In this paper, a delayed prey-predator eco-epidemiological model with the nonlinear media is considered. First, the positivity and boundedness of solutions are given. Then, the basic reproductive number is showed, and the local stability of the trivial equilibrium and the disease-free equilibrium are discussed. Next, by taking the infection delay as a parameter, the conditions of the stability switches are given due to stability switching criteria, which concludes that the delay can generate instability and oscillation of the population through Hopf bifurcation. Further, by using normal form theory and center manifold theory, some explicit expressions determining direction of Hopf bifurcation and stability of periodic solutions are obtained. What's more, the correctness of the theoretical analysis is verified by numerical simulation, and the biological explanations are also given. Last, the main conclusions are included in the end.
Citation: Xin-You Meng, Miao-Miao Lu. Stability and bifurcation of a delayed prey-predator eco-epidemiological model with the impact of media[J]. AIMS Mathematics, 2023, 8(7): 17038-17066. doi: 10.3934/math.2023870
In this paper, a delayed prey-predator eco-epidemiological model with the nonlinear media is considered. First, the positivity and boundedness of solutions are given. Then, the basic reproductive number is showed, and the local stability of the trivial equilibrium and the disease-free equilibrium are discussed. Next, by taking the infection delay as a parameter, the conditions of the stability switches are given due to stability switching criteria, which concludes that the delay can generate instability and oscillation of the population through Hopf bifurcation. Further, by using normal form theory and center manifold theory, some explicit expressions determining direction of Hopf bifurcation and stability of periodic solutions are obtained. What's more, the correctness of the theoretical analysis is verified by numerical simulation, and the biological explanations are also given. Last, the main conclusions are included in the end.
[1] | K. P. Hadeler, H. I. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol., 27 (1989), 609–631. https://doi.org/10.1007/BF00276947 doi: 10.1007/BF00276947 |
[2] | J. Chattopadhyay, N. Bairagi, Pelicans at risk in Salton sea–an eco-epidemiological model, Ecol. Modell., 136 (2001), 103–112. https://doi.org/10.1016/S0304-3800(00)00350-1 doi: 10.1016/S0304-3800(00)00350-1 |
[3] | J. Chattopadhyay, O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747–766. https://doi.org/10.1016/S0362-546X(98)00126-6 doi: 10.1016/S0362-546X(98)00126-6 |
[4] | Y. N. Xiao, L. S. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59–82. https://doi.org/10.1016/S0025-5564(01)00049-9 doi: 10.1016/S0025-5564(01)00049-9 |
[5] | M. Haque, J. Zhen, E. Venturino, Rich dynamics of Lotka-Volterra type predator-prey model system with viral disease in prey species, Math. Methods Appl. Sci., 32 (2009), 875–898. https://doi.org/10.1002/mma.1071 doi: 10.1002/mma.1071 |
[6] | T. Kar, A. Ghorai, S. Jana, Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide, J. Theor. Biol., 310 (2012), 187–198. https://doi.org/10.1016/j.jtbi.2012.06.032 doi: 10.1016/j.jtbi.2012.06.032 |
[7] | X. Y. Meng, N. N. Qin, H. F. Huo, Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species, J. Biol. Dyn., 12 (2018), 342–374. https://doi.org/10.1080/17513758.2018.1454515 doi: 10.1080/17513758.2018.1454515 |
[8] | D. Greenhalgh, Q. J. Khan, F. A. Al-Kharousi, Eco-epidemiological model with fatal disease in the prey, Nonlinear Anal., 53 (2020), 103072. https://doi.org/10.1016/j.nonrwa.2019.103072 doi: 10.1016/j.nonrwa.2019.103072 |
[9] | X. X. Liu, S. Y. Liu, Dynamics of a predator-prey system with inducible defense and disease in the prey, Nonlinear Anal., 71 (2023), 103802. https://doi.org/10.1016/j.nonrwa.2022.103802 doi: 10.1016/j.nonrwa.2022.103802 |
[10] | S. Q. Zhang, S. L. Yuan, T. Q. zhang, Dynamic analysis of a stochastic eco-epidemiological model with disease in predators, Stud. Appl. Math., 149 (2022), 5–42. https://doi.org/10.1111/sapm.12489 doi: 10.1111/sapm.12489 |
[11] | S. Li, S. L. Yuan, H. Wang, Disease transmission dynamics of an epidemiological predator-prey system in open advective environments, Discrete Cont. Dyn. Syst.-B, 28 (2023), 1480–1502. https://doi.org/10.3934/dcdsb.2022131 doi: 10.3934/dcdsb.2022131 |
[12] | X. Y. Meng, C. Y. Yin, Dynamics of a dengue fever model with unreported cases and asymptomatic infected classes in Singapore, J. Appl. Anal. Comput., 13 (2023), 782–808. https://doi.org/10.11948/20220111 doi: 10.11948/20220111 |
[13] | R. Xu, S. H. Zhang, Modelling and analysis of a delayed predator-prey model with disease in the predator, Appl. Math. Comput., 224 (2013), 372–386. https://doi.org/10.1016/j.amc.2013.08.067 doi: 10.1016/j.amc.2013.08.067 |
[14] | X. Y. Meng, N. N. Qin, H. F. Huo, Dynamics of a food chain model with two infected predators, Int. J. Bifurcation Chaos, 31 (2021), 2150019. https://doi.org/10.1142/S021812742150019X doi: 10.1142/S021812742150019X |
[15] | A. L. Xiang, L. C. Wang, Boundedness and stabilization in a predator-prey model with prey-taxis and disease in predator species, J. Math. Anal. Appl., 2022 (2022), 126953. https://doi.org/10.1016/j.jmaa.2022.126953 doi: 10.1016/j.jmaa.2022.126953 |
[16] | Y. Zhang, S. J. Gao, S. H. Chen, A stochastic predator-prey eco-epidemiological model with the fear effect, Appl. Math. Lett., 134 (2022), 108300. https://doi.org/10.1016/j.aml.2022.108300 doi: 10.1016/j.aml.2022.108300 |
[17] | J. G. Wang, X. Y. Meng, L. Lv, J. Li, Stability and bifurcation analysis of a Beddington-DeAngelis prey-predator model with fear effect, prey refuge and harvesting, Int. J. Bifurcat. Chaos, 33 (2023), 2350013. https://doi.org/10.1142/S021812742350013X doi: 10.1142/S021812742350013X |
[18] | S. Chakraborty, S. Pal, N. Bairagi, Dynamics of a ratio-dependent eco-epidemiological system with prey harvesting, Nonlinear Anal., 11 (2010), 1862–1877. https://doi.org/10.1016/j.nonrwa.2009.04.009 doi: 10.1016/j.nonrwa.2009.04.009 |
[19] | W. Hussain, Role of social media in COVID-19 pandemic, Int. J. Front. Sci., 4 (2020), 59–60. https://doi.org/10.37978/tijfs.v4i2.144 doi: 10.37978/tijfs.v4i2.144 |
[20] | X. Y. Meng, T. Zhang, The impact of media on the spatiotemporal pattern dynamics of a reaction-diffusion epidemic model, Math. Biosci. Eng., 17 (2020), 4034–4047. https://doi.org/10.3934/mbe.2020223 doi: 10.3934/mbe.2020223 |
[21] | O. Koutou, A. B. Diabaté, B. Sangaré, Mathematical analysis of the impact of the media coverage in mitigating the outbreak of COVID-19, Math. Comput. Simul., 205 (2023), 600–618. https://doi.org/10.1016/j.matcom.2022.10.017 doi: 10.1016/j.matcom.2022.10.017 |
[22] | A. Goel, L. Gupta, Social media in the times of COVID-19, J. Clin. Rheumatol., 26 (2020), 220–223. https://doi.org/10.1097/RHU.0000000000001508 doi: 10.1097/RHU.0000000000001508 |
[23] | J. G. Cui, Y. H. Sun, H. P. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equ., 20 (2008), 31–53. https://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0 |
[24] | G. M. Leung, T. H. Lam, L. M. Ho, S. Ho, B. Chan, I. Wong, et al., The impact of community psychological responses on outbreak control for severe acute respiratory syndrome in Hong Kong, J. Epidemiol. Commun. H., 57 (2003), 857–863. http://dx.doi.org/10.1136/jech.57.11.857 doi: 10.1136/jech.57.11.857 |
[25] | R. J. Blendon, J. M. Benson, C. M. DesRoches, E. Raleigh, K. Taylor-Clark, The public's response to severe acute respiratory syndrome in Toronto and the United States, Clin. Infect. Dis., 38 (2004), 925–931. https://doi.org/10.1086/382355 doi: 10.1086/382355 |
[26] | R. S. Liu, J. H. Wu, H. P. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 612372. https://doi.org/10.1080/17486700701425870 doi: 10.1080/17486700701425870 |
[27] | S. Risau-Gusmán, D. H. Zanette, Contact switching as a control strategy for epidemic outbreaks, J. Theor. Biol., 257 (2009), 52–60. https://doi.org/10.1016/j.jtbi.2008.10.027 doi: 10.1016/j.jtbi.2008.10.027 |
[28] | J. Ma, D. Chan, Impact of media coverage on a fractional-order SIR epidemic model, Int. Model. Simul. Sci. Comput., 13 (2021), 2250037. https://doi.org/10.1142/S1793962322500374 doi: 10.1142/S1793962322500374 |
[29] | S. Latifah, D. Aldila, W. Giyarti, H. Tasman, Mathematical study for an infectious disease with awareness-based SIS-M model, J. Phys.: Conf. Ser., 1747 (2021), 012017. doi:10.1088/1742-6596/1747/1/012017 doi: 10.1088/1742-6596/1747/1/012017 |
[30] | X. R. Zhou, X. W. Gao, X. Y. Shi, Analysis of an SQEIAR stochastic epidemic model with media coverage and asymptomatic infection, Int. J. Biomath., 15 (2022), 2250083. https://doi.org/10.1142/S1793524522500838 doi: 10.1142/S1793524522500838 |
[31] | L. M. Cai, X. Z. Li, Analysis of a SEIV epidemic model with a nonlinear incidence rate, Appl. Math. Model., 33 (2009), 2919–2926. https://doi.org/10.1016/j.apm.2008.01.005 doi: 10.1016/j.apm.2008.01.005 |
[32] | Y. F. Li, J. G. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2353–2365. https://doi.org/10.1016/j.cnsns.2008.06.024 doi: 10.1016/j.cnsns.2008.06.024 |
[33] | Y. N. Xiao, S. Y. Tang, J. H. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5 (2015), 7838. https://doi.org/10.1038/srep07838 doi: 10.1038/srep07838 |
[34] | P. F. Song, Y. N. Xiao, Global Hopf bifurcation of a delayed equation describing the lag effect of media impact on the spread of infectious disease, J. Math. Biol., 76 (2018), 1249–1267. https://doi.org/10.1007/s00285-017-1173-y doi: 10.1007/s00285-017-1173-y |
[35] | K. S. Mathur, A. Srivastava, J. Dhar, Dynamics of a stage-structured SI model for food adulteration with media-induced response function, J. Eng. Math., 127 (2021), 1. https://doi.org/10.1007/s10665-021-10089-4 doi: 10.1007/s10665-021-10089-4 |
[36] | E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. https://doi.org/10.1137/S0036141000376086 doi: 10.1137/S0036141000376086 |
[37] | J. K. Hale, Theory of functional differential equations, New York: Springer-Verlag, 1977. https://doi.org/10.1007/978-1-4612-9892-2 |
[38] | X. Yang, L. S. Chen, J. F. Chen, Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models, Comput. Math. Appl., 32 (1996), 109–116. https://doi.org/10.1016/0898-1221(96)00129-0 doi: 10.1016/0898-1221(96)00129-0 |
[39] | P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |
[40] | D. Q. Huang, Y. L. Tang, W. N. Zhang, Distribution of roots of cubic equations, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 17 (2010), 185–188. |
[41] | S. G. Ruan, J. J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, IMA J. Math. Appl. Med. Biol., 18 (2001), 41–52. https://doi.org/10.1093/imammb/18.1.41 doi: 10.1093/imammb/18.1.41 |
[42] | B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge: Cambridge University Press, 1981. |