Research article

Dynamical significance of generalized fractional integral inequalities via convexity

  • Received: 30 April 2021 Accepted: 22 June 2021 Published: 28 June 2021
  • MSC : 26A33, 33C10, 33C20

  • The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of fractional integral inequalities with the extended Wright generalized Bessel function acting as a kernel for the convex function, which deals with the Hermite-Hadamard type and trapezoid type inequalities. Moreover, we establish new mid-point type and trapezoid type integral inequalities for $ (\eta_{1}, \eta_{2}) $-convex function related to Hermite-Hadamard type inequality. We establish new version of integral inequality for $ (\eta_{1}, \eta_{2}) $-convex function related to Fejér type. The results discussed in this paper are a generalized version of many inequalities in literature.

    Citation: Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya. Dynamical significance of generalized fractional integral inequalities via convexity[J]. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565

    Related Papers:

  • The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of fractional integral inequalities with the extended Wright generalized Bessel function acting as a kernel for the convex function, which deals with the Hermite-Hadamard type and trapezoid type inequalities. Moreover, we establish new mid-point type and trapezoid type integral inequalities for $ (\eta_{1}, \eta_{2}) $-convex function related to Hermite-Hadamard type inequality. We establish new version of integral inequality for $ (\eta_{1}, \eta_{2}) $-convex function related to Fejér type. The results discussed in this paper are a generalized version of many inequalities in literature.



    加载中


    [1] S. Kumar, K. S. Nisar, R. Kumar, C. Cattani, B. Samet, A new Rabotnov fractional exponential functional based fractional derivative for diffusion equation under external force, Math. Methods Appl. Sci., 43 (2020), 4460–4471.
    [2] B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos, Solitons Fractals, 133 (2020), 109619. doi: 10.1016/j.chaos.2020.109619
    [3] K. K. Ali, M. A. Abd El Salam, E. M. Mohamed, B. Samet, S. Kumar, M. S. Osman, Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series, Adv. Differ. Equ., 2020 (2020), 1–23. doi: 10.1186/s13662-019-2438-0
    [4] S. Kumar, S. Ghosh, M. S. Lotayif, B. Samet, A model for describing the velocity of a particle in Brownian motion by Robotnov function based fractional operator, Alexandria Eng. J., 59 (2020), 1435–1449. doi: 10.1016/j.aej.2020.04.019
    [5] S. Kumar, R. Kumar, J. Singh, K. S. Nisar, D. Kumar, An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-cells with the effect of antiviral drug therapy, Alexandria Eng. J., 59 (2020), 2053–2064. doi: 10.1016/j.aej.2019.12.046
    [6] C. Ravichandran, K. Logeswari, S. K. Panda, K. S. Nisar, On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions, Chaos, Solitons Fractals, 139 (2020), 110012. doi: 10.1016/j.chaos.2020.110012
    [7] G. Rahman, K. S. Nisar, T. Abdeljawad, M. Samraiz, Some new tempered fractional Pólya-Szegö and Chebyshev-Type inequalities with respect to another function, J. Math., 2020 (2020), 9858671.
    [8] M. Samraiz, F. Nawaz, S. Iqbal, T. Abdeljawad, G. Rahman, K. S. Nisar, Certain mean-type fractional integral inequalities via different convexities with applications, J. Inequal. Appl., 2020 (2020), 1–19. doi: 10.1186/s13660-019-2265-6
    [9] J. E. Peajcariaac, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, 1992.
    [10] S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Math. Prepr. Arch., 2003 (2003), 463–817.
    [11] S. Mehmood, F. Zafar, N. Yasmin, New Hermite-Hadamard-Fejér type inequalities for $(\eta_{1}, \eta_{2})$-convex functions via fractional calculus, ScienceAsia, 46 (2020), 102–108. doi: 10.2306/scienceasia1513-1874.2020.012
    [12] S. M. Aslani, M. R. Delavar, S. M. Vaezpour, Inequalities of Fejér Type related to generalized convex functions, Int. J. Anal. Appl., 16 (2018), 38–49.
    [13] M. Rostamian Delavar, S. Mohammadi Aslani, M. De La Sen, Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals, J. Math., 2018 (2018), 5864091.
    [14] M. E. Gordji, M. R. Delavar, M. De La Sen, On $\phi$-convex functions, J. Math. Inequal., 10 (2016), 173–183.
    [15] M. E. Gordji, M. R. Delavar, S. S. Dragomir, Some inequalities related to $\eta$-convex functions, Prepr. Rgmia Res. Rep. Coll., 18 (2015), 1–14.
    [16] M. R. Delavar, S. S. Dragomir, On $\eta$-convexity, J. Inequal. Appl., 20 (2017), 203–216.
    [17] M. Eshaghi, S. S. Dragomir, Rostamian Delavar, M. An inequality related to $\eta $-convex functions (Ⅱ), Int. J. Nonlinear Anal. Appl., 6 (2015), 27–33.
    [18] V. Jeyakumar, (1984) Strong and weak invexity in mathematical programming, In: Methods of Operations Research, Vol. 55,109–125.
    [19] A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc., 28 (1986), 1–9.
    [20] M. A. Hanson, B. Mond, (1987) Convex transformable programming problems and invexity, J. Inf. Optim. Sci., 8(2), 201-207.
    [21] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, arXiv Preprint, (2008), arXiv: 0805.3823.
    [22] M. Andric, G. Farid, (2019) A generalization of Mittag-Leffler function associated with Opial type inequalities due to Mitrinovic and Pecaric, Preprint.
    [23] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl, 3 (2012), 1–13. doi: 10.1142/9789814355216_0001
    [24] T. N. Srivastava, Y. P. Singh, On Maitland's generalised Bessel Function, Can. Math. Bull., 11 (1968), 739–741. doi: 10.4153/CMB-1968-091-5
    [25] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modell., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048
    [26] G. H. Toader, (1984) Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985,329–338.
    [27] L. Fejér, Über die fourierreihen, Ⅱ, Math. Naturwiss. Anz Ungar. Akad. Wiss, (1906), 24.
    [28] K. L. Tseng, S. R. Hwang, S. S. Dragomir, Fejér-type inequalities (Ⅰ), J. Inequalities Appl., 2010 (2010), 531976. doi: 10.1155/2010/531976
    [29] H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. doi: 10.1016/j.jmaa.2016.09.018
    [30] C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of Hermite-Hadamard type for $k$-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), 1–9.
    [31] K. S. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 245. doi: 10.1186/s13660-019-2197-1
    [32] K. S. Niasr, A. Tassadiq, G. Rahman, A. Khan, (2019) Some inequalities via fractional conformable integral operators, J. Inequal. Appl., 2019 (2019), 217. doi: 10.1186/s13660-019-2170-z
    [33] G. Rahmnan, T. Abdeljawad, F. Jarad, K. S. Nisar, Bounds of generalized proportional fractional integrals in general form via convex functions and their applications, Mathematics, 8 (2020), 113. doi: 10.3390/math8010113
    [34] R. S. Ali, S. Mubeen, I. Nayab, S. Araci, G. Rahman, K. S. Nisar, Some fractional operators with the generalized Bessel-Maitland function, Discrete Dyn. Nat. Soc., 2020 (2020), 1378457.
    [35] A. Petojevic, A note about the Pochhammer symbol, Math. Moravica, 12 (2008), 37–42.
    [36] S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler $k$-function. Adv. Differ. Equ., 2019 (2019), 520.
    [37] R. S. Ali, S. Mubeen, M. M. Ahmad, A class of fractional integral operators with multi-index Mittag-Leffler k-function and Bessel k-function of first kind, J. Math. Comput. Sci., 22 (2020), 266–281. doi: 10.22436/jmcs.022.03.06
    [38] S. Mubeen, R. S. Ali, I. Nayab, G. Rahman, T. Abdeljawad, K. S. Nisar, Integral transforms of an extended generalized multi-index Bessel function, AIMS Math., 5 (2020), 7531–7547. doi: 10.3934/math.2020482
    [39] S. Mehmood, F. Zafar, N. Yasmin, Hermite-Hadamard-Fejér type inequalities for Preinvex functions using fractional integrals, Mathematics, 7 (2019), 467. doi: 10.3390/math7050467
    [40] N. Mehreen, M. Anwar, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for p-convex functions via conformable fractional integrals, J. Inequal. Appl., 2020 (2020), 107. doi: 10.1186/s13660-020-02363-3
    [41] O. Almutairi, A. Kılıçman, New fractional inequalities of midpoint type via s-convexity and their application, J. Inequal. Appl., 2019 (2019), 267. doi: 10.1186/s13660-019-2215-3
    [42] H. Budak, On Fejér type inequalities for convex mappings utilizing fractional integrals of a function with respect to another function, Res. Math., 74 (2019), 29. doi: 10.1007/s00025-019-0960-8
    [43] E. D. Rainville, Special functions, Chelsea Publ. Co., Bronx, New York, 1971.
    [44] P. Agarwal, M. Chand, D. Baleanu, D. ÓRegan, S. Jain, On the solutions of certain fractional kinetic equations involving $k$-Mittag-Leffler function, Adv. Differ. Equ., 2018 (2018), 249. doi: 10.1186/s13662-018-1694-8
    [45] K. Saoudi, P. Agarwal, P. Kumam, A. Ghanmi, P. Thounthong, The Nehari manifold for a boundary value problem involving Riemann–Liouville fractional derivative, Adv. Differ, Equ., 2018 (2018), 263. doi: 10.1186/s13662-018-1722-8
    [46] P. Agarwal, J. Choi, Certain fractional integral inequalities associated with pathway fractional integral operators, Bull. Korean Math. Soc., 53 (2016), 181–193. doi: 10.4134/BKMS.2016.53.1.181
    [47] P. O. Mohammed, T. Abdeljawad, M. A. Alqudah, F. Jarad, New dscrete inequalities of Hermite-Hadamard type for convex functions, Adv. Differ. Equ., 2021 (2021), 122. doi: 10.1186/s13662-021-03290-3
    [48] D. Baleanu, A. Kashuri, P. O. Mohammed, B. Meftah, General Raina fractional integral inequalities on coordinated of convex functions, Adv. Differ. Equ., 2021 (2021), 82. doi: 10.1186/s13662-021-03241-y
    [49] P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Compt. Appl. Math., 2020 (2020), 372.
    [50] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., 2020 (2020), 1–18.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2302) PDF downloads(122) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog