In the paper, the authors define a notion of geometric-arithmetic-F-convex functions and, via an integral identity and other analytic techniques, establish several integral inequalities of the Hermite-Hadamard type for geometric-arithmetic-F-convex functions.
Citation: Ye Shuang, Feng Qi. Integral inequalities of Hermite-Hadamard type for GA-F-convex functions[J]. AIMS Mathematics, 2021, 6(9): 9582-9589. doi: 10.3934/math.2021557
[1] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[2] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[3] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[4] | Jorge E. Macías-Díaz, Muhammad Bilal Khan, Muhammad Aslam Noor, Abd Allah A. Mousa, Safar M Alghamdi . Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Mathematics, 2022, 7(3): 4266-4292. doi: 10.3934/math.2022236 |
[5] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[6] | Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364 |
[7] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[8] | Hassen Aydi, Bessem Samet, Manuel De la Sen . On $ \psi $-convex functions and related inequalities. AIMS Mathematics, 2024, 9(5): 11139-11155. doi: 10.3934/math.2024546 |
[9] | XuRan Hai, ShuHong Wang . Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666 |
[10] | Sevda Sezer . The Hermite-Hadamard inequality for $ s $-Convex functions in the third sense. AIMS Mathematics, 2021, 6(7): 7719-7732. doi: 10.3934/math.2021448 |
In the paper, the authors define a notion of geometric-arithmetic-F-convex functions and, via an integral identity and other analytic techniques, establish several integral inequalities of the Hermite-Hadamard type for geometric-arithmetic-F-convex functions.
In this paper, we let I denote an interval on R and I∘ be the interior of I.
The following definitions are well known in the literature.
Definition 1.1. A function f:I⊆R=(−∞,∞)→R is said to be convex function if the inequality
f(tx+(1−t)y)≤tf(x)+(1−t)f(y) |
holds for all x,y∈I and t∈[0,1].
Definition 1.2. Let f:I⊆R+=(0,∞)→R. If for any x,y∈I and t∈[0,1], the inequality
f(xty1−t)≤tf(x)+(1−t)f(y) |
is valid, then we call f a geometric-arithmetic convex function on I. For simplicity, we call it a GA-convex function.
In the paper [11], the notion of s-GA-convex functions was defined.
Definition 1.3 ([11,Definition 2.1]). Let f:I⊆R+→R and s∈(0,1]. If the inequality
f(xty1−t)≤tsf(x)+(1−t)sf(y) |
is valid for any x,y∈I and t∈[0,1], then we call f an s-geometric-arithmetic convex function on I. For shortness, we call it an s-GA-convex function.
Now we recall several Hermite-Hadamard type inequalities for GA-convex functions in the form of theorems.
Theorem 1.1. ([6,Theorem 1]). Let f:[a,b]⊆R+→R be GA-convex. Then
f(1e(bbaa)1/(b−a))≤1b−a∫baf(x)dx≤(1lnb−lna−ab−a)f(a)+(bb−a−1lnb−lna)f(b). |
Theorem 1.2. ([17,Theorem 3.1]). Let f:I⊆R+→R be differentiable on I∘, a,b∈I with a<b, and f′∈L([a,b]). If |f′|q is GA-convex on [a,b] for q≥1, then
|bf(b)−af(a)b−a−1b−a∫baf(x)dx|≤[A(a,b)]1−1/q[2(b−a)]1/q{[L(a2,b2)−a2]|f′(a)|q+[b2−L(a2,b2)]|f′(b)|q}1/q, |
where A(u,v)=u+v2 and
L(u,v)={u−vlnu−lnv,u≠vu,u=v | (1.1) |
for u,v>0 are the arithmetic mean and logarithmic mean respectively.
Theorem 1.3 ([11,Theorem 3.3]). Let f:I∘⊆R→R be differentiable and decreasing on I∘, a,b∈I∘ with a<b, and f∈L1([a,b]). If |f′|p is s-GA-convex on [a,b] for s∈(0,1] and p>1, then
|(b−x)f(b)+(x−a)f(a)b−a−1b−a∫baf(u)du|≤(p−12p−1)1−1/p[(x−a)2b−a(|f′(a)|p+|f′(x)|ps+1)1/p+(b−x)2b−a(|f′(x)|p+|f′(b)|ps+1)1/p]. |
For recent developments related to integral inequalities of the Hermite-Hadamard type for convex functions, please refer to [3,4,5,7,8,9,10,12,13,14,16] and closely related references therein.
In this paper, we will define a new notion of GA-F-convex functions and establish several integral inequalities of the Hermite-Hadamard type for GA-F-convex functions.
In the papers [1,2], as a generalization of strongly convex functions, the notion of F-convex functions was defined as follows.
Definition 2.1 ([2,p. 868,Definition 1]). Let F:R→R be a given function. A function f:I→R is called to be F-convex if
f(tx+(1−t)y)≤tf(x)+(1−t)f(y)−t(1−t)F(x−y) |
for all x,y∈I and t∈[0,1].
Motivated by Definition 2.1, we now define a new notion of GA-F-convex functions as follows.
Definition 2.2. Let F:R→R be a given function. A function f:I⊆R+→R is called GA-F-convex if
f(xty1−t)≤tf(x)+(1−t)f(y)−t(1−t)F(x−y) | (2.1) |
for all x,y∈I and t∈[0,1].
Remark 1. It is easy to see that, if f:I⊆R+→R is a decreasing and GA-F-convex function, then f is an F-convex function on I.
For establishing integral inequalities of the Hermite-Hadamard type for GA-F-convex functions, we need the following lemmas.
Lemma 2.1 ([15]). Let f:I⊆R+→R be a differentiable function on I∘ and let a,b∈I∘ with a<b. If f′∈L[a,b], then
(x)−1lnb−lna∫baf(u)udu=(lnx−lna)2lnb−lna∫10ta1−txtf′(a1−txt)dt−(lnb−lnx)2lnb−lna∫10txtb1−tf′(xtb1−t)dt. | (2.2) |
Lemma 2.2. Let u,v∈R+. Then
∫10u1−tvt dt=L(u,v);G1(u,v)=∫10tu1−tvt dt={v−L(u,v)lnv−lnu,u≠v;12u,u=v,G2(u,v)=∫10t2u1−tvt dt={v(lnv−lnu)−2v+2L(u,v)(lnv−lnu)2,u≠v;13u,u=v,G3(u,v)=∫10t3u1−tvt dt={v[(lnv−lnu)(lnv−lnu−3)+6]−6L(u,v)(lnv−lnu)3,u≠v;14u,u=v, |
where L(u,v) is defined by (1.1).
Proof. The proof is straightforward.
In this section, we establish several integral inequalities of the Hermite-Hadamard type for GA-F-convex functions.
Theorem 3.1. Let F:R→R be a given function. Suppose that f:I⊆R+→R is differentiable, that a,b∈I with a<b, and that x∈[a,b]. If |f′|q is GA-F-convex on I for q≥1, then
|f(x)−1lnb−lna∫baf(u)udu|≤(lnx−lna)2lnb−lna[G1(a,x)]1−1/q{[G1(a,x)−G2(a,x)]|f′(a)|q+G2(a,x)|f′(x)|q−[G2(a,x)−G3(a,x)]F(x−a)}1/q+(lnb−lnx)2lnb−lna[G1(b,x)]1−1/q{[G1(b,x)−G2(b,x)]|f′(b)|q+G2(b,x)|f′(x)|q−[G2(b,x)−G3(b,x)]F(x−b)}1/q, | (3.1) |
where G1(u,v), G2(u,v), and G3(u,v) are defined as in Lemma 2.2.
Proof. By Lemma 2.1 and Hölder's integral inequality, we have
|f(x)−1lnb−lna∫baf(u)udu|≤(lnx−lna)2lnb−lna∫10ta1−txt|f′(a1−txt)|dt+(lnb−lnx)2lnb−lna∫10txtb1−t|f′(xtb1−t)|dt≤(lnx−lna)2lnb−lna(∫10ta1−txtdt)1−1/q[∫10ta1−txt|f′(a1−txt)|qdt]1/q+(lnb−lnx)2lnb−lna(∫10txtb1−tdt)1−1/q[∫10txtb1−t|f′(xtb1−t)|qdt]1/q. | (3.2) |
Since |f′|q is a GA-F-convex function on [a,b], using Lemma 2.2, we obtain
∫10ta1−txt|f′(a1−txt)|qdt≤∫10ta1−txt[(1−t)|f′(a)|q+t|f′(x)|q−t(1−t)F(x−a)]dt=[G1(a,x)−G2(a,x)]|f′(a)|q+G2(a,x)|f′(x)|q−[G2(a,x)−G3(a,x)]F(x−a), | (3.3) |
∫10txtb1−t|f′(xtb1−t)|qdt≤∫10txtb1−t[(1−t)|f′(b)|q+t|f′(x)|q−t(1−t)F(x−b)]dt=[G1(b,x)−G2(b,x)]|f′(b)|q+G2(b,x)|f′(x)|q−[G2(b,x)−G3(b,x)]F(x−b), | (3.4) |
and
∫10ta1−txtdt=G1(a,x),∫10txtb1−tdt=G1(b,x). | (3.5) |
Substituting inequalities (3.3) –(3.5) into the inequality (3.2) leads to the inequality (3.1). The proof of Theorem 3.1 is complete.
Corollary 3.1.1. Let F:R→R be a given function. Suppose that f:I⊆R+→R is differentiable, a,b∈I with a<b, and x∈[a,b]. If |f′| is GA-F-convex on I, then
|f(x)−1lnb−lna∫baf(u)udu|≤(lnx−lna)2lnb−lna{[G1(a,x)−G2(a,x)]|f′(a)|+G2(a,x)|f′(x)|−[G2(a,x)−G3(a,x)]F(x−a)}+(lnb−lnx)2lnb−lna{[G1(b,x)−G2(b,x)]|f′(b)|+G2(b,x)|f′(x)|−[G2(b,x)−G3(b,x)]F(x−b)}, |
where G1(u,v), G2(u,v), and G3(u,v) are defined as in Lemma 2.2.
Theorem 3.2. Let F:R→R be a given function. Suppose that f:I⊆R+→R is differentiable, a,b∈I with a<b, and x∈[a,b]. If |f′|q is GA-F-convex on I for q>1, then
|f(x)−1lnb−lna∫baf(u)udu|≤(q−12q−1)1−1/q[(lnx−lna)2lnb−lna{[L(aq,xq)−G1(aq,xq)]|f′(a)|q+G1(aq,xq)|f′(x)|q−[G1(aq,xq)−G2(aq,xq)]F(x−a)}1/q+(lnb−lnx)2lnb−lna{[L(bq,xq)−G1(bq,xq)]|f′(b)|q+G1(bq,xq)|f′(x)|q−[G1(bq,xq)−G2(bq,xq)]F(x−b)}1/q], | (3.6) |
where L(u,v), G1(u,v), and G2(u,v) are defined as in Lemma 2.2.
Proof. By Lemma 2.1 and Hölder's integral inequality, we have
|f(x)−1lnb−lna∫baf(u)udu|≤(lnx−lna)2lnb−lna∫10ta1−txt|f′(a1−txt)|dt+(lnb−lnx)2lnb−lna∫10txtb1−t|f′(xtb1−t)|dt≤(lnx−lna)2lnb−lna(∫10tq/(q−1)dt)1−1/q[∫10aq(1−t)xqt|f′(a1−txt)|qdt]1/q+(lnb−lnx)2lnb−lna(∫10tq/(q−1)dt)1−1/q[∫10bq(1−t)xqt|f′(xtb1−t)|qdt]1/q. | (3.7) |
Using the GA-F-convexity of |f′|q and Lemma 2.2, we obtain
∫10aq(1−t)xqt|f′(a1−txt)|qdt≤∫10aq(1−t)xqt[(1−t)|f′(a)|q+t|f′(x)|q−t(1−t)F(x−a)]dt=[L(aq,xq)−G1(aq,xq)]|f′(a)|q+G1(aq,xq)|f′(x)|q−[G1(aq,xq)−G2(aq,xq)]F(x−a), | (3.8) |
∫10xqtbq(1−t)|f′(xtb1−t)|qdt≤∫10xqtbq(1−t)[(1−t)|f′(b)|q+t|f′(x)|q−t(1−t)F(x−b)]dt=[L(bq,xq)−G1(bq,xq)]|f′(b)|q+G1(bq,xq)|f′(x)|q−[G1(bq,xq)−G2(bq,xq)]F(x−b), | (3.9) |
and
∫10tq/(q−1)dt=q−12q−1. | (3.10) |
Substituting inequalities (3.8)–(3.10) into the inequality (3.7) results in the inequality (3.6). The proof of Theorem 3.2 is complete.
Theorem 3.3. Let F:R→R be a given function. Suppose that f:I⊆R+→R is differentiable, a,b∈I with a<b, and x∈[a,b]. If |f′|q is GA-F-convex on I for q>1, then
|f(x)−1lnb−lna∫baf(u)udu|≤(lnx−lna)2lnb−lna[L(aq/(q−1),xq/(q−1))]1−1/q×[|f′(a)|q(q+1)(q+2)+|f′(x)|qq+2−F(x−a)(q+2)(q+3)]1/q+(lnb−lnx)2lnb−lna[L(bq/(q−1),xq/(q−1))]1−1/q×[|f′(b)|q(q+1)(q+2)+|f′(x)|qq+2−F(x−b)(q+2)(q+3)]1/q, | (3.11) |
where L(u,v) is defined as in Lemma 2.2.
Proof. By Lemma 2.1 and Hölder's integral inequality, we have
|f(x)−1lnb−lna∫baf(u)udu|≤(lnx−lna)2lnb−lna[∫10aq(1−t)/(q−1)xqt/(q−1)dt]1−1/q[∫10tq|f′(a1−txt)|qdt]1/q+(lnb−lnx)2lnb−lna[∫10xqt/(q−1)bq(1−t)/(q−1)dt]1−1/q[∫10tq|f′(xtb1−t)|qdt]1/q. | (3.12) |
Since |f′|q is GA-F-convex on [a,b], using Lemma 2.2, we obtain
∫10tq|f′(a1−txt)|qdt≤∫10tq[(1−t)|f′(a)|q+t|f′(x)|q−t(1−t)F(x−a)]dt=|f′(a)|q(q+1)(q+2)+|f′(x)|qq+2−F(x−a)(q+2)(q+3), | (3.13) |
∫10tq|f′(xtb1−t)|qdt≤∫10tq[(1−t)|f′(b)|q+t|f′(x)|q−t(1−t)F(x−b)]dt=|f′(b)|q(q+1)(q+2)+|f′(x)|qq+2−F(x−b)(q+2)(q+3), | (3.14) |
∫10aq(1−t)/(q−1)xqt/(q−1)dt=L(aq/(q−1),xq/(q−1)), | (3.15) |
∫10xqt/(q−1)bq(1−t)/(q−1)dt=L(bq/(q−1),xq/(q−1)). | (3.16) |
Substituting (3.13)–(3.16) into the inequality (3.12) arrives at the inequality (3.11). The proof of Theorem 3.3 is thus complete.
In this paper, we defined the notion of geometric-arithmetic-F-convex functions in Definition 2.2 and, via the integral identity (2.2) and other analytic techniques such as those in Lemma 2.2, establish those integral inequalities (3.1) in Theorem 3.1, (3.6) in Theorem 3.2, and (3.11) in Theorem 3.3 of the Hermite-Hadamard type for geometric-arithmetic-F-convex functions defined by the inequality (2.1) in Definition 2.2.
The authors appreciate anonymous referees for their careful corrections to, helpful suggestions to, and valuable comments on the original version of this paper.
This work was partially supported by the National Natural Science Foundation of China (Grant No. 11901322), by the Natural Science Foundation of Inner Mongolia (Grant No. 2018LH01002), by the Fostering Project for Successfully Applying for the National Natural Science Foundation of China at the Inner Mongolia University for Nationalities (Grant No. NMDGP17104), and by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (Grant No. NJZY19157), China.
All authors contributed equally to the manuscript and read and approved the final manuscript.
The authors declare that they have no conflict of interest.
[1] | M. Adamek, On a problem connected with strongly convex functions, Math. Inequal. Appl., 19 (2016), 1287–1293. |
[2] | M. Adamek, On Hermite-Hadamard type inequalities for F-convex functions, J. Math. Inequal., 14 (2020), 867–874. |
[3] |
R. F. Bai, F. Qi, B.Y. Xi, Hermite-Hadamard type inequalities for the m- and (α,m)-logarithmically convex functions, Filomat, 27 (2013), 1–7. doi: 10.2298/FIL1301001B
![]() |
[4] |
J. Cao, H. M. Srivastava, Z. G. Liu, Some iterated fractional q-integrals and their applications, Fract. Calc. Appl. Anal., 21 (2018), 672–695. doi: 10.1515/fca-2018-0036
![]() |
[5] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. |
[6] | Y. Hua, Hermite-Hadamard type inequality of GA-convex function, Coll. Math., 24 (2008), 147–149. |
[7] | C. E. M. Pearce, J. Pecaric, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 51–55. |
[8] |
F. Qi, B. Y. Xi, Some Hermite-Hadamard type inequalities for geometrically quasi-convex functions, Proc. Indian Acad. Sci. Math. Sci., 124 (2014), 333–342. doi: 10.1007/s12044-014-0182-7
![]() |
[9] | F. Qi, B. Y. Xi, Some integral inequalities of Simpson type for GA-ε-convex functions, Georgian Math. J., 20 (2013), 775–788. |
[10] |
F. Qi, T. Y. Zhang, B. Y. Xi, Hermite-Hadamard-type integral inequalities for functions whose first derivatives are convex, Ukr. Math. J., 67 (2015), 625–640. doi: 10.1007/s11253-015-1103-3
![]() |
[11] |
Y. Shuang, H. P. Yin, F. Qi, Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions, Analysis, 33 (2013), 197–208. doi: 10.1524/anly.2013.1192
![]() |
[12] |
B. Y. Xi, R. F. Bai, F. Qi, Hermite-Hadamard type inequalities for the m- and (α,m)-geometrically convex functions, Aequationes Math., 84 (2012), 261–269. doi: 10.1007/s00010-011-0114-x
![]() |
[13] | B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for geometrically r-convex functions, Stud. Sci. Math. Hungar., 51 (2014), 530–546. |
[14] | B. Y. Xi, F. Qi, Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal., 16 (2015), 873–890. |
[15] | B. Y. Xi, F. Qi, Some inequalities of Hermite-Hadamard type for geometrically P-convex functions, Adv. Stud. Contemp. Math., 26 (2016), 211–220. |
[16] |
B. Y. Xi, F. Qi, T. Y. Zhang, Some inequalities of Hermite-Hadamard type for m-harmonic-arithmetically convex functions, ScienceAsia, 41 (2015), 357–361. doi: 10.2306/scienceasia1513-1874.2015.41.357
![]() |
[17] | T. Y. Zhang, A. P. Ji, F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Le Matematiche, 68 (2013), 229–239. |
1. | Badreddine Meftah, Maclaurin type inequalities for multiplicatively convex functions, 2023, 0002-9939, 10.1090/proc/16292 | |
2. | MUHAMMAD KASHIF, GHULAM FARID, MUHAMMAD IMRAN, SADIA KOUSAR, RT-CONVEX FUNCTIONS AND THEIR APPLICATIONS, 2023, 24, 2068-3049, 867, 10.46939/J.Sci.Arts-23.4-a05 |