Since the concept of sub-linear expectation space was put forward, it has well supplemented the deficiency of the theoretical part of probability space. In this paper, we establish the complete convergence and complete integration convergence for weighted sums of widely acceptable (abbreviated as WA) random variables under the sub-linear expectations with the different conditions. We extend the complete moment convergence in probability space to sublinear expectation space.
Citation: Chengcheng Jia, Qunying Wu. Complete convergence and complete integral convergence for weighted sums of widely acceptable random variables under the sub-linear expectations[J]. AIMS Mathematics, 2022, 7(5): 8430-8448. doi: 10.3934/math.2022470
Since the concept of sub-linear expectation space was put forward, it has well supplemented the deficiency of the theoretical part of probability space. In this paper, we establish the complete convergence and complete integration convergence for weighted sums of widely acceptable (abbreviated as WA) random variables under the sub-linear expectations with the different conditions. We extend the complete moment convergence in probability space to sublinear expectation space.
[1] | S. G. Peng, G. Expectation, G-Brownian motion and related stochastic calculus of Itô type, Stoch. Anal. Appl., 2 (2006), 541-567. http://doi.org/10.1007/978-3-540-70847-6_25 doi: 10.1007/978-3-540-70847-6_25 |
[2] | S. G. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Proc. Appl., 118 (2008), 2223-2253. http://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015 |
[3] | S. G. Peng, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China Ser. A-Math., 52 (2009), 1391-1411. http://doi.org/10.1007/s11425-009-0121-8 doi: 10.1007/s11425-009-0121-8 |
[4] | L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China-Math., 59 (2016), 751-768. http://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2 |
[5] | L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China-Math., 59 (2016), 2503-2526. http://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1 |
[6] | L. X. Zhang, Self-normalized moderate deviation and laws of the iterated logarithm under g-expectation, Commun. Math. Stat., 4 (2016), 229-263. https://doi.org/10.1007/s40304-015-0084-8 doi: 10.1007/s40304-015-0084-8 |
[7] | L. X. Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations, 2016. Available from: http://arXiv.org/abs/1608.00710v1. |
[8] | Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2017), 252-270. http://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053 |
[9] | P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers, P. Natl. A. Sci. USA, 33 (1947), 25-31. http://doi.org/10.1073/pnas.33.2.25 doi: 10.1073/pnas.33.2.25 |
[10] | Y. S. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sinica, 16 (1988), 177-201. |
[11] | D. H. Qiu, P. Y. Chen, Complete and complete moment convergence for i.i.d. random variables under exponential moment conditions, Commun. Stat.-Theory Methods, 46 (2017), 4510-4519. http://doi.org/10.1080/03610926.2015.1085566 doi: 10.1080/03610926.2015.1085566 |
[12] | Q. Y. Wu, Y. Y. Jiang, Complete convergence and complete moment convergence for negatively associated sequences of random variables, J. Inequal. Appl., 2016 (2016), 157. http://doi.org/10.1186/s13660-016-1107-z doi: 10.1186/s13660-016-1107-z |
[13] | A. T. Shen, Y. Zhang, W. J. Wang, Complete convergence and complete moment convergence for extended negatively dependent random variables, Filomat, 31 (2017), 1381-1394. http://doi.org/10.2298/FIL1705381S doi: 10.2298/FIL1705381S |
[14] | Q. Y. Wu, Y. Y. Jiang, Complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations, Filomat, 34 (2020), 1093-1104. http://doi.org/10.2298/FIL2004093W doi: 10.2298/FIL2004093W |
[15] | F. X. Feng, D. C. Wang, Q. Y. Wu, H. W. Huang, Complete and complete moment convergence for weighted sums of arrays of row wise negatively dependent random variables under the sub-linear expectations, Commun. Stat.-Theory Methods, 50 (2021), 594-608. http://doi.org/10.1080/03610926.2019.1639747 doi: 10.1080/03610926.2019.1639747 |
[16] | Z. W. Liang, Q. Y. Wu, Theorems of complete convergence and complete integral convergence for END random variables under sub-linear expectations, J. Inequal. Appl., 2019 (2019), 114. http://doi.org/10.1186/s13660-019-2064-0 doi: 10.1186/s13660-019-2064-0 |
[17] | H. Y. Zhong, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017 (2017), 261. http://doi.org/10.1186/s13660-017-1538-1 doi: 10.1186/s13660-017-1538-1 |
[18] | D. W. Lu, Y. Meng, Complete and complete integral convergence for arrays of row wise widely negative dependent random variables under the sub-linear expectations, Commun. Stat.-Theory Methods, 2020, 1786585. http://doi.org/10.1080/03610926.2020.1786585 doi: 10.1080/03610926.2020.1786585 |
[19] | K. Anna, Complete convergence for widely acceptable random variables under sublinear expectations, J. Math. Anal. Appl., 484 (2020), 123662. http://doi.org/10.1016/j.jmaa.2019.123662 doi: 10.1016/j.jmaa.2019.123662 |
[20] | R. Hu, Q. Y. Wu, Complete convergence for weighted sums of widely acceptable random variables under sublinear expectations, Discrete Dyn. Nature Soc., 2021 (2021), 5526609. http://doi.org/10.1155/2021/5526609 doi: 10.1155/2021/5526609 |
[21] | M. M. Ge, X. Deng, Complete moment convergence for weighted sums of extended negatively dependent random variables, J. Math. Inequal., 13 (2019), 159-175. http://doi.org/10.7153/jmi-2019-13-12 doi: 10.7153/jmi-2019-13-12 |
[22] | E. Seneta, Regularly varying functions, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 508 (1976), 1-52. https://doi.org/10.1007/BFb0079658 |