Research article Special Issues

Analysis of dengue transmission using fractional order scheme

  • Received: 02 November 2021 Revised: 22 January 2022 Accepted: 25 January 2022 Published: 28 February 2022
  • MSC : 37C75, 93B05, 65L07

  • In this paper, we will check the existence and stability of the dengue internal transmission model with fraction order derivative as well as analyze it qualitatively. The solution has been determined using Atangana-Baleanu in Caputo sense (ABC) with the help of Sumudu transform (ST). Atangana-Toufik (AT) and fractal fractional operator are used to analyze the dengue transmission which is an advanced approach for such types of biological models. Existence theory and uniqueness for the equilibrium solution are provided via nonlinear functional analysis and fixed point theory. Global stability of the system was also proved by using the Lyapunov function. Such kind of study helps us to analyze dengue transmission which shows the actual effect of dengue transmission in society, also will be helpful in future analysis and control strategies.

    Citation: Kottakkaran Sooppy Nisar, Aqeel Ahmad, Mustafa Inc, Muhammad Farman, Hadi Rezazadeh, Lanre Akinyemi, Muhammad Mannan Akram. Analysis of dengue transmission using fractional order scheme[J]. AIMS Mathematics, 2022, 7(5): 8408-8429. doi: 10.3934/math.2022469

    Related Papers:

  • In this paper, we will check the existence and stability of the dengue internal transmission model with fraction order derivative as well as analyze it qualitatively. The solution has been determined using Atangana-Baleanu in Caputo sense (ABC) with the help of Sumudu transform (ST). Atangana-Toufik (AT) and fractal fractional operator are used to analyze the dengue transmission which is an advanced approach for such types of biological models. Existence theory and uniqueness for the equilibrium solution are provided via nonlinear functional analysis and fixed point theory. Global stability of the system was also proved by using the Lyapunov function. Such kind of study helps us to analyze dengue transmission which shows the actual effect of dengue transmission in society, also will be helpful in future analysis and control strategies.



    加载中


    [1] C. S. Chou, A. Friedman, Introduction, In: Introduction to mathematical biology, Springer Undergraduate Texts in Mathematics and Technology, Springer, 2016.
    [2] International Travel and Health, World Health Organization (WHO), 2013. Available from: https://www.who.int/publications/i/item/9789241580472.
    [3] J. G. Rigau-Perez, G. G. Clark, D. J. Gubler, P. Reiter, E. J. Sanders, A. V. Vorndam, Dengue and dengue hemorrhagic fever, Lancet, 352 (1998), 971-977. https://doi.org/10.1016/S0140-6736(97)12483-7 doi: 10.1016/S0140-6736(97)12483-7
    [4] C. X. T. Phuong, N. T. Ngo, B. Wills, R. Kneen, N. T. T. Ha, T. T. T. Mai, et al., Evaluation of the World Health Organization standard tourniquet test and a modified tourniquet test in the diagnosis of dengue infection in Viet Nam, Trop. Med. Int. Health, 7 (2002), 125-132. https://doi.org/10.1046/j.1365-3156.2002.00841.x doi: 10.1046/j.1365-3156.2002.00841.x
    [5] D. J. Gubler, Dengue, urbanization and globalization: The unholy trinity of the 21st century, Trop. Med. Health, 39 (2011), 3-11.
    [6] T. P. Endy, K. B. Anderson, A. Nisalak, I. K. Yoon, S. Green, A. L. Rothman, et al., Determinants of in apparent and symptomatic dengue infection in a prospective study of primary school children in Kamphaeng Phet, Thailand, PLoS Neglect. Trop. Dis., 5 (2011), e975.
    [7] A. Wilder-Smith, E. E. Ooi, S. G. Vasudevan, D. J. Gubler, Update on dengue: Epidemiology, virus evolution, antiviral drugs, and vaccine development, Curr. Infect. Dis. Rep., 12 (2010), 157-164. https://doi.org/10.1007/s11908-010-0102-7 doi: 10.1007/s11908-010-0102-7
    [8] A. Wilder-Smith, W. Foo, A. Earnest S. Sremulanathan, N. I. Paton, Sero epidemiology of dengue in the adult population of Singapore, Trop. Med. Int. Health, 9 (2004), 305-308. https://doi.org/10.1046/j.1365-3156.2003.01177.x doi: 10.1046/j.1365-3156.2003.01177.x
    [9] D. J. Gubler, The economic burden of dengue, Am. J. Trop. Med. Hyg., 86 (2012), 743-744. https://doi.org/10.4269/ajtmh.2012.12-0157 doi: 10.4269/ajtmh.2012.12-0157
    [10] E. A. Thomas, M. John, A. Bhatia, Cutaneous manifestations of dengue viral infection in Punjab (north India), Int. J. Dermatol., 46 (2007), 715-719. https://doi.org/10.1111/j.1365-4632.2007.03298.x doi: 10.1111/j.1365-4632.2007.03298.x
    [11] J. Whitehorn, C. P. Simmons, The pathogenesis of dengue, Vaccine, 29 (2011), 7221-7228. https://doi.org/10.1016/j.vaccine.2011.07.022 doi: 10.1016/j.vaccine.2011.07.022
    [12] J. Whitehorn, J. Farrar, Dengue, Brit. Med. Bull., 95 (2010), 161-173. https://doi.org/10.1093/bmb/ldq019 doi: 10.1093/bmb/ldq019
    [13] Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control, 2009. Available from: https://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf?ua=1.
    [14] L. H. Chen, M. E. Wilson, Dengue and chikungunya infections in travelers, Curr. Opin. Infect. Dis., 23 (2010), 438-444.
    [15] F. U. Ahmed, C. B. Mahmood, J. D. Sharma, S. M. Hoque, R. Zaman, M. S. Hasan, Dengue and dengue haemorrhagic fever in chidren during the 2000 outbreak in Chittatong, Bangladesh, Dengue Bull., 25 (2001), 33-39.
    [16] A. Sampath, R. Padmanabhan, Molecular targets for flavivirus drug discovery, Antivir. Res., 81 (2009), 6-15. https://doi.org/10.1016/j.antiviral.2008.08.004 doi: 10.1016/j.antiviral.2008.08.004
    [17] C. G. Noble, Y. L. Chen, H. Dong, F. Gu, S. P. Lim, W. Schul, et al., Strategies for development of dengue virus inhibitors, Antivir. Res., 85 (2010), 450-462. https://doi.org/10.1016/j.antiviral.2009.12.011 doi: 10.1016/j.antiviral.2009.12.011
    [18] M. Amin, M. Farman, A. Akgul, R. T. Alqahtani, Effect of vaccination to control COVID-19 with fractal fractional operator, Alex. Eng. J., 61 (2022), 3551-3557. https://doi.org/10.1016/j.aej.2021.09.006 doi: 10.1016/j.aej.2021.09.006
    [19] M. Farman, A. Akgul, T. Abdeljawad, P. A. Naik, N. Bukhari, A. Ahmad, Modeling and analysis of fractional order Ebola virus model with Mittag-Lefler kernel, Alex. Eng. J., 61 (2022), 2062-2073. https://doi.org/10.1016/j.aej.2021.07.040 doi: 10.1016/j.aej.2021.07.040
    [20] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-13.
    [21] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Berlin: Springer, 2010
    [22] A. Atangana, Blind in a commutative world: Simple illustrations with functions and chaotic attractors, Chaos Solitons Fract., 114 (2018), 347-363. https://doi.org/10.1016/j.chaos.2018.07.022 doi: 10.1016/j.chaos.2018.07.022
    [23] M. Farman, M. Aslam, A. Akgul, A. Ahmad, Modeling of fractional order COVID-19 epidemic model with quarantine and social distancing, Math. Methods Appl. Sci., 44 (2021), 9334-9350. https://doi.org/10.1002/mma.7360 doi: 10.1002/mma.7360
    [24] B. Ghanbari, J. F. Gómez-Aguilar, Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives, Chaos, Solitons Fract., 116 (2018), 114-120. https://doi.org/10.1016/j.chaos.2018.09.026 doi: 10.1016/j.chaos.2018.09.026
    [25] J. F. Gómez-Aguilar, K. A. Abro, O. Kolebaje, A. Yildirim, Chaos in a calcium oscillation model via Atangana-Baleanu operator with strong memory, Eur. Phys. J. Plus, 134 (2019) 140. https://doi.org/10.1140/epjp/i2019-12550-1 doi: 10.1140/epjp/i2019-12550-1
    [26] J. F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Phys. A: Stat. Mech. Appl., 494 (2018), 52-75. https://doi.org/10.1016/j.physa.2017.12.007 doi: 10.1016/j.physa.2017.12.007
    [27] J. F. Gómez-Aguilar, M. G. López-López, V. M. Alvarado-Martínez, D. Baleanu, H. Khan, Chaos in a cancer model via fractional derivatives with exponential decay and Mittag-Leffler law, Entropy, 19 (2017), 681. https://doi.org/10.3390/e19120681 doi: 10.3390/e19120681
    [28] M. A. Khan, S. W. Shah, S. Ullah, J. F. Gómez-Aguilar, A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Anal.: Real World Appl., 50 (2019), 144-170. https://doi.org/10.1016/j.nonrwa.2019.04.006 doi: 10.1016/j.nonrwa.2019.04.006
    [29] Z. U. A. Zafar, M. Mushtaq, K. Rehan, A non-integer order dengue internal transmission model, Adv. Differ. Equ., 2018 (2018) 23. https://doi.org/10.1186/s13662-018-1472-7 doi: 10.1186/s13662-018-1472-7
    [30] A. Atangana, E. Bonyah, A. A. Elsadany, A fractional order optimal 4D chaotic financial model with Mittag-Leffler law, Chinese J. Phys., 65 (2020), 38-53. https://doi.org/10.1016/j.cjph.2020.02.003 doi: 10.1016/j.cjph.2020.02.003
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1590) PDF downloads(87) Cited by(17)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog