an assemblage of articles showing the advances in mathematics and the branch of fractional calculus and to explore the applications in applied science [8,9,10]. Caputo [11] presented from the group that allows for common initial and borderline conditions related to a real-world problem. Baleanu et al. [13] stated advanced techniques in the field of fractional calculus and nanotechnology using monographs. Kailas et al. [14] obtainable basic ideas of equation differences including their uses are explained. Bulut et al. [15] studied the differential measurement of the orderly application of analytical methods and some related details are given in [16,17,18,19,20,21]. In recent years researchers have been using some mathematical models to simulate the transmission of the Zika virus [22,23,24,25].

    The common SEIR model is generalized in order to show the dynamics of COVID-19 transmission taking into account the ABO blood group of the infected people. Fractional order Caputo derivative are used in the proposed model [28]. New system is confirmed to have chaotic behaviors by calculating its Lyapunov exponents [29]. the analytical solution using the Reduced differential transforms method (RDTM) for the nonlinear ordinary mathematical smoking model [30]. Complete synchronization between two chaotic systems means complete symmetry between them, but phase synchronization means complete symmetry with a phase shift. In addition, the proposed method is applied to the synchronization of two identical chaotic Lorenz models [31]. Important and adequate conditions to ensure the presence and singularity of the arrangements of the control issue are assumed [32]. The existence and uniqueness of stable solution of the proposed fractional order COVID-19 SEIASqEqHR paradigm are proved. The existence of a stable solution of the fractional order COVID-19 SIDARTHE model is proved and the fractional order necessary conditions of four proposed control strategies are produced [33,34]. SDM is considered as a mixture of Adomian decomposition method and the Sumudu transform method. several vital characteristics and features of this model are investigated, such as its hamiltonian, symmetry, signal flow graph, dissipation, equilibriums and their stability, Lyapunov exponents, Lyapunov dimension, bifurcation diagrams, and chaotic behavior [35,36,37] and some others applications of fractional order also given in [38,39,40].

    In this paper, Section 1 consists an introduction and some basic definition of fractional-order derivatives to solve the epidemiological model respectively. Sections 3 and 4 consists of the generalized solution of the fractional-order model, consist of the uniqueness and stability of the model. Fractal fractional techniques with exponential decay kernel and Mittag-Leffler kernel are applied for suitable results in Section 5. Results and conclusion are discussed in Sections 6 and 7 respectively.

    Definition 2.1. For a function g(t)W12(0,1),b>aandσ[0,1], the definition of Atangana-Baleanu derivative in the Caputo sense is given by

    ABC0Dσtg(t)=AB(σ)1σt0ddτg(τ)Mσ[σ1σ(tτ)σ]dτ,n1<σ<n (1)

    where

    AB(σ)=1σ+σΓ(σ).

    By using Sumudu transform (ST) for (1), we obtain

    ST[ABC0Dσtg(t)](s)=q(σ)1σ{σΓ(σ+1)Mσ(11σVσ)}×[ST(g(t))g(0)]. (2)

    Definition 2.2. The Laplace transform of the Caputo fractional derivative of a function g(t) of order σ>0 is defined as

    L[C0Dσtg(t)]=sσg(s)n1σ=0g(σ)(0)sσv1. (3)

    Definition 2.3. The Laplace transform of the function tσ11Eσ,σ1(±μtσ) is defined as

    L[tσ11Eσ,σ1(±μtσ)]=sσσ1sσμ, (4)

    Where Eσ,σ1 is the two-parameter Mittag-Leffler function with σ,σ1>0. Further, the Mittag-Leffler function satisfies the following equation [17].

    Eσ,σ1(f)=fEσ,σ+σ1(f)+1Γ(σ1). (5)

    Definition 2.4. Suppose that g(t) is continuous on an open interval (a,b), then the fractal-fractional integral of g(t) of order σ having Mittag-Leffler type kernel and given by

    FFMJσ,σ10,t(g(t))=σσ1AB(σ)Γ(σ1)t0sσ11g(s)(ts)σds+σ1(1σ)tσ11g(t)AB(σ). (6)

    In this portion, we give a mathematical model for the transmission of the Zika virus using the Atangna-Baleanue in Caputo sense of fractional order. We make two portions of the Human population: Susceptible people Sp and infected people Ip so that Np=Sp+Ip. Same as we make two portions of a total number of mosquitoes Nq into two groups: Susceptible mosquitoes Sq and infected mosquitoes Iq, so that Nq=Sq+Iq. To explain the method of the spread of the Zika virus given in [26], we consider the compartmental mathematical model as follows:

    ABC0DσtSp=Λpβ1SpIpβ2SpIqκ1Sp,
    ABC0DσtIp=β1SpIp+β2SpIqκ1Ip,
    ABC0DσtSq=ΛqμSqIpκ2Sq, (7)
    ABC0DσtIq=μSqIpκ2Iq.

    with the initial conditions

    Sp(0)0,Ip(0)0,Sq(0)0,Iq(0)0. (8)

    The model parameters are: The recruitment rate of human population p, the recruitment rate of mosquito population q, the effective contact rate human to human β1, the effective contact rate of mosquitoes to human β2, the effective contact rate human to mosquito's μ, the natural death rate of human k1, the natural death rate of mosquitoes k2.

    Equilibrium points

    In this section, we will discuss the equilibrium points of the given Zika Virus model (7). Equilibrium points have two types namely disease-free equilibrium and endemic equilibrium. We obtained these points by putting the right-hand side of the system (7) is zero. We suppose that E' represents disease-free equilibrium and endemic equilibrium is represented by E*. We take our both equilibriums by, we have

    E=(Sp,Ip,Sq,Sq)=(λd+μ,αd+μ,0,0),
    Sp=k2k1(β2μSq+k2β1),Ip=Λpβ2μSq+Λpκ2β1κ2κ12κ1(β2μSq+κ2β1),Iq=μ(Λpβ2μSq+Λpκ2β1κ2κ12)Sqκ1(β2μSq+κ2β1)κ1.

    Reproductive number R0 given in [26], we have

    R0=β1κ2Λp+β12κ22Λp2+4κ12β2μΛpΛq2κ2κ12.

    Theorem 3.1. The solution of the proposed fractional-order model (7) along initial conditions is unique and bounded in R4+.

    Proof.

    The existence and uniqueness of the solution of the system (7) on the time interval (0,) can be obtained. Subsequently, we have to explain the non-negative region R4+ is a positively invariant region. From model (7) we find

    ABCODαtSp|sp=0=Λp0,
    ABCODαtIp|Ip=0=β2Sp(t)0,
    ABCODαtSq|Sq=0=Λq0,
    ABCODαtIq|Iq=0=μSq(t)0.

    If (Sp(0),Ip(0),Sq(0),Iq(0))R4+, then according to Eq (7) the solution [Sp(t),Ip(t),Sq(t),Iq(t)] cannot escape from the hyperplanes Sp=0,Ip=0,Sq=0andIq=0. Also on each hyperplane bounding the non-negative orthant, the vector field points into R4+, i.e., the domain R4+ is a positively invariant set.

    Theorem 3.2. The region A={(Sp(t),Ip(t),Sq(t),Iq(t))R4+|0<Sp(t)+Ip(t)Λpκ1,Sq(t)+Iq(t)Λqκ1} is a positively invariant set for the system (7).

    Proof. For the proof of the theorem, firstly we use the first to equations of system (7). So

    ABCODαtNp(t)=Λpκ1Np(t),

    where

    Np(t)=Sp(t)+Ip(t),

    we get

    sαNp(s)sα1Np(0)=Λpsκ1Np(s),

    which further gives

    Np(s)=s1sα+κ1Λp+sα1sα+κ1Np(0).

    We infer that if (S0p,I0p)R4+, then

    Np(t)=ΛptαEα,α+1(κ1tα)+Eα,1(κ1tα)
    =(Ωδ)κ1(κ1tαEα,α+1(κ1tα))+Eα,1(κ1tα)
    =Λpκ11Γ(1)
    =Λpκ1.

    Similarly, we can prove for Nq(t)=Sq(t)+Iq(t) that if Nq(t)=Λqκ1.

    In this section, coniseder the system with Atangana-Baleanu fractional derivative (ABC) of order σ and σ(0,1] for sytem (7), we

    ABC0DσtSp=Λpβ1SpIpβ2SpIqκ1Sp,
    ABC0DσtIp=β1SpIp+β2SpIqκ1Ip,
    ABC0DσtSq=ΛqμSqIpκ2Sq, (9)
    ABC0DσtIq=μSqIpκ2Iq.

    By applying the definition (2) of sumudu transform in ABC sense, we have

    q(σ)σΓ(σ+1)1σNσ(11σVσ)ST{Sp(t)Sp(0)}=ST[Λpβ1SpIpβ2SpIqκ1Sp],
    q(σ)σΓ(σ+1)1σNσ(11σVσ)ST{Ip(t)Ip(0)}=ST[β1SpIp+β2SpIqκ1Ip],
    q(σ)σΓ(σ+1)1σNσ(11σVσ)ST{Sq(t)Sq(0)}=ST[ΛqμSqIpκ2Sq],
    q(σ)σΓ(σ+1)1σNσ(11σVσ)ST{Iq(t)Iq(0)}=ST[μSqIpκ2Iq].

    Rearranging, we get

    ST(Sp(t))=Sp(0)+1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST[Λpβ1SpIpβ2SpIqκ1Sp],
    ST(Ip(t))=Ip(0)+1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST[β1SpIp+β2SpIqκ1Ip],
    ST(Sq(t))=Sq(0)+1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST[ΛqμSqIpκ2Sq], (10)
    ST(Iq(t))=Iq(0)+1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST[μSqIpκ2Iq].

    Now taking the inverse Sumudu transform on both sides of the Eq (10) we get

    Sp(t)=Sp(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST[Λpβ1SpIpβ2SpIqκ1Sp]],
    Ip(t)=Ip(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST[β1SpIp+β2SpIqκ1Ip]],
    Sq(t)=Sq(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST[ΛqμSqIpκ2Sq]],
    Iq(t)=Iq(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST[μSqIpκ2Iq]],.

    We next attain the following recursive formula:

    Sp(n+1)(t)=Spn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{Λpβ1SpnIpnβ2SpnIqnκ1Spn],
    Ip(n+1)(t)=Ipn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{β1SpnIpn+β2SpnIqnκ1Ipn}],
    Sqn+1(t)=Sqn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{ΛqμSqnIpnκ1Sqn}], (11)
    Iq(n+1)(t)=Iqn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{μSqnIpnκ1Iqn}].

    And solution of above is

    Sp(t)=limnSpn(t),Ip(t)=limnIpn(t),
    Sq(t)=limnSqn(t),Iq(t)=limnIqn(t).

    Uniqueness and stability of the iterative scheme

    Theorem 4.1. Let (X2,||.||) be a Banach space and M be a self-map of X2 satisfying ||KXKY||C||XKX||+C||X-Y|| for all x, y X2 where 0C,0c<1.

    Let consider that M is P-stable. Let us take into account the following recursive formula:

    Sp(n+1)(t)=Spn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{Λpβ1SpnIpnβ2SpnIqnκ1Spn],
    Ip(n+1)(t)=Ipn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{β1SpnIpn+β2SpnIqnκ1Ipn}],
    Sqn+1(t)=Sqn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{ΛqμSqnIpnκ1Sqn}],
    Iq(n+1)(t)=Iqn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{μSqnIpnκ1Iqn}],
    Iq(n+1)(t)=Iqn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{μSqnIpnκ1Iqn}],

    where 1ϑB(ϑ)ϑΓ(α+1)Nϑ(11ϑwϑ) is the fractional Lagrange multiplier.

    Theorem 4.2. Define M be a self-map is given by

    M[Sp(n+1)(t)]=Spn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{Λpβ1SpnIpnβ2SpnIqnκ1Spn],
    M[Ip(n+1)(t)]=Ipn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{β1SpnIpn+β2SpnIqnκ1Ipn}],
    M[Sqn+1(t)]=Sqn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{ΛqμSqnIpnκ1Sqn}],
    M[Iq(n+1)(t)]=Iqn(0)+ST1[1σq(σ)σΓ(σ+1)Nσ(11σVσ)ST{μSqnIpnκ1Iqn}],

    Proof. In the first step we will show that M is a fixed point

    (m,n)N×N,
    M(Spn(t))M(Spm(t))=Spn(t)Spm(t)+ST1[1ϑB(ϑ)ϑΓ(α+1)Nϑ(11ϑwϑ)ST[Λpβ1SpnIpnβ2SpnIqnκ1Spn]]ST1[1ϑB(ϑ)ϑΓ(α+1)Nϑ(11ϑwϑ)ST[Λpβ1SpmIpmβ2SpmIqmκ1Spm]],
    M(Ipn(t))M(Ipm(t))=Ipn(t)Ipm(t)+ST1[1ϑB(ϑ)ϑΓ(ϑ+1)Nϑ(11ϑwϑ)ST[β1SpnIpn+β2SpnIqnκ1Ipn]]ST1[1ϑB(ϑ)ϑΓ(ϑ+1)Nϑ(11ϑwϑ)ST[β1SpmIpm+β2SpmIqmκ1Ipm]], (12)
    M(Sqn(t))M(Sqm(t))=Sqn(t)Sqm(t)+ST1[1ϑB(ϑ)ϑΓ(α+1)Nϑ(11ϑwϑ)ST[ΛqμSqnIpnκ1Sqn]]ST1[1ϑB(ϑ)ϑΓ(α+1)Nϑ(11ϑwϑ)ST[ΛqμSqmIpnκ1Sqm]],
    M(Iqn(t))M(Iqm(t))=Iqn(t)Iqm(t)+ST1[1ϑB(ϑ)ϑΓ(α+1)Nϑ(11ϑwϑ)ST[μSqnIpnκ1Iqn]]ST1[1ϑB(ϑ)ϑΓ(α+1)Nϑ(11ϑwϑ)ST[μSqmIpmκ1Iqm]].

    Applying the properties of the norm and also taking into account the triangular inequality, we obtain

    M(Spn(t))M(Spm(t))Spn(t)Spm(t)ST1[1ϑB(ϑ)ϑΓ(ϑ+1)Nϑ(11ϑwϑ)ST{Λpβ1SpnIpnβ2SpnIqnκ1Spn+Λpβ1SpmIpmβ2SpmIqmκ1Spm],
    M(Ipn(t))M(Ipm(t))Ipn(t)Ipm(t)+ST1[1ϑB(ϑ)ϑΓ(ϑ+1)Nϑ(11ϑwϑ)×ST{β1SpnIpn+β2SpnIqnκ1Ipn+β1SpmIpm+β2SpmIqmκ1Ipm}], (13)
    M(Sqn(t))M(Sqm(t))qn(t)qm(t)ST1[1ϑB(ϑ)ϑΓ(ϑ+1)Nϑ(11ϑwϑ)ST{ΛqμSqnIpnκ1Sqn+ΛqμSqmIpnκ1Sqm],
    M(Iqn(t))M(Iqm(t))Iqn(t)Iqm(t)ST1[1ϑB(ϑ)ϑΓ(ϑ+1)Nϑ(11ϑwϑ)ST{μSqnIpnκ1Iqn+μSqmIpmκ1Iqm].

    K fulfills the conditions associated with Theorem (4.1), when

    θ=(0,0,0,0,0)={Spn(t)Spm(t)×(Spn(t)+Spm(t))+Λpβ1SpnIpnSpmIpmβ2SpnIqnSpmIqmκ1SpnSpm×Ipn(t)Ipm(t)×(Ipn(t)+Ipm(t))+β1SpnIpnSpmIpm+β2SpnIqnSpmIqmκ1IpnIpm×Sqn(t)Sqm(t)×(Sqn(t)+Sqm(t))+ΛqμSqnIpnSqmIpmκ1SqnSqm×Iqn(t)Iqm(t)×(Iqn(t)+Iqm(t))+μSqnIpnSqmIpmκ1IqnIqm.

    Hence system is Picard P-Stable.

    Theorem 4.3. Prove that system (11) has a special solution is unique.

    Proof. Let Hilbert space H=L2((p,q)×(0,T)) which is given as

    h:(p,q)×(0,T)R,ghdgdh<.

    In this regard, the following operators are considered

    θ(0,0,0,0,0),θ={Λpβ1SpIpβ2SpIqκ1Sp,β1SpIp+β2SpIqκ1Ip,ΛqμSqIpκ2Sq,μSqIpκ2Iq. (14)

    We establish that the inner product of

    P((Sp11Sp12,Ip21Ip22,Sq31Sq32,Iq41Iq42),(V1,V2,V3,V4)).

    Where (Sp11Sp12,Ip21Ip22,Sq31Sq32,Iq41Iq42,), are the special solutions of the system. Taking into account the inner function and the norm, we have

    {Λpβ1(Sp11Sp12)(Ip21Ip22)β2(Sp11Sp12)(Iq41Iq42)κ1(Sp11Sp12)}V1ΛpV1+β1Sp11Sp12Ip21Ip22V1+β2Sp11Sp12Iq41Iq42V1.
    {β1(Sp11Sp12)(Ip21Ip22)+β2(Sp11Sp12)(Iq41Iq42)κ1(Ip21Ip22)}V2β1Sp11Sp12Ip21Ip22V2+β2Sp11Sp12Iq41Iq42V2+κ1Ip21Ip22V2. (15)
    {Λqμ(Sq31Sq32)(Ip21Ip22)κ2(Sq31Sq12)}V3ΛpV3μSq31Sq32Ip21Ip22V3κ2Sq31Sq12V3.
    {μ(Sq31Sq32)(Ip21Ip22)κ2(Iq41Iq42)}V4μSq31Sq32Ip21Ip22V4κ2Iq41Iq42V4.

    Due to the large number of e1,e2,e3,e4ande5, both solutions converge to the exact solution. Applying the topological idea, we have the very small positive five parameters (χe1,χe2,χe3,χe4andχe5).

    SpSp11,SpSp12χe1ϖ,
    IpIp21,IpIp22χe2ς,
    SqSq31,SqSq32χe3υ, (16)
    IpIq41,IpIq42χe4κ,
    ϖ=5(Λp+β1Sp11Sp12Ip21Ip22+β2Sp11Sp12Iq41Iq42)V1,
    ς=5(β1Sp11Sp12Ip21Ip22+β2Sp11Sp12Iq41Iq42+κ1Ip21Ip22)V2,
    υ=5(ΛpμSq31Sq32Ip21Ip22κ2Sq31Sq12)V3, (17)
    κ=5(μSq31Sq32Ip21Ip22κ2Iq41Iq42)V4.

    But, it is obvious that

    (Λp+β1Sp11Sp12Ip21Ip22+β2Sp11Sp12Iq41Iq42)0,
    (β1Sp11Sp12Ip21Ip22+β2Sp11Sp12Iq41Iq42+κ1Ip21Ip22)0,
    (ΛpμSq31Sq32Ip21Ip22κ2Sq31Sq12)0,
    (μSq31Sq32Ip21Ip22κ2Iq41Iq42)0,

    where V1,V2,V3,V4,V50.

    Therefore, we have

    Sp11Sp12=0,Ip21Ip22=0,
    Sq31Sq12=0,Iq41Iq42=0,

    which yields that

    Sp11=Sp12,Ip21=Ip22,Sq31=Sq12,Iq41=Iq42.

    Hence proved.

    In this section we consider the Atangana-Toufik technique given in [27] for fractional derivative model (7). For this purpose, we suppose that

    {ABC0DA(t)=f(t,A(t)),A(0)=A0. (18)

    We express the Eq (8) in the form of a fractional integral equation by applying the fundamental theorem of fractional calculus.

    A(t)A(0)=(1σ)ABC(σ)f(t,A(t))+σΓ(σ)×ABC(σ)t0f(τ,A(τ))(tτ)σ1dτ. (19)

    At a given point tn+1,n=0,1,2,3,, the above equation is reformulated as

    A(tn+1)A(0)=(1σ)ABC(σ)f(tn,A(tn))+σΓ(σ)×ABC(σ)tn+10f(τ,A(τ))(tn+1τ)σ1dτ
    =(1σ)ABC(σ)f(tn,A(tn))+σΓ(σ)×ABC(σ)nj=0tj+1tjf(τ,A(τ))(tn+1τ)σ1dτ. (20)

    Within the interval [tk,tk+1], the function f(τ,A(τ)), using the two-steps Lagrange polynomial interpolation can be approximate as follows:

    Pk(τ)=τtj1tjtj1f(tj,A(tj))τtjtjtj1f(tj1,A(tj1)),
    =f(tj,A(tj))h(τtj1)f(tj1,A(tj1))h(τtj),
    f(tj,Aj)h(τtj1)f(tj1,Aj1)h(τtj). (21)

    The above approximation can therefore be included in equation (18) to produce

    An+1=A0+(1σ)ABC(σ)f(tn,A(tn))+σΓ(σ)×ABC(σ)nj=0(f(tj,Aj)htj+1tj(τtj1)(tn+1τ)σ1dτf(tj1,Aj1)htj+1tj(τtj)(tn+1τ)σ1dτ). (22)

    For simplicity, we let

    Ba,j,1=tj+1tj(τtj1)(tn+1τ)σ1dτ,

    and also

    Ba,j,2=tj+1tj(τtj)(tn+1τ)σ1dτ,
    Ba,j,1=hσ+1(m+1j)σ(mj+2+σ)(mj)σ(mj+2+2σ)σ(σ+1), (23)
    Ba,j,2=hσ+1(m+1j)σ+1(mj)σ(mj+1+σ)σ(σ+1). (24)

    By using Eqs (23) and (24) we obtain

    An+1=A0+(1σ)ABC(σ)f(tn,A(tn))+σABC(σ)nj=0(hσf(tj,Aj)Γ(σ+2)(p1p2p3p4)hσf(tj1,Aj1)Γ(σ+2)(p5p3p6)), (25)

    where

    p1=(m+1j)σ,p2=(mj+2+σ),p3=(mj)σ,
    p4=(mj+2+2σ),p5=(m+1j)σ+1,p6=(mj+1+σ).

    We obtain the following for model (7)

    Sp(n+1)=Sp0+(1σ)ABC(σ)f(tn,Sp(tn))+σABC(σ)nj=0(hσf(tj,Spj)Γ(σ+2)(p1p2p3p4)hσf(tj1,Spj1)Γ(σ+2)(p5p3p6)),
    Ip(n+1)=Ip0+(1σ)ABC(σ)f(tn,Ip(tn))+σABC(σ)nj=0(hσf(tj,Ipj)Γ(σ+2)(p1p2p3p4)hσf(tj1,Ipj1)Γ(σ+2)(p5p3p6)),
    Sqn+1=Sq0+(1σ)ABC(σ)f(tn,Sq(tn))+σABC(σ)nj=0(hσf(tj,Sqj)Γ(σ+2)(p1p2p3p4)hσf(tj1,Sqj1)Γ(σ+2)(p5p3p6)),
    Iq(n+1)=Iq0+(1σ)ABC(σ)f(tn,Iq(tn))+σABC(σ)nj=0(hσf(tj,Iqj)Γ(σ+2)(p1p2p3p4)hσf(tj1,Iqj1)Γ(σ+2)(p5p3p6)).

    In this section, we consider the Zika virus model (7) with fractal-fractional in ABC sense. We have

    FFDα1,α20,τSp=Λpβ1SpIpβ2SpIqκ1Sp,
    FFDα1,α20,τIp=β1SpIp+β2SpIqκ1Ip, (26)
    FFDα1,α20,τSq=ΛqμSqIpκ2Sq,
    FFDα1,α20,τIq=μSqIpκ2Iq.

    The fractal-fractional Zika virus model algorithm for (19), we need to generalize the system and present steps by considering the Cauchy problem as below:

    FFM0Dα1,α2ty(t)=f(t,y(t)), (27)

    after integrating the above equation, we get:

    y(t)y(0)=(1α1)C(α1)α2tα21f(t,y(t))+α1α2C(α1)Γ(α1)t0τα21f(τ,y(τ))(tτ)α11dτ, (28)

    Let k(t,y(t))=α2tα21f(t,y(t)), then system (21) becomes

    y(t)y(0)=(1α1)C(α1)k(t,y(t))+α1C(α1)Γ(α1)t0k(τ,y(τ))(tτ)α11dτ, (29)

    At tn+1=(n+1)Δt, we have

    y(tn+1)y(0)=(1α1)C(α1)k(tn,y(tn))+α1C(α1)Γ(α1)tn+10k(τ,y(τ))(tn+1τ)α11dτ, (30)

    Also, we have

    y(tn+1)=y(0)+(1α1)C(α1)k(tn,y(tn))+α1C(α1)Γ(α1)nj=2tj+1tjk(τ,y(τ))(tn+1τ)α11dτ, (31)

    Approximating the function k(t,y(t)), using the Newton polynomial, we have

    Pn(τ)=k(tn2,y(tn2))+k(tn1,y(tn1))k(tn2,y(tn2))Δt(τtn2)+k(tn,y(tn))2k(tn1,y(tn1))+k(tn2,y(tn2))2(Δt)2(τtn2)(τtn1). (32)

    Using Eq (32) into system (31), we have

    yn+1=y0+(1α1)C(α1)k(tn,y(tn))+α1C(α1)Γ(α1)nj=2tj+1tj{k(tn2,y(tn2))+k(tn1,y(tn1))k(tn2,y(tn2))Δt(τtn2)+k(tn,y(tn))2k(tn1,y(tn1))+k(tn2,y(tn2))2(Δt)2(τtn2)(τtn1)}(tn+1τ)α11dτ, (33)

    Rearranging the above system, we have

    yn+1=y0+(1α1)C(α1)k(tn,y(tn))+α1C(α1)Γ(α1)nj=2{tj+1tjk(tj2,yj2)(tn+1τ)α11dτ+tj+1tjk(tj1,yj1)k(tj2,yj2)Δt(τtj2)(tn+1τ)α11dτ+tj+1tjk(tj,yj)2k(tj1,yj1)+k(tj2,yj2)2(Δt)2(τtj2)(τtj1)(tn+1τ)α11dτ}. (34)

    Writing further system (34), we have

    yn+1=y0+(1α1)C(α1)k(tn,y(tn))+α1C(α1)Γ(α1)nj=2k(tj2,yj2)tj+1tj(tn+1τ)α11dτ+α1C(α1)Γ(α1)nj=2k(tj1,yj1)k(tj2,yj2)Δttj+1tj(τtj2)(tn+1τ)α11dτ+α1C(α1)Γ(α1)nj=2k(tj,yj)2k(tj1,yj1)+k(tj2,yj2)2(Δt)2tj+1tj(τtj2)(τtj1)(tn+1τ)α11dτ. (35)

    Now, calculating the integrals in the system (35), we get

    tj+1tj(tn+1τ)α11dτ=(Δt)α1α1[(mj+1)α1(mj)α1],
    tj+1tj(τtj2)(tn+1τ)α11dτ=(Δt)α1+1α1(α1+1)[(mj+1)α1(mj+3+2α1)(mj+1)α1(mj+3+3α1)],
    tj+1tj(τtj2)(τtj1)(tn+1τ)α11dτ=(Δt)α1+2α1(α1+1)(α1+2)[(mj+1)α1{2(mj)2+(3α1+10)(mj)+2α12+9α1+12}(mj)α1{2(mj)2+(5α1+10)(mj)+6α12+18α1+12}].

    Inserting them into system (35), we get

    yn+1=y0+(1α1)C(α1)k(tn,y(tn))+α1(Δt)α1C(α1)Γ(α1+1)nj=2k(tj2,yj2)[(mj+1)α1(mj)α1]+α1(Δt)α1C(α1)Γ(α1+2)nj=2[k(tj1,yj1)k(tj2,yj2)][(mj+1)α1(mj+3+2α1)(mj+1)α1(mj+3+3α1)]+α1(Δt)α1C(α1)Γ(α1+3)nj=2[k(tj,yj)2k(tj1,yj1)+k(tj2,yj2)][(mj+1)α1{2(mj)2+(3α1+10)(mj)+2α12+9α1+12}(mj)α1{2(mj)2+(5α1+10)(mj)+6α12+18α1+12}]. (36)

    Finally, we have the following approximation:

    yn+1=y0+(1α1)C(α1)α2tα21nf(tn,y(tn))+α1α2(Δt)α1C(α1)Γ(α1+1)nj=2tα21j2f(tj2,yj2)[(mj+1)α1(mj)α1]+α1α2(Δt)α1C(α1)Γ(α1+2)nj=2[tα21j1f(tj1,yj1)tα21j2f(tj2,yj2)][(mj+1)α1(mj+3+2α1)(mj+1)α1(mj+3+3α1)]+α1α2(Δt)α1C(α1)Γ(α1+3)nj=2[tα21jf(tj,yj)2tα21j1f(tj1,yj1)+tα21j2f(tj2,yj2)][(mj+1)α1{2(mj)2+(3α1+10)(mj)+2α12+9α1+12}(mj)α1{2(mj)2+(5α1+10)(mj)+6α12+18α1+12}]. (37)

    We obtain the following for system (26)

    Spn+1=Sp0+(1α1)C(α1)α2tα21nf(tn,Sp(tn))+α1α2(Δt)α1C(α1)Γ(α1+1)nj=2tα21j2f(tj2,Spj2)[(mj+1)α1(mj)α1]+α1α2(Δt)α1C(α1)Γ(α1+2)nj=2[tα21j1f(tj1,Spj1)tα21j2f(tj2,Spj2)][(mj+1)α1(mj+3+2α1)(mj+1)α1(mj+3+3α1)]+α1α2(Δt)α1C(α1)Γ(α1+3)nj=2[tα21jf(tj,Spj)2tα21j1f(tj1,Spj1)+tα21j2f(tj2,Spj2)][(mj+1)α1{2(mj)2+(3α1+10)(mj)+2α12+9α1+12}(mj)α1{2(mj)2+(5α1+10)(mj)+6α12+18α1+12}].
    Ipn+1=Ip0+(1α1)C(α1)α2tα21nf(tn,Ip(tn))+α1α2(Δt)α1C(α1)Γ(α1+1)nj=2tα21j2f(tj2,Ipj2)[(mj+1)α1(mj)α1]+α1α2(Δt)α1C(α1)Γ(α1+2)nj=2[tα21j1f(tj1,Ipj1)tα21j2f(tj2,Ipj2)][(mj+1)α1(mj+3+2α1)(mj+1)α1(mj+3+3α1)]+α1α2(Δt)α1C(α1)Γ(α1+3)nj=2[tα21jf(tj,Ipj)2tα21j1f(tj1,Ipj1)+tα21j2f(tj2,Ipj2)][(mj+1)α1{2(mj)2+(3α1+10)(mj)+2α12+9α1+12}(mj)α1{2(mj)2+(5α1+10)(mj)+6α12+18α1+12}]. (38)
    Sqn+1=Sq0+(1α1)C(α1)α2tα21nf(tn,Sq(tn))+α1α2(Δt)α1C(α1)Γ(α1+1)nj=2tα21j2f(tj2,Sqj2)[(mj+1)α1(mj)α1]+α1α2(Δt)α1C(α1)Γ(α1+2)nj=2[tα21j1f(tj1,Sqj1)tα21j2f(tj2,Sqj2)][(mj+1)α1(mj+3+2α1)(mj+1)α1(mj+3+3α1)]+α1α2(Δt)α1C(α1)Γ(α1+3)nj=2[tα21jf(tj,Sqj)2tα21j1f(tj1,Sqj1)+tα21j2f(tj2,Sqj2)][(mj+1)α1{2(mj)2+(3α1+10)(mj)+2α12+9α1+12}(mj)α1{2(mj)2+(5α1+10)(mj)+6α12+18α1+12}].
    Iqn+1=Iq0+(1α1)C(α1)α2tα21nf(tn,Iq(tn))+α1α2(Δt)α1C(α1)Γ(α1+1)nj=2tα21j2f(tj2,Iqj2)[(mj+1)α1(mj)α1]+α1α2(Δt)α1C(α1)Γ(α1+2)nj=2[tα21j1f(tj1,Iqj1)tα21j2f(tj2,Iqj2)][(mj+1)α1(mj+3+2α1)(mj+1)α1(mj+3+3α1)]+α1α2(Δt)α1C(α1)Γ(α1+3)nj=2[tα21jf(tj,Iqj)2tα21j1f(tj1,Iqj1)+tα21j2f(tj2,Iqj2)][(mj+1)α1{2(mj)2+(3α1+10)(mj)+2α12+9α1+12}(mj)α1{2(mj)2+(5α1+10)(mj)+6α12+18α1+12}].

    To identify the potential effectiveness of Zika virus transmission in the Community, We consider the following parameters values and initial conditions [18] for our simulations:

    Λp=1.2,Λq=0.3,κ1=0.004,κ2=0.0014,β1=0.125×104,β2=0.4×104,μ=0.475×105.

    The mechanical features of the fractional-order model are identified by the various numerical methods with the time-fractional parameters. We demonstrate our results using different techniques in Figures 112 to check the efficiency of obtained solutions. The results of the nonlinear system memory were also detected with the help of fractional value. It provides a better way of understanding to control the disease without defining other parameters. Figures 14 represents the dynamical behavior of the Zika virus by using ABC derivative, Sh(t), Sm(t) and Ih(t) start increase steadily by decreasing the fractional values while Im(t) start decreasing by decreasing the fractional values. Figures 58 represents the dynamical behavior of the Zika virus by using fractal fractional derivative with dimensions 0.9, Sh(t), Sm(t) and Ih(t) start increase strictly by decreasing the fractional values while Im(t) start decreasing strictly by decreasing the fractional values. Figures 912 represents the dynamical behavior of the Zika virus by using fractal fractional derivative with dimensions 0.8, Sh(t), Sm(t) and Ih(t) start increase strictly by decreasing the fractional values while Im(t) start decreasing strictly by decreasing the fractional values. Similar behavior can be seen with both techniques, but fractal fractional gives results fastly with minor effects of dimensions according to steady state. Moreover, it provides better results by decreasing the fractional value.

    Figure 1.  Simulation of Sh(t) at different fractal orders with ABC operator.
    Figure 2.  Simulation of Sm(t) at different fractal orders with ABC operator.
    Figure 3.  Simulation of Ih(t) at different fractal orders with ABC operator.
    Figure 4.  Simulation of Im(t) at different fractal orders with ABC operator.
    Figure 5.  Simulation of Sh(t) at different fractional values with dimension 0.9.
    Figure 6.  Simulation of Sm(t) at different fractional values with dimension 0.9.
    Figure 7.  Simulation of Ih(t) at different fractional values with dimension 0.9.
    Figure 8.  Simulation of Im(t) at different fractional values with dimension 0.9.
    Figure 9.  Simulation of Sh(t) at different fractional values with dimension 0.8.
    Figure 10.  Simulation of Sm(t) at different fractional values with dimension 0.8.
    Figure 11.  Simulation of Ih(t) at different fractional values with dimension 0.8.
    Figure 12.  Simulation of Ih(t) at different fractional values with dimension 0.8.

    A fractional order differential equation model has been investigated in this article for the Zika virus. By using the fixed point theory, stability and uniqueness of the Zika virus model have been investigated. The arbitrary derivative of fractional order has been taken in the Attangana Baleeno in Caputo sense with no singular kernel and fractal fractional with Mittag-Leffler kernel respectively to analyses the Zika virus. Theoretical results are investigated for the fractional-order model, which proved the efficiency of the developed schemes. Numerical simulation has been made to check the actual behavior of the Zika virus outbreak. Such type of study will be helpful in future to understand the outbreak of this epidemic and to control the disease in a community.

    Research Supporting Project number (RSP-2021/167), King Saud University, Riyadh, Saudi Arabia.

    The authors have no conflict of interest.



    [1] V. Sikka, V. K. Chattu, R. K. Popli, S. C. Galwankar, D. Kelkar, S. G. Sawicki, et al., The emergence of Zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint Working Group (JWG), J. Glob. Infect. Dis., 8 (2016), 3-15. doi: 10.4103/0974-777X.176140. doi: 10.4103/0974-777X.176140
    [2] M. Z. Mehrjardi, Is Zika virus an Emerging TORCH agent? An invited commentary, Virology: Res. Treat., 8 (2017), 1-3. doi: 10.1177/1178122X17708993. doi: 10.1177/1178122X17708993
    [3] D. M. Knipe, P. M. Howley, Fields virology, 5 Eds., Lippincott Williams & Wilkins, 1156 (2017), 1199.
    [4] E. B. Hayes, Zika virus outside Africa, Emerg. Infect. Dis., 15 (2009), 1347-1350. doi: 10.3201/eid1509.090442. doi: 10.3201/eid1509.090442
    [5] D. Baleanu, A. Mousalou, S. Rezapour, On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations, Bound. Value Probl., 145 (2017). doi: 10.1186/s13661-017-0867-9. doi: 10.1186/s13661-017-0867-9
    [6] D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019-3027. doi: 10.1016/j.aej.2020.04.053. doi: 10.1016/j.aej.2020.04.053
    [7] D. Baleanu, Z. Nazemi, S. Rezapour, Attractivity for a k-dimensional system of fractional functional differential equations and global attractively for a k-dimensional system of nonlinear fractional differential equations, J. Inequal. Appl., 31 (2014). doi: 10.1186/1029-242X-2014-31. doi: 10.1186/1029-242X-2014-31
    [8] F. Mainardi, Fractional calculus: Theory and applications, Mathematics, 6 (2018), 145. doi: 10.3390/math6090145. doi: 10.3390/math6090145
    [9] M. A. C. Pinto, J. A. T. Machado, Fractional dynamics of computer virus propagation, Math. Probl. Eng., 2014 (2014). doi: 10.1155/2014/476502. doi: 10.1155/2014/476502
    [10] E. K. Akgul, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108. doi: 10.1063/1.5084035. doi: 10.1063/1.5084035
    [11] R. Hilfer, Applications of fractional calculus in physics, World Scientific, USA, 2001.
    [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
    [13] H. Bulut, H. M. Baskonus, F. B. M. Belgacem, The analytical solutions of some fractional ordinary differential equations by sumudu transform method, Abst. Appl. Anal., 2013 (2013). doi: 10.1155/2013/203875. doi: 10.1155/2013/203875
    [14] A. Atangana, B. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453. doi: 10.3390/e17064439. doi: 10.3390/e17064439
    [15] A. Atangana, B. T. Alkahtani, Analysis of non-homogenous heat model with new trend of derivative with fractional order, Chaos Soliton. Fract., 89 (2016), 566-571. doi: 10.1016/j.chaos.2016.03.027. doi: 10.1016/j.chaos.2016.03.027
    [16] A. Atangana, A. Akgul, Can transfer function and Bode diagram be obtained from Sumudu transform, Alex. Eng. J., 59 (2020), 1971-1984. doi: 10.1016/j.aej.2019.12.028. doi: 10.1016/j.aej.2019.12.028
    [17] D. Kumar, J. Singh, D. Baleanu, A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dyn., 87 (2017), 511-517. doi: 10.1007/s11071-016-3057-x. doi: 10.1007/s11071-016-3057-x
    [18] M. Farman, A. Ahmad, A. Akgul, M. U. Saleem, M. Naeem, D. Baleanue, Epidemiological analysis of the coronavirus disease outbreak with random effects, CMC-Comput. Mater. Con., 67 (2021), 3215-3227.
    [19] H. Ahmad, N. Alam, M. Omri, New computational results for a prototype of an excitable system, Results Phys., 28 (2021). doi: 10.1016/j.rinp.2021.104666. doi: 10.1016/j.rinp.2021.104666
    [20] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 1-13.
    [21] S. Javeed, S. Anjum, K. S. Alimgeer, M. Atif, S. W. Yao, W. A. Farooq, et al., A novel mathematical model for COVID-19 with remedial strategies, Results Phys., 27 (2021). doi: 10.1016/j.rinp.2021.104248. doi: 10.1016/j.rinp.2021.104248
    [22] M. Farman, A. Ahmad, A. Akgul, M. U. Saleem, M. Rizwan, M. O Ahmad, A mathematical analysis and simulation for Zika virus model with time fractional derivative, Math. Method. Appl. Sci., 2020 (2020), 1-12. doi: 10.1002/mma.6891. doi: 10.1002/mma.6891
    [23] I. E. Kibona, C. H. Yang, SIR model of spread of Zika virus infections: Zikv linked to microcephaly simulations, Health, 9 (2017), 1190-1210. doi: 10.4236/health.2017.98086. doi: 10.4236/health.2017.98086
    [24] A. Maysaroh, S. B. Waluya, W. Wuryanto, Analysis and simulation model mathematical model of Zika disease with one serotype virus Zika, Unnes J. Math., 8 (2019), 56-71. doi: 10.15294/ujm.v8i1.23297. doi: 10.15294/ujm.v8i1.23297
    [25] B. S. T. Alkahtani, A. Atangana, I. Koca, Novel analysis of the fractional Zika model using the Adams typepredictor-corrector rule for non-singular and non-local fractional operators, J. Nonlinear Sci. Appl., 10 (2017), 3191-3200. doi: 10.22436/jnsa.010.06.32. doi: 10.22436/jnsa.010.06.32
    [26] S. Rezapour, H. Mohammadi, A. Jajarmi, A new mathematical model for Zika virus transmission, Adv. Differ. Equ., 589 (2020). doi: 10.1186/s13662-020-03044-7. doi: 10.1186/s13662-020-03044-7
    [27] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. doi: 10.1140/epjp/i2017-11717-0. doi: 10.1140/epjp/i2017-11717-0
    [28] M. Higazy, F. M. Allehiany, E. E. Mahmoud, Numerical study of fractional order COVID-19 pandemic transmission model in context of ABO blood group, Results Phys., 22 (2021), 103852. doi: 10.1016/j.rinp.2021.103852. doi: 10.1016/j.rinp.2021.103852
    [29] M. Higazy, E. E. Mahmoud, E. M. Khalil, S. Abdel-Khalek, S. M. Abo-Dahab, H. Alotaibi, Dynamics and robust control of a new realizable chaotic nonlinear model, Complexity, 17 (2021). doi: 10.1155/2021/6692369. doi: 10.1155/2021/6692369
    [30] A. M. S. Mahdy, M. S. Mohamed, K. A. Gepreel, A. AL-Amiri, M. Higazy, Dynamical characteristics and signal flow graph of nonlinear fractional smoking mathematical model, Chaos Soliton. Fract., 141 (2020), 110308. doi: 10.1016/j.chaos.2020.110308. doi: 10.1016/j.chaos.2020.110308
    [31] E. E. Mahmoud, M. Higazy, O. A. Althagafi, A novel strategy for complete and phase robust synchronizations of chaotic nonlinear systems, Symmetry, 12 (2020), 1765. doi: 10.3390/sym12111765. doi: 10.3390/sym12111765
    [32] K. A. Gepreel, M. Higazy, A. M. S. Mahdy, Optimal control, signal flow graph, and system electronic circuit realization for nonlinear Anopheles mosquito model, Int. J. Mod. Phys. C, 31 (2020), 2050130. doi: 10.1142/S0129183120501302. doi: 10.1142/S0129183120501302
    [33] M. Higazy, M. A. Alyami, New Caputo-Fabrizio fractional order SEIASqEqHR model for COVID-19 epidemic transmission with genetic algorithm based control strategy, Alex. Eng. J., 59 (2020), 4719-4736. doi: 10.1016/j.aej.2020.08.034. doi: 10.1016/j.aej.2020.08.034
    [34] M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic, Chaos Soliton. Fract., 138 (2020), 110007. doi: 10.1016/j.chaos.2020.110007. doi: 10.1016/j.chaos.2020.110007
    [35] A. Mahdy, M. Higazy, Numerical different methods for solving the nonlinear biochemical reaction model, Int. J. Appl. Comput. Math., 5 (2019), 148. doi: 10.1007/s40819-019-0740-x. doi: 10.1007/s40819-019-0740-x
    [36] E. E Mahmoud, M. Higazy, T. M. Al-Harthi, A new nine-dimensional chaotic Lorenz system with quaternion variables: Complicated dynamics, electronic circuit design, anti-anticipating synchronization, and chaotic masking communication application, Mathematics, 7 (2019), 877. doi: 10.3390/math7100877. doi: 10.3390/math7100877
    [37] E. E. Mahmoud, M. Higazy, A. Hammad, S. M. Abo-Dahab, S. Abdel-Khalek, E. M. Khalil, Quaternion anti-synchronization of a novel realizable fractional chaotic model, Chaos Soliton. Fract., 144 (2021), 110715. doi: 10.1016/j.chaos.2021.110715. doi: 10.1016/j.chaos.2021.110715
    [38] Z. Memon, S. Qureshi, B. R. Memon, Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study, Chaos Soliton. Fract., 144 (2021), 110655. doi: 10.1016/j.chaos.2021.110655. doi: 10.1016/j.chaos.2021.110655
    [39] S. Qureshi, M. M. Chang, A. A. Shaikh, Analysis of series RL and RC circuits with time-invariant source using truncated M, atangana beta and conformable derivatives, J. Ocean Eng. Sci., 6 (2021), 217-227. doi: 10.1016/j.joes.2020.11.006. doi: 10.1016/j.joes.2020.11.006
    [40] S. Qureshi, R. Jan, Modeling of measles epidemic with optimized fractional order under Caputo differential operator, Chaos Soliton. Fract., 145 (2021), 110766. doi: 10.1016/j.chaos.2021.110766. doi: 10.1016/j.chaos.2021.110766
  • This article has been cited by:

    1. Mohammad Partohaghighi, Ali Akgül, Rubayyi T. Alqahtani, New Type Modelling of the Circumscribed Self-Excited Spherical Attractor, 2022, 10, 2227-7390, 732, 10.3390/math10050732
    2. Krzysztof Oprzędkiewicz, Wojciech Mitkowski, Maciej Rosół, Fractional Order, State Space Model of the Temperature Field in the PCB Plate, 2023, 17, 2300-5319, 180, 10.2478/ama-2023-0020
    3. Krzysztof Oprzędkiewicz, Fractional-Order Interval Parameter State Space Model of the One-Dimensional Heat Transfer Process, 2024, 17, 1996-1073, 3490, 10.3390/en17143490
    4. Virendra Singh Chouhan, Ashok Kumar Badsara, Rahul Shukla, Zika Virus Model with the Caputo–Fabrizio Fractional Derivative, 2024, 16, 2073-8994, 1606, 10.3390/sym16121606
    5. Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen, New solutions of time-space fractional coupled Schrödinger systems, 2023, 8, 2473-6988, 27033, 10.3934/math.20231383
    6. Jhoana P. Romero-Leiton, Elda K.E. Laison, Rowin Alfaro, E. Jane Parmley, Julien Arino, Kamal R. Acharya, Bouchra Nasri, Exploring Zika's Dynamics: A Scoping Review Journey from Epidemic to Equations Through Mathematical Modelling, 2024, 24680427, 10.1016/j.idm.2024.12.016
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2451) PDF downloads(152) Cited by(4)

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog