Research article

Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations

  • Received: 28 March 2023 Revised: 08 May 2023 Accepted: 08 May 2023 Published: 17 May 2023
  • MSC : 60F15, 60F05

  • Suppose that $ \{a_i, -\infty < i < \infty\} $ is an absolutely summable set of real numbers, $ \{Y_i, -\infty < i < \infty\} $ is a subset of identically distributed, negatively dependent random variables under sub-linear expectations. Here, we get complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the partial sums of moving average processes $ \{X_n = \sum_{i = -\infty}^{\infty}a_{i}Y_{i+n}, n\ge 1\} $ produced by $ \{Y_i, -\infty < i < \infty\} $ of identically distributed, negatively dependent random variables under sub-linear expectations, complementing the relevant results in probability space.

    Citation: Mingzhou Xu. Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations[J]. AIMS Mathematics, 2023, 8(7): 17067-17080. doi: 10.3934/math.2023871

    Related Papers:

  • Suppose that $ \{a_i, -\infty < i < \infty\} $ is an absolutely summable set of real numbers, $ \{Y_i, -\infty < i < \infty\} $ is a subset of identically distributed, negatively dependent random variables under sub-linear expectations. Here, we get complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the partial sums of moving average processes $ \{X_n = \sum_{i = -\infty}^{\infty}a_{i}Y_{i+n}, n\ge 1\} $ produced by $ \{Y_i, -\infty < i < \infty\} $ of identically distributed, negatively dependent random variables under sub-linear expectations, complementing the relevant results in probability space.



    加载中


    [1] S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Sto. Anal. Appl., 2 (2007), 541–561. https://doi.org/10.1007/978-3-540-70847-6_25 doi: 10.1007/978-3-540-70847-6_25
    [2] S. G. Peng, Nonlinear expectations and stochastic calculus under uncertainty, 1 Eds., Berlin: Springer, 2019. https://doi.org/10.1007/978-3-662-59903-7
    [3] L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1
    [4] L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751–768. https://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2
    [5] M. Z. Xu, K. Cheng, W. K. Yu, Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations, AIMS Math., 7 (2022), 19998–20019. https://doi.org/10.3934/math.20221094 doi: 10.3934/math.20221094
    [6] M. Z. Xu, X. H. Kong, Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations, AIMS Math., 8 (2023), 8504–8521. https://doi.org/10.3934/math.2023428 doi: 10.3934/math.2023428
    [7] L. X. Zhang, Donsker's invariance principle under the sub-linear expectation with an application to Chung's law of the iterated logarithm, Commun. Math. Stat., 3 (2015), 187–214. https://doi.org/10.1007/s40304-015-0055-0 doi: 10.1007/s40304-015-0055-0
    [8] J. P. Xu, L. X. Zhang, Three series theorem for independent random variables under sub-linear expectations with applications, Acta Math. Sin., Engl. Ser., 35 (2019), 172–184. https://doi.org/10.1007/s10114-018-7508-9 doi: 10.1007/s10114-018-7508-9
    [9] J. P. Xu, L. X. Zhang, The law of logarithm for arrays of random variables under sub-linear expectations, Acta Math. Appl. Sin. Engl. Ser., 36 (2020), 670–688. https://doi.org/10.1007/s10255-020-0958-8 doi: 10.1007/s10255-020-0958-8
    [10] Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2018), 252–270. https://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053
    [11] L. X. Zhang, J. H. Lin, Marcinkiewicz's strong law of large numbers for nonlinear expectations, Stat. Probab. Lett., 137 (2018), 269–276. https://doi.org/10.1016/j.spl.2018.01.022 doi: 10.1016/j.spl.2018.01.022
    [12] H. Y. Zhong, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017 (2017), 261. https://doi.org/10.1186/s13660-017-1538-1 doi: 10.1186/s13660-017-1538-1
    [13] F. Q. Gao, M. Z. Xu, Large deviations and moderate deviations for independent random variables under sublinear expectations, Sci. China Math., 41 (2011), 337–352. https://doi.org/10.1360/012009-879 doi: 10.1360/012009-879
    [14] A. Kuczmaszewska, Complete convergence for widely acceptable random variables under the sublinear expectations, J. Math. Anal. Appl., 484 (2020), 123662. https://doi.org/10.1016/j.jmaa.2019.123662 doi: 10.1016/j.jmaa.2019.123662
    [15] M. Z. Xu, K. Cheng, Convergence for sums of iid random variables under sublinear expectations, J. Inequal. Appl., 2021 (2021), 157. https://doi.org/10.1186/s13660-021-02692-x doi: 10.1186/s13660-021-02692-x
    [16] M. Z. Xu, K. Cheng, How small are the increments of G-Brownian motion, Stat. Probab. Lett., 186 (2022), 109464. https://doi.org/10.1155/2020/3145935 doi: 10.1155/2020/3145935
    [17] L. X. Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under sub-linear expectations, Acta Math. Sci. Engl. Ser., 42 (2022), 467–490. https://doi.org/10.1007/s10473-022-0203-z doi: 10.1007/s10473-022-0203-z
    [18] Z. J. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59 (2016), 945–954. https://doi.org/10.1007/s11425-015-5095-0 doi: 10.1007/s11425-015-5095-0
    [19] L. X. Zhang, On the laws of the iterated logarithm under sub-linear expectations, PUQR, 6 (2021), 409–460. https://doi.org/10.3934/puqr.2021020 doi: 10.3934/puqr.2021020
    [20] X. C. Chen, Q. Y. Wu, Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations, AIMS Math., 7 (2022), 9694–9715. https://doi.org/10.3934/math.2022540 doi: 10.3934/math.2022540
    [21] P. Y. Chen, T. C. Hu, A. Volodin, Limiting behaviour of moving average processes under $\varphi$-mixing assumption, Stat. Probab. Lett., 79 (2009), 105–111. https://doi.org/10.1016/j.spl.2008.07.026 doi: 10.1016/j.spl.2008.07.026
    [22] P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. USA, 33 (1947), 25–31. https://doi.org/10.1007/s10114-019-8205-z doi: 10.1007/s10114-019-8205-z
    [23] Y. S. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin., 16 (1988), 177–201.
    [24] S. M. Hosseini, A. Nezakati, Complete moment convergence for the dependent linear processes with random coefficients, Acta Math. Sin., Engl. Ser., 35 (2019), 1321–1333. https://doi.org/10.1007/s10114-019-8205-z doi: 10.1007/s10114-019-8205-z
    [25] B. Meng, D. C. Wang, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables, Commun. Stat.-Theor. M., 51 (2022), 3847–3863. https://doi.org/10.1080/03610926.2020.1804587 doi: 10.1080/03610926.2020.1804587
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(798) PDF downloads(23) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog