Research article Special Issues

Hermite–Hadamard type inequalities for harmonic-arithmetic extended $ (s_1, m_1) $-$ (s_2, m_2) $ coordinated convex functions

  • Received: 08 March 2023 Revised: 27 April 2023 Accepted: 09 May 2023 Published: 16 May 2023
  • MSC : 26A51, 26D15, 26D20, 26E60, 41A55

  • In this paper, the authors define the notion of harmonic-arithmetic extended $ (s_1, m_1) $-$ (s_2, m_2) $ coordinated convex functions, establish a new integral identity, present some new Hermite–Hadamard type integral inequalities for harmonic-arithmetic extended $ (s_1, m_1) $-$ (s_2, m_2) $ coordinated convex functions, and derive some known results.

    Citation: Chun-Ying He, Aying Wan, Bai-Ni Guo. Hermite–Hadamard type inequalities for harmonic-arithmetic extended $ (s_1, m_1) $-$ (s_2, m_2) $ coordinated convex functions[J]. AIMS Mathematics, 2023, 8(7): 17027-17037. doi: 10.3934/math.2023869

    Related Papers:

  • In this paper, the authors define the notion of harmonic-arithmetic extended $ (s_1, m_1) $-$ (s_2, m_2) $ coordinated convex functions, establish a new integral identity, present some new Hermite–Hadamard type integral inequalities for harmonic-arithmetic extended $ (s_1, m_1) $-$ (s_2, m_2) $ coordinated convex functions, and derive some known results.



    加载中


    [1] O. Y. Mohammed Alabdali, A. Guessab, On the approximation of strongly convex functions by an upper or lower operator, Appl. Math. Comput., 247 (2014), 1129–1138. http://dx.doi.org/10.1016/j.amc.2014.09.007 doi: 10.1016/j.amc.2014.09.007
    [2] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen (German), Publications de l'Institut Mathématique, 23 (1978), 13–20.
    [3] S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775–788. http://dx.doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995
    [4] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite–Hadamard type inequalities and applications, RGMIA Monographs, Victoria University, 2000. Available from: http://rgmia.org/monographs/hermite_hadamard.html
    [5] C.-Y. He, B.-Y. Xi, B.-N. Guo, Inequalities of Hermite–Hadamard type for extended harmonically $(s, m)$-convex functions, Miskolc Math. Notes, 22 (2020), 245–258. http://dx.doi.org/10.18514/MMN.2021.3080 doi: 10.18514/MMN.2021.3080
    [6] H. Hudzik, L. Maligranda, Some remarks on $s$-convex functions, Aeq. Math., 48 (1994), 100–111. http://dx.doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981
    [7] V. G. Miheşan, A generalization of the convexity (Romania), Proceedings of Seminar on Functional Equations, 1993.
    [8] F. Qi, Z.-L. Wei, Q. Yang, Generalizations and refinements of Hermite–Hadamard's inequality, Rocky Mountain J. Math., 35 (2005), 235–251. http://dx.doi.org/10.1216/rmjm/1181069779 doi: 10.1216/rmjm/1181069779
    [9] G. Toader, Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimization (Cluj-Napoca), 1985,329–338.
    [10] B.-Y. Xi, R.-F. Bai, F. Qi, Hermite–Hadamard type inequalities for the $m$- and $(\alpha, m)$-geometrically convex functions, Aequat. Math., 84 (2012), 261–269. http://dx.doi.org/10.1007/s00010-011-0114-x doi: 10.1007/s00010-011-0114-x
    [11] B.-Y. Xi, D.-D. Gao, F. Qi, Integral inequalities of Hermite–Hadamard type for $(\alpha, s)$-convex and $(\alpha, s, m)$-convex functions, Ital. J. Pure Appl. Math., 44 (2020), 499–510.
    [12] B.-Y. Xi, C.-Y. He, F. Qi, Some new inequalities of the Hermite–Hadamard type for extended $((s_1, m_1)$-$(s_2, m_2))$-convex functions on co-ordinates, Cogent Math., 3 (2016), 1267300. http://dx.doi.org/10.1080/23311835.2016.1267300 doi: 10.1080/23311835.2016.1267300
    [13] B.-Y. Xi, F. Qi, Hermite–Hadamard type inequalities for geometrically $r$-convex functions, Stud. Sci. Math. Hung., 51 (2014), 530–546. http://dx.doi.org/10.1556/sscmath.51.2014.4.1294 doi: 10.1556/sscmath.51.2014.4.1294
    [14] B.-Y. Xi, F. Qi, Some Hermite–Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat., 42 (2013), 243–257.
    [15] B.-Y. Xi, F. Qi, Some integral inequalities of Hermite–Hadamard type for $s$-logarithmically convex functions(Chinese), Acta Math. Sci. Ser. A Chin. Ed, 35 (2015), 515–524.
    [16] B.-Y. Xi, F. Qi, Inequalities of Hermite–Hadamard type for extended $s$-convex functions and applications to means, J. Nonlinear Convex Anal., 16 (2015), 873–890.
    [17] B.-Y. Xi, F. Qi, T.-Y. Zhang, Some inequalities of Hermite–Hadamard type for $m$-harmonic-arithmetically convex functions, ScienceAsia, 41 (2015), 357–361. http://dx.doi.org/10.2306/scienceasia1513-1874.2015.41.357 doi: 10.2306/scienceasia1513-1874.2015.41.357
    [18] B.-Y. Xi, Y. Wang, F. Qi, Some integral inequalities of Hermite–Hadamard type for extended $(s, m)$-convex functions, Transylv. J. Math. Mech., 5 (2013), 69–84.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1483) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog