Citation: Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu. New Hermite-Hadamard type inequalities for exponentially convex functions and applications[J]. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
[1] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[2] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[3] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[4] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[5] | Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364 |
[6] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[7] | Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu . Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions. AIMS Mathematics, 2020, 5(3): 2629-2645. doi: 10.3934/math.2020171 |
[8] | XuRan Hai, ShuHong Wang . Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666 |
[9] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[10] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
Convexity has played a crucial role in the advancement of pure and applied mathematics [1,2,3,4,5,6,7,8,9,10]. Due to its robustness, convex functions and convex sets have been generalized and extended in many mathematical areas [11,12,13,14,15,16,17,18,19,20]. In particular, many inequalities can be found in the literature [21,22,23,24,25,26,27,28,29,30] via convexity theory.
Integral inequalities [31,32,33,34] have numerous applications in number theory, combinatorics, orthogonal polynomials, hypergeometric functions, quantum theory, linear programming, optimization theory, mechanics and in the theory of relativity. This subject has received considerable attention from researchers [35,36,37,38] and hence it is assumed as an incorporative the subject between mathematics, statistics, economics, and physics [39,40,41].
To the best of our knowledge, the Hermite-Hadamard inequality is a well-known, paramount and extensively useful inequality in the applied literature [42,43,44,45]. This inequality is of pivotal significance because of other classical inequalities such as the Hardy, Opial, Lynger, Ostrowski, Minkowski, Hölder, Ky-Fan, Beckenbach-Dresher, Levinson, arithmetic-geometric, Young, Olsen and Gagliardo-Nirenberg inequalities, which are closely related to the classical Hermite-Hadamard inequality [46]. It can be stated as follows:
Let φ:I⊆R↦R be a convex function and c,d∈I with c<d. Then
φ(c+d2)≤1d−cd∫cφ(z)dz≤φ(c)+φ(d)2. | (1.1) |
In [47], Fejér contemplated the important generalizations that is the weighted generalization of the Hermite-Hadamard inequality.
Let I⊆R and a function φ:I↦R be a convex function. Then the inequalities
φ(c+d2)d∫cw(z)dz≤d∫cφ(z)w(z)dz≤φ(c)+φ(d)2d∫cw(z)dz. | (1.2) |
hold, where w:I↦R is non-negative, integrable and symmetric with respect to c+d2. If we choose w(z)=1, then (1.2) reduces to (1.1). Several classical inequalities can be obtained with the help of inequality (1.1) by considering the use of peculiar convex function φ. Moreover, these inequalities for convex functions have a very important role in both applied and pure mathematics.
In recent years, integral inequalities have been derived via fractional analysis, which has emerged as another interesting technique. Due to advancement in inequalities, the comprehensive investigation of exponentially convex functions as the K-conformable fractional integral in the present paper is new.
The class of exponentially-convex functions were introduced by Dragomir and Gomm [48]. Bernstein [49] and Antczak [50] introduced these exponentially convex functions implicitly and discuss their role in mathematical programming. The proliferating research on big data analysis and deep learning has recently intensified the interest in information theory involving exponentially-convex functions. The smoothness of exponentially-convex functions is exploited for statistical learning, sequential prediction, and stochastic optimization.
Now we recall the concept of exponentially convex functions, which is mainly due to M. A. Noor and K. I. Noor [51,52].
Definition 1.1. (See [51,52]) A real-valued function φ:M⊆R↦R is said to be an exponentially convex on M if the inequality
eφ(ξc+(1−ξ)d)≤ξeφ(c)+(1−ξ)eφ(d) | (1.3) |
holds for all c,d∈M and ξ∈[0,1].
It is well-known that a function φ:I=[c,d]⊆R↦R is an exponentially convex function if and only if it satisfies the inequality
eφ(c+d2)≤1d−cd∫ceφ(z)dz≤eφ(c)+eφ(d)2 | (1.4) |
for all c,d∈I with c<d. Inequality (1.4) provide the upper and lower estimates for the exponential integral, is called the Hermite-Hadamard inequality.
Recently, the fractional calculus has attracted the consideration of several researchers [53,54]. The impact and inspiration of the fractional calculus in both theoretical, applied science and engineering arose out substantially. Fractional integral operators are sometimes the gateway to physical problems that cannot be expressed by classical integral, sometimes for the solution of problems expressed in fractional order. In recent years, a lot of new operator have been defined. Some of these operators are very close to classical operators in terms of their characteristics and definitions. Various studies in the literature, on distinct fractional operators such as the classical Riemann-Liouville, Caputo, Katugampola, Hadamard, and Marchaud versions have shown versatility in modeling and control applications across various disciplines. However, such forms of fractional derivatives may not be able to explain the dynamic performance accurately, hence many authors are found to be sorting out new fractional differentiations and integrations which have a kernel depending upon a function and this makes the range of definition expanded [55,56].
Now, we recall the basic definitions and new notations of conformable fractional operators.
Definition 1.2. ([3]). Let φ∈L1([c,d]). Then the Riemann-Liouville integrals Jδc+φ and Jδd−φ of order δ>0 are defined by
(Jδc+)φ(z)=1Γ(δ)∫zc(z−ξ)δ−1φ(ξ) dξ(z>c) | (1.5) |
and
(Jδd−)φ(z)=1Γ(δ)∫dz(ξ−z)δ−1φ(ξ) dξ(z<d), | (1.6) |
respectively, where Γ(⋅) is the Euler Gamma function defined by Γ(δ)=∞∫0e−ξξδ−1dξ.
In [57], Jarad et al. defined a new fractional integral operator that has several special cases among many other features as follows:
γJδc+φ(z)=1Γ(γ)∫zc((z−c)δ−(ξ−c)δδ)γ−1φ(ξ)(ξ−c)1−δdξ | (1.7) |
and
γJδd−φ(z)=1Γ(γ)∫dz((d−z)δ−(d−ξ)δδ)γ−1φ(ξ)(d−ξ)1−δdξ. | (1.8) |
Remark 1.1. It is easy to see the following connections:
(1) Let c=0 and δ=1. Then (1.7) reduces to the Riemann-Liouville operator that is given in (1.5) and alike the other.
(2) If we set c=0 and δ↦0, then the new conformable fractional integral coincides with the generalized fractional integral [58].
(3) Furthermore, (1.8) reduces to the Riemann-Liouville operator if we set d=0 and δ=1. It also corresponds the Hadamard fractional integral [58] once d=0 and δ↦0 with the generalized fractional integral.
The generalized K-conformable fractional integrals are defined by
γKJδc+φ(z)=1KΓK(γ)∫zc((z−c)δ−(ξ−c)δδ)γK−1φ(ξ)(ξ−c)1−δdξ | (1.9) |
and
γKJδd−φ(z)=1KΓK(γ)∫dz((d−z)δ−(d−ξ)δδ)γK−1φ(ξ)(d−ξ)1−δdξ. | (1.10) |
Definition 1.3. Let K>0. Then the K-Gamma function ΓK is defined by
ΓK (δ)=limy→∞y! Ky(yK)δK−1(δ)y,K. | (1.11) |
If Re(δ)>0, then the K-Gamma function in integral form is defined by
ΓK(δ)=∫∞0 e−ξKKξδ−1dξ | (1.12) |
with δΓK(δ)=ΓK(δ+K), where ΓK(⋅) stands for the K-gamma function.
This paper is aimed at establishing some new integral inequalities for exponentially convexity via K-conformable fractional integrals linked with inequality (1.1). We present some inequalities for the class of mappings whose derivatives in absolute values are exponentially convex. In addition, we obtain some new inequalities linked with (1.2) and exponentially convexity via classical integrals. Moreover, we apply the novel approach of Hölder-İşcan and improved power-mean inequality are better than the Hölder and power-mean inequality. Moreover, we illustrate two examples to show the applicability and supremacy of the proposed technique. As an application, the inequalities for special means are derived.
In this section, we demonstrate the Hermite-Hadamard type inequalities for exponentially convex function via K-conformable fractional integral operator.
Theorem 2.1. Let K>0, δ>0, γ>0 and φ:I↦R be an exponentially convex function such that c,d∈I with c<d and eφ∈L1([c,d]). Then the following inequality holds for K-conformable fractional integrals:
eφ(c+d2)≤δγK2δγK−1ΓK(γ+K)(d−c)δγK{γKJδ(c+d2)−eφ(c)+KΓK(γ)γKJδ(c+d2)+eφ(d)}≤eφ(c)+eφ(d)2. | (2.1) |
Proof. Since φ is exponentially convex on I, for ξ=12, we have
eφ(z1+z22)≤eφ(z1)+eφ(z2)2 |
for all z1,z2∈I. Thus, if we choose z1=ξ2c+2−ξ2d and z2=2−ξ2c+ξ2d, for c,d∈I and ξ∈[0,1], we have
2eφ(c+d2)≤eφ(2−ξ2c+ξ2d)+eφ(ξ2c+2−ξ2d). | (2.2) |
Moreover, multiplying both sides of (2.2) by (1−(1−ξ)δδ)γK−1(1−ξ)δ−1 and then making use of integration with respect to ξ over [0,1], we can combine the resulting inequality with the definition of integral operator as follows
2eφ(c+d2)1∫0(1−(1−ξ)δδ)γK−1(1−ξ)δ−1dξ≤1∫0(1−(1−ξ)δδ)γK−1(1−ξ)δ−1eφ(2−ξ2c+ξ2d)dξ+1∫0(1−(1−ξ)δδ)γK−1(1−ξ)δ−1eφ(ξ2c+2−ξ2d)dξ≤(2d−c)δγK{∫c+d2c((d−c2)δ−(c+d2−u)δδ)γK−1(c+d2−u)δ−1eφ(u)du+∫dc+d2((d−c2)δ−(u−c+d2)δδ)γK−1(u−c+d2)δ−1eφ(u)du}=(2d−c)δγK{KΓK(γ)γKJδ(c+d2)−eφ(c)+KΓK(γ)γKJδ(c+d2)+eφ(d)}. |
It is clear to see that
1∫0(1−(1−ξ)δδ)γK−1(1−ξ)δ−1dξ=KγδγK. |
Consequently, we get
2KγδγKeφ(c+d2)≤(2d−c)δγK{KΓK(γ)γKJδ(c+d2)−eφ(c)+KΓK(γ)γKJδ(c+d2)+eφ(d)}. | (2.3) |
This completes the proof of the first inequality (2.1).
To prove the second part of the inequality (2.1), by a similar discussion, we will start with the exponentially convexity of φ, then for ξ∈[0,1], we have
eφ(2−ξ2c+ξ2d)+eφ(ξ2c+2−ξ2d)≤eφ(c)+eφ(d). | (2.4) |
By multiplying (2.4) by (1−(1−ξ)δδ)γK−1(1−ξ)δ−1 and then integrating the above estimate with respect to ξ over [0,1], we obtain
1∫0(1−(1−ξ)δδ)γK−1(1−ξ)δ−1eφ(2−ξ2c+ξ2d)dξ+1∫0(1−(1−ξ)δδ)γK−1(1−ξ)δ−1eφ(ξ2c+2−ξ2d)dξ≤[eφ(c)+eφ(d)]1∫0(1−(1−ξ)δδ)γK−1(1−ξ)δ−1dξ. |
After simplification, we get
(2d−c)δγK{KΓK(γ)γKJδ(c+d2)−eφ(c)+KΓK(γ)γKJδ(c+d2)+eφ(d)}≤K[eφ(c)+eφ(d)]γδγK. |
The proof is completed.
Throughout this investigation, we use I∘ to denote the interior of the interval I⊆R. In order to establish our main results, we need a lemma which we present in this section.
Lemma 2.2. Let K>0, δ, γ>0 and φ:I↦R be a differentiable and exponentially convex function on I∘ such that c,d∈I∘ with c<d and (eφ)′∈L1([c,d]). Then the following equality holds for K-conformable fractional integrals:
δγK2δγK−1ΓK(γ+K)(d−c)δγK[γKJδ(c+d2)−eφ(c)+γKJδ(c+d2)+eφ(d)]−eφ(c+d2)=δγK(d−c)41∫0(1−(1−ξ)δδ)γK{eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)−eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)}dξ. | (2.5) |
Proof. Integrating by parts and changing variable of definite integral yield
1∫0(1−(1−ξ)δδ)γKeφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)dξ=2d−c(1−(1−ξ)δδ)γKeφ(2−ξ2c+ξ2d)|10−2δγKδγK(d−c)1∫0(1−(1−ξ)δ)γK(1−ξ)δ−1eφ(2−ξ2c+ξ2d)dξ=2δγK(d−c)eφ(c+d2)−2δγKδγKδγK−1(d−c)δγK+1∫c+d2c((d−c2)δ−(c+d2−u)δδ)γK−1(c+d2−u)δ−1eφ(u)du=2δγK(d−c)eφ(c+d2)−2δγK+1ΓK(γ+K)δγK−1(d−c)δγK+1γKJδ(c+d2)−eφ(c). | (2.6) |
By similar argument, we have
1∫0(1−(1−ξ)δδ)γKeφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)dξ=−2δγK(d−c)eφ(c+d2)+2δγK+1ΓK(γ+K)δγK−1(d−c)δγK+1γKJδ(c+d2)+eφ(d). | (2.7) |
Subtracting these two equations leads to Lemma 2.2.
Now we are in a position to establish some new integral inequalities of Hermite-Hadamard type for differentiable convex functions. The first main result is Theorem 2.3.
Theorem 2.3. Let K>0, δ, γ>0 and φ:I↦R be a differentiable and exponentially convex function on I∘ such that c,d∈I∘ with c<d and (eφ)′∈L1([c,d]). If |(eφ)′|q is convex on I for some fixed p,q>1,q−1+p−1=1. Then the following inequality holds for K-conformable fractional integrals:
|δγK2δγK−1ΓK(γ+K)(d−c)δγK[γKJδ(c+d2)−eφ(c)+γKJδ(c+d2)+eφ(d)]−eφ(c+d2)|≤δ1q−1(d−c)41+1q[B(γK+1,1δ)]1−1q[{[B(γK+1,3δ)+2B(γK+1,2δ)+B(γK+1,1δ)]|eφ(c)φ′(c)|q+[B(γK+1,3δ)−2B(γK+1,2δ)+B(γK+1,1δ)]|eφ(d)φ′(d)|q+Υ1(c,d)[B(γK+1,1δ)−B(γK+1,2δ)]}1q+{[B(γK+1,3δ)−2B(γK+1,2δ)+B(γK+1,1δ)]|eφ(c)φ′(c)|q+[B(γK+1,3δ)+2B(γK+1,2δ)+B(γK+1,1δ)]|eφ(d)φ′(d)|q+Υ1(c,d)[B(γK+1,1δ)−B(γK+1,2δ)]}1q], | (2.8) |
where
Υ1(c,d)=|eφ(c)φ′(d)|q+|eφ(d)φ′(c)|q. | (2.9) |
Proof. It follows from Lemma 2.2 and the power-mean inequality that
|δγK2δγK−1ΓK(γ+K)(d−c)δγK[γKJδ(c+d2)−eφ(c)+γKJδ(c+d2)+eφ(d)]−eφ(c+d2)|≤δγK(d−c)4{(1∫0(1−(1−ξ)δδ)γKdξ)1−1q(1∫0(1−(1−ξ)δδ)γK|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ)1q+(1∫0(1−(1−ξ)δδ)γKdξ)1−1q(1∫0(1−(1−ξ)δδ)γK|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ)1q}. | (2.10) |
Utilizing the convexity of |(eφ)′|q on I, we have
1∫0(1−(1−ξ)δδ)γK|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ≤1∫0(1−(1−ξ)δδ)γK[2−ξ2|eφ(c)|q+ξ2|eφ(d)|q][2−ξ2|φ′(c)|q+ξ2|φ′(d)|q]dξ=1∫0(1−(1−ξ)δδ)γK[(2−ξ2)2|eφ(c)φ′(c)|q+(ξ2)2|eφ(d)φ′(d)|q+ξ(2−ξ)4[|eφ(c)φ′(d)|q+|eφ(d)φ′(c)|q]]dξ=14δγK{[B(γK+1,3δ)+2B(γK+1,2δ)+B(γK+1,1δ)]|eφ(c)φ′(c)|q+[B(γK+1,3δ)−2B(γK+1,2δ)+B(γK+1,1δ)]|eφ(d)φ′(d)|q+Υ1(c,d)[B(γK+1,1δ)−B(γK+1,2δ)]}. | (2.11) |
Analogously, we have
1∫0(1−(1−ξ)δδ)γK|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ≤14δγK{[B(γK+1,3δ)−2B(γK+1,2δ)+B(γK+1,1δ)]|eφ(c)φ′(c)|q+[B(γK+1,3δ)+2B(γK+1,2δ)+B(γK+1,1δ)]|eφ(d)φ′(d)|q+Υ1(c,d)[B(γK+1,1δ)−B(γK+1,2δ)]}. | (2.12) |
Substituting the above two inequalities into the inequality (2.10), we get the required inequality (2.8). This completes the proof.
Theorem 2.4. Let K>0,δ,γ>0 and φ:I↦R be a differentiable and exponentially convex function on I∘ such that c,d∈I∘ with c<d and (eφ)′∈L1([c,d]). If |(eφ)′|q is convex on I for some fixed q>1,q−1+p−1=1. Then the following inequality holds for K-conformable fractional integrals:
|δγK2δγK−1ΓK(γ+K)(d−c)δγK[γKJδ(c+d2)−eφ(c)+γKJδ(c+d2)+eφ(d)]−eφ(c+d2)|≤δγK(d−c)4[1δpδK+1B(pγK+1,1δ)]1p[{7|eφ(c)φ′(c)|q+|eφ(d)φ′(d)|q+2Υ1(c,d)12}1q+{|eφ(c)φ′(c)|q+7|eφ(d)φ′(d)|q+2Υ1(c,d)12}1q], | (2.13) |
where Υ1(c,d) is given in (2.9).
Proof. It follows from Lemma 2.2 and the noted Hölder's integral inequality that
|δγK2δγK−1ΓK(γ+K)(d−c)δγK[γKJδ(c+d2)−eφ(c)+γKJδ(c+d2)+eφ(d)]−eφ(c+d2)|≤δγK(d−c)4{(1∫0(1−(1−ξ)δδ)pγKdξ)1p(1∫0|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ)1q+(1∫0(1−(1−ξ)δδ)pγKdξ)1p(1∫0|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ)1q}. | (2.14) |
Utilizing the convexity of |(eφ)′|q on I, we have
1∫0|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ≤1∫0[2−ξ2|eφ(c)|q+ξ2|eφ(d)|q][2−ξ2|φ′(c)|q+ξ2|φ′(d)|q]dξ=1∫0[(2−ξ2)2|eφ(c)φ′(c)|q+(ξ2)2|eφ(d)φ′(d)|q+ξ(2−ξ)4[|eφ(c)φ′(d)|q+|eφ(d)φ′(c)|q]]dξ=712|eφ(c)φ′(c)|q+112|eφ(d)φ′(d)|q+212Υ1(c,d). | (2.15) |
Analogously, we have
1∫0|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ≤112|eφ(c)φ′(c)|q+712|eφ(d)φ′(d)|q+212Υ1(c,d). | (2.16) |
Substituting the above two inequalities into the inequality (2.14), we get the required inequality (2.13). This completes the proof.
In this section, we will derive the new generalizations by employing the Hölder İşcan [59] and improved power-mean [60] inequalities.
Theorem 3.1. Let K,δ,γ>0 and φ:I↦R be a differentiable and exponentially convex function on I∘ such that c,d∈I∘ with c<d and (eφ)′∈L1([c,d]). If |(eφ)′|q is convex on I for some fixed q>1,q−1+p−1=1. Then the following inequality holds for K-conformable fractional integrals:
|δγK2δγK−1ΓK(γ+K)(d−c)δγK[γKJδ(c+d2)−eφ(c)+γKJδ(c+d2)+eφ(d)]−eφ(c+d2)|≤δγK(d−c)2[(B(1+pγK,2δ)δpγK+1)1p{17|eφ(c)φ′(c)|q+|eφ(d)φ′(d)|q+3Υ1(c,d)48}1q×[B(1+pγK,1δ)−B(1+pγK,2δ)δpγK+1]1p{11|eφ(c)φ′(c)|q+3|eφ(d)φ′(d)|q+5Υ1(c,d)48}1q+[B(1+pγK,2δ)δpγK+1]1p{|eφ(c)φ′(c)|q+17|eφ(d)φ′(d)|q+3Υ1(c,d)48}1q×[B(1+pγK,1δ)−B(1+pγK,2δ)δpγK+1]1p{3|eφ(c)φ′(c)|q+11|eφ(d)φ′(d)|q+5Υ1(c,d)48}1q], | (3.1) |
whereΥ1(c,d) is given in (2.9).
Proof. It follows from Lemma 2.2 and the Hölder-İşcan inequality [59] that
|δγK2δγK−1ΓK(γ+K)(d−c)δγK[γKJδ(c+d2)−eφ(c)+γKJδ(c+d2)+eφ(d)]−eφ(c+d2)|≤δγK(d−c)4[{(1∫0(1−ξ)(1−(1−ξ)δδ)pγKdξ)1p(1∫0(1−ξ)(|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ)1q}×{(1∫0ξ(1−(1−ξ)δδ)pγKdξ)1p(1∫0ξ(|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ)1q}+{(1∫0(1−ξ)(1−(1−ξ)δδ)pγKdξ)1p(1∫0(1−ξ)(|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ)1q×{(1∫0ξ(1−(1−ξ)δδ)pγKdξ)1p(1∫0ξ(|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ)1q}]. | (3.2) |
Utilizing the convexity of |(eφ)′|q on I, we get
1∫0(1−ξ)|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ≤1∫0(1−ξ)[2−ξ2|eφ(c)|q+ξ2|eφ(d)|q][2−ξ2|φ′(c)|q+ξ2|φ′(d)|q]dξ=1∫0(1−ξ)[(2−ξ2)2|eφ(c)φ′(c)|q+(ξ2)2|eφ(d)φ′(d)|q+ξ(2−ξ)4[|eφ(c)φ′(d)|q+|eφ(d)φ′(c)|q]]dξ=1748|eφ(c)φ′(c)|q+148|eφ(d)φ′(d)|q+348Υ1(c,d), | (3.3) |
1∫0ξ|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ≤1148|eφ(c)φ′(c)|q+348|eφ(d)φ′(d)|q+548Υ1(c,d), | (3.4) |
1∫0(1−ξ)|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ≤148|eφ(c)φ′(c)|q+1748|eφ(d)φ′(d)|q+348Υ1(c,d) | (3.5) |
and
1∫0ξ|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ≤348|eφ(c)φ′(c)|q+1148|eφ(d)φ′(d)|q+548Υ1(c,d), | (3.6) |
where we have used the indeitites
1∫0(1−ξ)(1−(1−ξ)δδ)pγKdξ=1δpγK+1B(1+pγK,2δ),1∫0ξ(1−(1−ξ)δδ)pγKdξ=1δpγK+1[B(1+pγK,1δ)−B(1+pγK,2δ)]. | (3.7) |
Combining (3.2)–(3.7) leads to the required inequality (4.4). This completes the proof.
Theorem 3.2. Let K,δ,γ>0 and φ:I↦R be a differentiable and exponentially convex function on I∘ such that c,d∈I∘ with c<d and (eφ)′∈L1([c,d]). If |(eφ)′|q is convex on I for some fixed p,q>1,q−1+p−1=1. Then the following inequality holds for K-conformable fractional integrals:
|δγK2δγK−1ΓK(γ+K)(d−c)δγK[γKJδ(c+d2)−eφ(c)+γKJδ(c+d2)+eφ(d)]−eφ(c+d2)|≤22/q(d−c)2δ×[(B(1+γK,2δ))1−1q[{Ω1(δ,γ;K)|eφ(c)φ′(c)|q+Ω2(δ,γ;K)|eφ(d)φ′(d)|q+Υ1(c,d)Ω3(δ,γ;K)}1q×(B(1+γK,1δ)−B(1+γK,2δ))1−1q×{Ω4(δ,γ;K)|eφ(c)φ′(c)|q+Ω5(δ,γ;K)|eφ(d)φ′(d)|q+Υ1(c,d)Ω6(δ,γ;K)}1q+(B(1+γK,2δ))1−1q{Ω2(δ,γ;K)|eφ(c)φ′(c)|q+Ω1(δ,γ;K)|eφ(d)φ′(d)|q+Υ1(c,d)Ω3(δ,γ;K)}1q×(B(1+γK,1δ)−B(1+γK,2δ))1−1q×{Ω5(δ,γ;K)|eφ(c)φ′(c)|q+Ω4(δ,γ;K)|eφ(d)φ′(d)|q+Υ1(c,d)Ω6(δ,γ;K)}1q], | (3.8) |
where
Ω1(δ,γ;K)=B(γK+1,4δ)+2B(γK+1,3δ)+B(γK+1,2δ),Ω2(δ,γ;K)=B(γK+1,4δ)−2B(γK+1,3δ)+B(γK+1,2δ),Ω3(δ,γ;K)=B(γK+1,2δ)−B(γK+1,4δ),Ω4(δ,γ;K)=B(γK+1,1δ)+B(γK+1,2δ)−B(γK+1,3δ)−B(γK+1,4δ),Ω5(δ,γ;K)=B(γK+1,1δ)−3B(γK+1,2δ)+3B(γK+1,3δ)−B(γK+1,4δ),Ω6(δ,γ;K)=B(γK+1,4δ)−B(γK+1,3δ)−B(γK+1,2δ)+B(γK+1,1δ), | (3.9) |
and Υ1(c,d) is given in (2.9).
Proof. Making use of Lemma 2.2 and the improved power-mean inequality [60], we have
|δγK2δγK−1ΓK(γ+K)(d−c)δγK[γKJδ(c+d2)−eφ(c)+γKJδ(c+d2)+eφ(d)]−eφ(c+d2)|≤δγK(d−c)4[{(1∫0(1−ξ)(1−(1−ξ)δδ)γKdξ)1−1q×(1∫0(1−ξ)(1−(1−ξ)δδ)γK|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ)1q}×{(1∫0ξ(1−(1−ξ)δδ)γKdξ)1−1q(1∫0ξ(1−(1−ξ)δδ)γK|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ)1q}+{(1∫0(1−ξ)(1−(1−ξ)δδ)γKdξ)1−1q(1∫0(1−ξ)(1−(1−ξ)δδ)γK|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ)1q×{(1∫0ξ(1−(1−ξ)δδ)γKdξ)1−1q(1∫0ξ(1−(1−ξ)δδ)γK|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ)1q}]. | (3.10) |
Utilizing the convexity of |(eφ)′|q on I, we obtain
1∫0(1−ξ)(1−(1−ξ)δδ)γK|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ≤1∫0(1−ξ)(1−(1−ξ)δδ)γK[2−ξ2|eφ(c)|q+ξ2|eφ(d)|q][2−ξ2|φ′(c)|q+ξ2|φ′(d)|q]dξ=1∫0(1−ξ)(1−(1−ξ)δδ)γK[(2−ξ2)2|eφ(c)φ′(c)|q+(ξ2)2|eφ(d)φ′(d)|q+ξ(2−ξ)4[|eφ(c)φ′(d)|q+|eφ(d)φ′(c)|q]]dξ=14δγK+1[{B(γK+1,4δ)+2B(γK+1,3δ)+B(γK+1,2δ)}|eφ(c)φ′(c)|q+{B(γK+1,4δ)−2B(γK+1,3δ)+B(γK+1,2δ)}|eφ(d)φ′(d)|q+Υ1(c,d){B(γK+1,2δ)−B(γK+1,4δ)}]=14δγK+1[Ω1(δ,γ;K)|eφ(c)φ′(c)|q+Ω2(δ,γ;K)|eφ(d)φ′(d)|q+Υ1(c,d)Ω3(δ,γ;K)], | (3.11) |
1∫0ξ(1−(1−ξ)δδ)γK|eφ(2−ξ2c+ξ2d)φ′(2−ξ2c+ξ2d)|qdξ≤14δγK+1[{B(γK+1,1δ)+B(γK+1,2δ)−B(γK+1,3δ)−B(γK+1,4δ)}|eφ(c)φ′(c)|q+{B(γK+1,1δ)−3B(γK+1,2δ)+3B(γK+1,3δ)−B(γK+1,4δ)}|eφ(d)φ′(d)|q+Υ1(c,d){B(γK+1,4δ)−B(γK+1,3δ)−B(γK+1,2δ)+B(γK+1,1δ)}]=14δγK+1[Ω4(δ,γ;K)|eφ(c)φ′(c)|q+Ω5(δ,γ;K)|eφ(d)φ′(d)|q+Υ1(c,d)Ω6(δ,γ;K)], | (3.12) |
1∫0(1−ξ)(1−(1−ξ)δδ)γK|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ≤14δγK+1[{B(γK+1,4δ)−2B(γK+1,3δ)+B(γK+1,2δ)}|eφ(c)φ′(c)|q+{B(γK+1,4δ)+2B(γK+1,3δ)+B(γK+1,2δ)}|eφ(d)φ′(d)|q+Υ1(c,d){B(γK+1,2δ)−B(γK+1,4δ)}]=14δγK+1[Ω2(δ,γ;K)|eφ(c)φ′(c)|q+Ω1(δ,γ;K)|eφ(d)φ′(d)|q+Υ1(c,d)Ω3(δ,γ;K)] | (3.13) |
and
1∫0ξ(1−(1−ξ)δδ)γK|eφ(ξ2c+2−ξ2d)φ′(ξ2c+2−ξ2d)|qdξ≤14δγK+1[{B(γK+1,1δ)−3B(γK+1,2δ)+3B(γK+1,3δ)−B(γK+1,4δ)}|eφ(c)φ′(c)|q+{B(γK+1,1δ)+B(γK+1,2δ)−B(γK+1,3δ)−B(γK+1,4δ)}|eφ(d)φ′(d)|q+Υ1(c,d){B(γK+1,4δ)−B(γK+1,3δ)−B(γK+1,2δ)+B(γK+1,1δ)}]=14δγK+1[Ω5(δ,γ;K)|eφ(c)φ′(c)|q+Ω4(δ,γ;K)|eφ(d)φ′(d)|q+Υ1(c,d)Ω6(δ,γ;K)], | (3.14) |
where we have used the facts that
1∫0(1−ξ)(1−(1−ξ)δδ)γKdξ=1δγK+1B(1+γK,2δ),1∫0ξ(1−(1−ξ)δδ)γKdξ=1δγK+1[B(1+γK,1δ)−B(1+γK,2δ)]. | (3.15) |
Combining (3.10)–(3.15) gives the required inequality (3.8). This completes the proof.
In this section, we present some examples to demonstrate the applications of our proposed results on modified Bessel functions and σ-digamma functions.
Example 4.1. Let z∈R and Iρ:R↦[1,∞) be the modified Bessel function of the first kind defined by
Iρ(z)=∑n≥0zρ+2n2ρ+2nn!Γ(ρ+n+1). |
The the first order derivative formula of Iρ is given by
I′(z)=z2(ρ+1)Iρ+1(z). | (4.1) |
By use of Theorem 2.4 and identity (4.1), we get
|1d−cd∫ceIρ(z)dz−eIρ(c+d2)|≤d−c8(ρ+1)(1p+1)1p×[{7c|eIρ(c)Iρ+1(c)|q+d|eIρ(d)Iρ+1(d)|q+2{c|eIρ(d)Iρ+1(c)|q+d|eIρ(c)Iρ+1(d)|q}12}1q+{c|eIρ(c)Iρ+1(c)|q+7d|eIρ(d)Iρ+1(d)|q+2{c|eIρ(d)Iρ+1(c)|q+d|eIρ(c)Iρ+1(d)|q}12}1q], |
where ρ>−1,c,d∈R satisfy the assumptions that δ=γ=1 and 0<c<d,K=1. Specifically, for I−1/2(z)=coshz and I1/2(z)=sinhzz, one has
|1d−cd∫cecosh(z)dz−ecosh(c+d2)|≤d−c8(ρ+1)(1p+1)1p×[{7|esinh(c)sinh(c)|q+|esinh(d)sinh(d)|q+2{|esinh(d)sinh(c)|q+|esinh(c)sinh(d)|q}12}1q+{|esinh(c)sinh(c)|q+7|esinh(d)sinh(d)|q+2{|esinh(d)sinh(c)|q+|esinh(c)sinh(d)|q}12}1q]. |
Example 4.2. Consider the σ-analogue of the digamma function ϕσ given by
ϕσ(z)=−ln(1−σ)+lnσ∞∑κ=0σκ+z1−σκ+z=−ln(1−σ)+lnσ∞∑κ=0σ−κz1−σ−zκ. | (4.2) |
For σ>1 and z>0, the σ-digamma function ϕσ can be expressed by
ϕσ(z)=−ln(1−σ)+lnσ[z−12−∞∑κ=0σ−(κ+z)1−σ−(κ+z)]=−ln(1−σ)+lnσ[z−12−∞∑κ=0σ−κz1−σ−κz]. | (4.3) |
It follows from limσ→1+ϕσ(z)=limσ→1−ϕσ(z)=ϕ(z) that z↦ϕ′σ(z) is a completely monotonic function on an interval (0,∞) for all σ>0, and consequently, z↦ϕ′σ(z) is convex on the same interval. Let φσ(z)=ϕ′σ(z) with q>0. Then φ′σ(z)=ϕ′′σ(z) is completely monotonic on the interval (0,∞), and from Theorem 3.1 we have
|eϕσ(c+d2)−(eϕσ(d)−eϕσ(c)d−c)|≤(d−c)2[(1(p+1)(p+2))1p{17|eϕσ(c)ϕ′′σ(c)|q+|eϕσ(d)ϕ′′σ(d)|q+3Υ1(c,d)48}1q×(1p+2)1p{11|eϕσ(c)ϕ′′σ(c)|q+3|eϕσ(d)ˇϕ′′σ(d)|q+5Υ1(c,d)48}1q+(1(p+1)(p+2))1p{|eϕσ(c)ϕ′′σ(c)|q+17|eϕσ(d)ϕ′′σ(d)|q+3Υ1(c,d)48}1q×(1p+1)1p{3|eϕσ(c)ϕ′′σ(c)|q+11|eϕσ(d)ϕ′′σ(d)|q+5Υ1(c,d)48}1q], | (4.4) |
for all σ∈(0,1),γ=1=δ,d>c>0, K=1 and Υ1(c,d) is given in (2.9).
In order to prove our main results in this section, we need the following lemma.
Lemma 5.1. Let φ:I↦R be a differentiable and exponentially convex functions on I∘ such that c,d∈I∘ with c<d and (eφ)′∈L1([c,d]). Also, let w:[c,d]↦R be a differentiable mapping such that w is symmetric with respect to (c+d)/2. Then the identity
1d−cd∫ceφ(z)ew(z)dz−1d−ceφ(c+d2)d∫cew(z)dz=(d−c)1∫0ϕ(ξ)eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)dξ | (5.1) |
holds for all z∈[c,d], where
ϕ(ξ)={ξ∫0ew(cs+(1−s)d)ds,ξ∈[0,1/2),−1∫ξew(cs+(1−s)d)ds,ξ∈[1/2,1]. |
Proof. Note that
θ=1∫0ϕ(ξ)eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)dξ=12∫0(ξ∫0ew(cs+(1−s)d)ds)eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)dξ+1∫12(−1∫ξew(cs+(1−s)d)ds)eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)dξ=θ1+θ2. |
Making use of integration by parts, we get
θ1=(ξ∫0ew(cs+(1−s)d)ds)eφ(ξc+(1−ξ)d)c−d|120−12∫0ew(cξ+(1−ξ)d)eφ(ξc+(1−ξ)d)c−ddξ=(12∫0ew(cs+(1−s)d)ds)eφ(c+d2)c−d−12∫0ew(cξ+(1−ξ)d)eφ(ξc+(1−ξ)d)c−ddξ. |
Similarly, one has
θ2=(1∫12ew(cs+(1−s)d)ds)eφ(c+d2)c−d−1∫12ew(cξ+(1−ξ)d)eφ(ξc+(1−ξ)d)c−ddξ. |
Therefore,
θ=θ1+θ2=(1∫0ew(cs+(1−s)d)ds)eφ(c+d2)c−d−1∫0ew(cξ+(1−ξ)d)eφ(ξc+(1−ξ)d)c−ddξ, |
and identity (5.1) can be obtained by the change of variable technique and multiplying the both sided by (d−c) in the above formula.
Theorem 5.2. Let φ:I↦R be a differentiable and exponentially convex function on I∘ such that c,d∈I∘ with c<d. Also, let w:[c,d]↦R be a differentiable mapping and symmetric with respect to (c+d)/2. If |(eφ)′| is convex on I. Then the inequality
|1d−cd∫ceφ(z)ew(z)dz−1d−ceφ(c+d2)d∫cew(z)dz|≤[16(d−c)3d∫c+d2ew(z)dz]{8[(z−c)3−(d−z)3][|eφ(c)φ′(c)|+|eφ(d)φ′(d)|2]+Υ(c,d)[(d−c)3−2(d−z)2(3d−c−2z)]} | (5.2) |
holds for all z∈[c,d], where
Υ(c,d)={|eφ(c)φ′(d)|+|eφ(d)φ′(c)|}. |
Proof. It follows from Lemma 5.1 and the hypothesis given in Theorem 5.2 that
|1d−cd∫ceφ(z)ew(z)dz−1d−ceφ(c+d2)d∫cew(z)dz|≤(d−c)[{12∫0(ξ∫0ew(cs+(1−s)d)ds)[eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)]dξ}+{1∫12(1∫ξew(cs+(1−s)d)ds)[eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)]dξ}]≤(d−c)[{12∫0(ξ∫0ew(cs+(1−s)d)ds)[ξ2|eφ(c)φ′(c)|+(1−ξ)2|eφ(d)φ′(d)|+ξ(1−ξ)Υ(c,d)]dξ}+{1∫12(1∫ξew(cs+(1−s)d)ds)[ξ2|eφ(c)φ′(c)|+(1−ξ)2|eφ(d)φ′(d)|+ξ(1−ξ)Υ(c,d)]dξ}]=ρ1+ρ2. | (5.3) |
Exchanging the integration order gives
ρ1=12∫0ξ∫0ew(cs+(1−s)d)[ξ2|eφ(c)φ′(c)|+(1−ξ)2|eφ(d)φ′(d)|+ξ(1−ξ)Υ(c,d)]dsdξ=12∫012∫sew(cs+(1−s)d)[ξ2|eφ(c)φ′(c)|+(1−ξ)2|eφ(d)φ′(d)|+ξ(1−ξ)Υ(c,d)]dξds≤12∫0ew(cs+(1−s)d)[{(124−s33)|eφ(c)φ′(c)|}+{(−124+s33)|eφ(d)φ′(d)|}+Υ(c,d){−s2(3−2s)6+112}]=d∫c+d2ew(z)[{(124−(d−z)33(d−c)3)|eφ(c)φ′(c)|}+{(−124+(z−c)33(d−c)3)|eφ(d)φ′(d)|}+2Υ(c,d){(d−c)3−2(d−z)2(d−3c+2z)}]. | (5.4) |
Similarly, we have
ρ2=1∫121∫ξew(cs+(1−s)d)[ξ2|eφ(c)φ′(c)|+(1−ξ)2|eφ(d)φ′(d)|+ξ(1−ξ)Υ(c,d)]dsdξ≤c+d2∫cew(z)[{(−124+(z−c)33(d−c)3)|eφ(c)φ′(c)|}+{(124−(d−z)33(d−c)3)|eφ(d)φ′(d)|}+2Υ(c,d){(d−c)3−2(d−z)2(d−3c+2z)}]. | (5.5) |
Since w(z) is symmetric with respect to z=c+d2, for w(z)=w(c+d−z), we get
ρ1=ρ2. |
combining (5.3)–(5.5) leads to (5.2). This completes the proof
Theorem 5.3. Let φ:I↦R be a differentiable and exponentially convex function on I∘ such that c,d∈I∘ with c<d. Also, let w:[c,d]↦R be a differentiable mapping and symmetric with respect to (c+d)/2. If |(eφ)′|q is convex on I for some q>1 with p−1+q−1=1. Then the inequality
|1d−cd∫ceφ(z)ew(z)dz−1d−ceφ(c+d2)d∫cew(z)dz|≤(d−c)[1(d−c)2c+d2∫depw(z)(z−c+d2)dz]1/p⋅[(3|eφ(c)φ′(c)|q+11|eφ(d)φ′(d)|q+6Υ1(c,d)192)1/q+(11|eφ(c)φ′(c)|q+3|eφ(d)φ′(d)|q+6Υ1(c,d)192)1q] | (5.6) |
holds for all z∈[c,d], where Υ1(c,d) is given in (2.9).
Proof. Making use of Lemma 5.1 and changing the integration order, we get
|1d−cd∫ceφ(z)ew(z)dz−1d−ceφ(c+d2)d∫cew(z)dz|≤(d−c)[{12∫0(ξ∫0ew(cs+(1−s)d)ds)[eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)]dξ}+{1∫12(1∫ξew(cs+(1−s)d)ds)[eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)]dξ}]=(d−c)[{12∫012∫sew(cs+(1−s)d)eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)dξds}+{1∫12s∫12ew(cs+(1−s)d)eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)dξds}]. |
By Hölder inequality, we have
|1d−cd∫ceφ(z)ew(z)dz−1d−ceφ(c+d2)d∫cew(z)dz|≤(d−c){(12∫012∫sew(cs+(1−s)d)dξds)1/p(12∫012∫s|eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)|qdξds)1/q+(1∫12s∫12ew(cs+(1−s)d)dξds)1/p(s∫1212∫s|eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)|qdξds)1/q}. |
It follows from the convexity of |(eφ)′|q that
|eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)|q≤[ξ|eφ(c)|q+(1−ξ)|eφ(d)|q][ξ|φ′(c)|q+(1−ξ)|φ′(d)|q]≤[ξ2|eφ(c)φ′(c)|q+(1−ξ)2|eφ(d)φ′(d)|q+ξ(1−ξ){|eφ(c)φ′(d)|q+|eφ(d)φ′(c)|q}]≤[ξ2|eφ(c)φ′(c)|q+(1−ξ)2|eφ(d)φ′(d)|q+ξ(1−ξ)Υ1(c,d)] |
for ξ∈[0,1].
Therefore, one has
|1d−cd∫ceφ(z)ew(z)dz−1d−ceφ(c+d2)d∫cew(z)dz|≤(d−c)[(12∫012∫sew(cs+(1−s)d)dξds)1/p(12∫012∫s[ξ2|eφ(c)φ′(c)|q+(1−ξ)2|eφ(d)φ′(d)|q+ξ(1−ξ)Υ1(c,d)]dξds)1/q+(1∫12s∫12ew(cs+(1−s)d)dξds)1p(s∫1212∫s[ξ2|eφ(c)φ′(c)|q+(1−ξ)2|eφ(d)φ′(d)|q+ξ(1−ξ)Υ1(c,d)]dξds)1q]=S1+S2. | (5.7) |
Note that
S1=(12(d−c)2d∫c+d2epw(z)(2z−c−d)dz)1/p(3|eφ(c)φ′(c)|q+11|eφ(d)φ′(d)|q+6Υ1(c,d)192)1/q | (5.8) |
and
S2=(12(d−c)2c+d2∫cepw(z)(c+d−2z)dz)1/p(11|eφ(c)φ′(c)|q+3|eφ(d)φ′(d)|q+6Υ1(c,d)192)1/q. | (5.9) |
Therefore, inequality (5.3) follows from (5.7)–(5.9). This completes the proof.
Lemma 5.4. Let φ:I↦R be a differentiable and exponentially convex function on I∘ such that c,d∈I∘ with c<d and (eφ)′∈L1([c,d]). Also, let w:[c,d]↦R be a differentiable mapping such that w is symmetric with respect to (c+d)/2. Then the identity
1d−ceφ(c)+eφ(d)2d∫cew(z)dz−1d−cd∫cew(z)eφ(z)dz=d−c21∫0μ(ξ)eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)dξ |
holds for all z∈[c,d], where
μ(ξ)=1∫ξew(cs+(1−s)d)ds−ξ∫0ew(cs+(1−s)d)ds. |
Proof. We clearly see that
U=1∫0μ(ξ)eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)dξ=1∫0(1∫ξew(cs+(1−s)d)ds)eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)dξ=c1+c2. |
It follows from integration by parts that
c1=(1∫ξew(cs+(1−s)d)ds)eφ(ξc+(1−ξ)d)c−d|10+1∫0ew(cξ+(1−ξ)d)eφ(ξc+(1−ξ)d)c−ddξ=(−1∫0ew(cs+(1−s)d)ds)eφ(d)c−d+1∫0ew(cξ+(1−ξ)d)eφ(ξc+(1−ξ)d)c−ddξ. |
Similarly, we have
c2=(−1∫0ew(cs+(1−s)d)ds)eφ(c)c−d+1∫0ew(cξ+(1−ξ)d)eφ(ξc+(1−ξ)d)c−ddξ. |
Thus, we get
U=c1+c2=−eφ(c)+eφ(d)c−d(1∫0ew(cs+(1−s)d)ds)+21∫0ew(cξ+(1−ξ)d)eφ(ξc+(1−ξ)d)c−ddξ. |
Therefore, the desired result can be obtained by use of the change of variable technique and multiplying the both sided by (d−c)/2.
Theorem 5.5. Let φ:I↦R be a differentiable and exponentially convex function on I∘ such that c,d∈I∘ with c<d. Also, let w:[c,d]↦R be a differentiable mapping and symmetric with respect to (c+d)/2. If |(eφ)′|q is convex on I for some q>1 with p−1+q−1=1. Then the inequality
|1d−ceφ(c)+eφ(d)2d∫cew(z)dz−1d−cd∫ceφ(z)ew(z)dz|≤12(1∫0(η(z))pdξ)1/p(2(|eφ(c)φ′(c)|q+|eφ(d)φ′(d)|q)+Υ1(c,d)6) |
holds for all z∈[c,d], where Υ1(c,d) is given in (2.9) and
η(z)=|∫d−(d−c)ξc+(d−c)ξew(z)dz|. |
Proof. From Lemma 5.4 and the hypothesis of Theorem 5.5, we get
|1d−ceφ(c)+eφ(d)2d∫cew(z)dz−1d−cd∫ceφ(z)ew(z)dz|≤d−c2[1∫0|1∫ξew(cs+(1−s)d)ds−ξ∫0ew(cs+(1−s)d)ds||eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)|dξ]≤12[1∫0|d−(d−c)ξ∫cew(z)dz−d∫d−(d−c)ξew(z)dz||eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)|dξ]. | (5.10) |
Since w(z) is symmetric to z=(c+d)/2, we get
∫d−(d−c)ξcew(z)dz−∫dd−(d−c)ξew(z)dz=∫d−(d−c)ξc+(d−c)ξew(z)dz | (5.11) |
for ξ∈[0,1/2], and
∫d−(d−c)ξcew(z)dz−∫dd−(d−c)ξew(z)dz=−∫c+(d−c)ξd−(d−c)ξew(z)dz | (5.12) |
for ξ∈[1/2,1].
It follows from (5.10)–(5.12) that
|1d−ceφ(c)+eφ(d)2d∫cew(z)dz−1d−cd∫ceφ(z)ew(z)dz|≤121∫0η(z)|eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)|dξ≤12{1∫0(η(z))pdξ}1p{1∫0|eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)|qdξ}1q. |
It follows from the convexity of |(eφ)′|q that
|eφ(ξc+(1−ξ)d)φ′(ξc+(1−ξ)d)|q≤[ξ|eφ(c)|q+(1−ξ)|eφ(d)|q][ξ|φ′(c)|q+(1−ξ)|φ′(d)|q]≤[ξ2|eφ(c)φ′(c)|q+(1−ξ)2|eφ(d)φ′(d)|q+ξ(1−ξ){|eφ(c)φ′(d)|q+|eφ(d)φ′(c)|q}]≤[ξ2|eφ(c)φ′(c)|q+(1−ξ)2|eφ(d)φ′(d)|q+ξ(1−ξ)Υ1(c,d)]. |
Therefore,
|1d−ceφ(c)+eφ(d)2d∫cew(z)dz−1d−cd∫ceφ(z)ew(z)dz|≤12[1∫0(η(z))pdξ]1/p{1∫0[ξ2|eφ(c)φ′(c)|q+(1−ξ)2|eφ(d)φ′(d)|q+ξ(1−ξ)Υ1(c,d)]dξ}1/q=12[1∫0(η(z))pdξ]1/p[2(|eφ(c)φ′(c)|q+|eφ(d)φ′(d)|q)+Υ1(c,d)6], |
which completes the proof.
A real-valued function M:(0,∞)×(0,∞)↦(0,∞) is said to be a bivariate mean if min{c,d}≤M(c,d)≤max{c,d} for all c,d∈(0,∞). Recently, the inequalities for the bivariate means have attracted the attention of many researchers.
Let c,d>0 with c≠d and n∈Z∖{−1,0}. Then the classical arithmetic mean A(c,d) and n-th generalized logarithmic mean Ln(c,d) are defined by
A(c,d)=c+d2,Ln(c,d)=[dn+1−cn+1(n+1)(d−c)]1/n. |
In this section, we shall establish some inequalities for the arithmetic and generalized logarithmic means by use of our results obtained in section 5.
Theorem 6.1. Let c,d>0 with d>c and n∈Z with n≥2. Then the inequality
|d∫cznew(z)dz−An(c,d)d∫cew(z)dz|≤(d−c)[16(d−c)3∫dc+d2ew(z)dz]×{8n[(z−c)3−(d−z)3][A(c2n−1,d2n−1)]+Υ1(c,d)[(d−c)3−2(d−z)2(3d−c−2z)]} | (6.1) |
holds for all z∈[c,d], where Υ1(c,d) is given in (2.9).
Proof. By taking φ(z)=nlogz in Theorem 5.2, we get the desired result.
Let w=1. Then inequality (6.1) leads to Corollary 6.2 immediately.
Corollary 6.2. Let c,d>0 with d>c and n∈Z with n≥2. Then
|Lnn(c,d)−1d−cAn(c,d)|≤[112(d−c)2]{8n[(z−c)3−(d−z)3][A(c2n−1,d2n−1)]+Υ1(c,d){(d−c)3−2(d−z)2(3d−c−2z)}}. |
Theorem 6.3. Let p,q>1 with p−1+q−1=1, c,d>0 with d>c and n∈Z with n≥2. Then the inequality
|d∫cznew(z)dz−An(c,d))d∫cew(z)dz|≤(d−c)2[1(d−c)2d∫c+d2epw(z)(z−(c+d)2)dz]1/p[(nq6A(c(2n−1)q,d(2n−1)q)+8nqd(2n−1)q+6Υ1(c,d)192)1/q+(nq6A(c(2n−1)q,d(2n−1)q)+8nqc(2n−1)q+6Υ1(c,d)192)1/q] | (6.2) |
holds for all z∈[c,d].
Proof. By taking φ(z)=nlnz in Theorem (5.3), we get the desired result.
Let w=1. Then (6.2) leads to Corollary 6.4 immediately.
Corollary 6.4. Let p,q>1 with p−1+q−1=1, c,d>0 with d>c and n∈Z with n≥2. Then
|Lnn(c,d)−1d−cAn(c,d)|≤d−c2−3p[(nq6A(c(2n−1)q,d(2n−1)q)+8nqd(2n−1)q+6Υ1(c,d)192)1/q+(nq6A(c(2n−1)q,d(2n−1)q)+8nqc(2n−1)q+6Υ1(c,d)192)1/q]. |
Theorem 6.5. Let p,q>1 with p−1+q−1=1, c,d>0 with d>c and n∈Z with n≥2. Then the inequality
|1d−cA(cn,dn)d∫cew(z)dz−1d−cd∫cznew(z)dz|≤12(1∫0(η(z))pdξ)1/p(4nqA(c(2n−1)q,d(2n−1)q)+Υ1(c,d)6) | (6.3) |
holds for z∈[c,d].
Proof. By taking φ(z)=nlnz in Theorem 5.5, we get the desired result.
Let w=1. Then (6.3) leads to Corollary 6.6 immediately.
Corollary 6.6. Let u,v>0 with v>u and n∈Z with n≥2. Then the inequality
|1d−c(A(cn,dn))−Lnn(c,d)|≤d−c2e[4nqA(c(2n−1)q,d(2n−1)q)+Υ1(c,d)6] |
holds for all q>1.
Using the K-conformable fractional integrals, certain inequalities related to the Hermite-Hadamard inequalities for exponentially convex functions are established. The inequalities are parameterized by the parameters δ,γ and K. These inequalities generalize and extend parts of the results for Riemann-Liouville and Hadamard fractional integrals. Also, we have derived the weighted Hermite-Hadamard inequalities for exponentially convex functions in the classical sense. Some applications of the obtained results to special means are also presented. With these contributions, we hope to motivate the interested researcher to further explore this enchanting field of the fractional integral inequalities and exponentially convexity based on these techniques and the ideas developed in the present paper.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 61673169, 11701176, 11871202) and the Natural Science Foundation of Zhejiang Province (Grant No. LY19A010012).
The authors declare that they have no competing interests.
[1] |
G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function, J. Inequal. Appl., 2020 (2020), 1-17. doi: 10.1186/s13660-019-2265-6
![]() |
[2] |
T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
![]() |
[3] |
M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
![]() |
[4] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13. |
[5] | J. M. Shen, Z. H. Yang, W. M. Qian, et al. Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843-853. |
[6] | M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271. |
[7] | M. K. Wang, Y. M. Chu, Y. M. Li, et al. Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821-841. |
[8] |
T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 4512-4528. doi: 10.3934/math.2020290
![]() |
[9] | I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. |
[10] |
M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Mathematics, 5 (2020), 4931-4945. doi: 10.3934/math.2020315
![]() |
[11] |
S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Mathematics, 5 (2020), 3525-3546. doi: 10.3934/math.2020229
![]() |
[12] |
M. A. Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
![]() |
[13] |
S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[14] |
S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
![]() |
[15] |
Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Mathematics, 5 (2020), 5012-5030. doi: 10.3934/math.2020322
![]() |
[16] |
W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
![]() |
[17] |
T. Abdeljawad, S. Rashid, H. Khan, et al. On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
![]() |
[18] |
H. Ge-JiLe, S. Rashid, M. A. Noor, et al. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Mathematics, 5 (2020), 6108-6123. doi: 10.3934/math.2020392
![]() |
[19] |
M. B. Sun, Y. M. Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
![]() |
[20] | S. Y. Guo, Y. M. Chu, G. Farid, et al. Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially (s, m)-convex functions, J. Funct. Space., 2020 (2020), 1-10. |
[21] |
I. Abbas Baloch, A. A. Mughal, Y. M. Chu, et al. A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Mathematics, 5 (2020), 6404-6418. doi: 10.3934/math.2020412
![]() |
[22] | M. U. Awan, S. Talib, M. A. Noor, et al. Some trapezium-like inequalities involving functions having strongly n-polynomial preinvexity property of higher order, J. Funct. Space., 2020 (2020), 1-9. |
[23] | T. Abdeljawad, S. Rashid, Z. Hammouch, et al. Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 1-27. |
[24] |
Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, AIMS Mathematics, 5 (2020), 5106-5120. doi: 10.3934/math.2020328
![]() |
[25] | P. Agarwal, M. Kadakal, İ. İşcan, et al. Better approaches for n-times differentiable convex functions, Mathematics, 8 (2020), 1-11. |
[26] |
M. U. Awan, N. Akhtar, A. Kashuri, et al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Mathematics, 5 (2020), 4662-4680. doi: 10.3934/math.2020299
![]() |
[27] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[28] |
T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Mathematics, 5 (2020), 6479-6495. doi: 10.3934/math.2020418
![]() |
[29] | Y. M. Chu, M. U. Awan, M. Z. Javad, et al. Bounds for the remainder in Simpson's inequality via n-polynomial convex functions of higher order using Katugampola fractional integrals, J. Math., 2020 (2020), 1-10. |
[30] |
P. Y. Yan, Q. Li, Y. M. Chu, et al. On some fractional integral inequalities for generalized strongly modified h-convex function, AIMS Mathematics, 5 (2020), 6620-6638. doi: 10.3934/math.2020426
![]() |
[31] |
S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
![]() |
[32] |
S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Mathematics, 5 (2020), 5859-5883. doi: 10.3934/math.2020375
![]() |
[33] | L. Xu, Y. M. Chu, S. Rashid, et al. On new unified bounds for a family of functions with fractional q-calculus theory, J. Funct. Space., 2020 (2020), 1-9. |
[34] | S. Rashid, A. Khalid, G. Rahman, et al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus, J. Funct. Space., 2020 (2020), 1-12. |
[35] |
J. M. Shen, S. Rashid, M. A. Noor, et al. Certain novel estimates within fractional calculus theory on time scales, AIMS Mathematics, 5 (2020), 6073-6086. doi: 10.3934/math.2020390
![]() |
[36] | H. Kalsoom, M. Idrees, D. Baleanu, et al. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 1-13. |
[37] |
A. Iqbal, M. A. Khan, N. Mohammad, et al. Revisiting the Hermite-Hadamard integral inequality via a Green function, AIMS Mathematics, 5 (2020), 6087-6107. doi: 10.3934/math.2020391
![]() |
[38] | S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12. |
[39] |
S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171
![]() |
[40] |
S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
![]() |
[41] |
M. U. Awan, S. Talib, A. Kashuri, et al. Estimates of quantum bounds pertaining to new q-integral identity with applications, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
![]() |
[42] |
M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
![]() |
[43] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
![]() |
[44] |
H. X. Qi, M. Yussouf, S. Mehmood, et al. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Mathematics, 5 (2020), 6030-6042. doi: 10.3934/math.2020386
![]() |
[45] |
X. Z. Yang, G. Farid, W. Nazeer, et al. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function, AIMS Mathematics, 5 (2020), 6325-6340. doi: 10.3934/math.2020407
![]() |
[46] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 58 (1893), 171-215. |
[47] | L. Fejér, Uberdie Fourierreihen Ⅱ, Math. Naturwise. Anz. Ungar. Akad. Wiss., 24 (1906), 369-390. |
[48] | S. S. Dragomir, I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babeṣ-Bolyai Math., 60 (2015), 527-534. |
[49] |
S. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52 (1929), 1-66. doi: 10.1007/BF02592679
![]() |
[50] |
T. Antczak, (p, r)-Invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379. doi: 10.1006/jmaa.2001.7574
![]() |
[51] | M. A. Noor, K. I. Noor, On exponentially convex functions, J. Orissa Math. Soc., 38 (2019), 33-51. |
[52] | M. A. Noor, K. I. Noor, On Strongly exponentially convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 81 (2019), 75-84. |
[53] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam. 2006. |
[54] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016
![]() |
[55] | D. Baleanu, K. Diethelm, E. Scalas, et al. Fractional Calculus: Models and Numerical Methods, World Scientific Publishing Co. Pte. Ltd., Hackensack, 2012. |
[56] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993. |
[57] |
F. Jarad, K. Uğurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1-16. doi: 10.1186/s13662-016-1057-2
![]() |
[58] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204. |
[59] |
İ. İşcan, New refinements for integral and sum forms of Hölder inequality, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4
![]() |
[60] | M. Kadakal, İ. İşcan, H. Kadakal, et al. On improvements of some integrall inequalities, ResearchGate, Preprint. |
1. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
2. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
3. | Shyam S. Santra, Omar Bazighifan, Hijaz Ahmad, Yu-Ming Chu, Fateh Mebarek-Oudina, Second-Order Differential Equation: Oscillation Theorems and Applications, 2020, 2020, 1563-5147, 1, 10.1155/2020/8820066 | |
4. | Pshtiwan Othman Mohammed, Thabet Abdeljawad, Manar A. Alqudah, Fahd Jarad, New discrete inequalities of Hermite–Hadamard type for convex functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03290-3 | |
5. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
6. | Saima Rashid, Rehana Ashraf, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Imtiaz Ahmad, Estimation of Integral Inequalities Using the Generalized Fractional Derivative Operator in the Hilfer Sense, 2020, 2020, 2314-4785, 1, 10.1155/2020/1626091 | |
7. | Saima Rashid, Hijaz Ahmad, Aasma Khalid, Yu-Ming Chu, Mostafa M. A. Khater, On Discrete Fractional Integral Inequalities for a Class of Functions, 2020, 2020, 1099-0526, 1, 10.1155/2020/8845867 | |
8. | Pshtiwan Othman Mohammed, Hassen Aydi, Artion Kashuri, Y. S. Hamed, Khadijah M. Abualnaja, Midpoint Inequalities in Fractional Calculus Defined Using Positive Weighted Symmetry Function Kernels, 2021, 13, 2073-8994, 550, 10.3390/sym13040550 | |
9. | Slavko Simić, Bandar Bin-Mohsin, Some generalizations of the Hermite–Hadamard integral inequality, 2021, 2021, 1029-242X, 10.1186/s13660-021-02605-y | |
10. | Hamdi Ayed, Modeling of nanomaterial transportation within an enclosure with imposing external magnetic source, 2022, 2190-5509, 10.1007/s13204-021-02136-4 | |
11. | Xiao-Yong Shen, Hong-Qin Xu, M. Barzegar Gerdroodbary, S. Valiallah Mousavi, Amir Musa Abazari, S. Misagh Imani, Numerical simulation of blood flow effects on rupture of aneurysm in middle cerebral artery, 2022, 33, 0129-1831, 10.1142/S0129183122500309 | |
12. | Hui-Zuo Xu, Wei-Mao Qian, Yu-Ming Chu, Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means, 2022, 116, 1578-7303, 10.1007/s13398-021-01162-9 | |
13. | Mohammed N. Ajour, Muhyaddin J. H. Rawa, Ahmad H. Milyani, Meicheng Li, Mahmoud M. Selim, RETRACTED ARTICLE: Solar system treatment with incorporating nanomaterial within the absorber tube employing turbulator, 2022, 2190-5509, 10.1007/s13204-021-02308-2 | |
14. | Abdul BAİDAR, Mehmet KUNT, Quantum analog of some trapezoid and midpoint type inequalities for convex functions, 2022, 71, 1303-5991, 456, 10.31801/cfsuasmas.1009988 | |
15. | Chahn Yong Jung, Ghulam Farid, Hafsa Yasmeen, Yu-Pei Lv, Josip Pečarić, Refinements of some fractional integral inequalities for refined $(\alpha ,h-m)$-convex function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03544-0 | |
16. | Lei Chen, Waqas Nazeer, Farman Ali, Thongchai Botmart, Sarah Mehfooz, Emanuel Guariglia, Some Midpoint Inequalities for η -Convex Function via Weighted Fractional Integrals, 2022, 2022, 2314-8888, 1, 10.1155/2022/1652888 | |
17. | Jinyuan Wang, Yi-Peng Xu, Raed Qahiti, M. Jafaryar, Mashhour A. Alazwari, Nidal H. Abu-Hamdeh, Alibek Issakhov, Mahmoud M. Selim, Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability, 2022, 208, 09204105, 109734, 10.1016/j.petrol.2021.109734 | |
18. | Ohud Almutairi, Adem Kılıçman, A Review of Hermite–Hadamard Inequality for α-Type Real-Valued Convex Functions, 2022, 14, 2073-8994, 840, 10.3390/sym14050840 | |
19. | Qingji Tian, Yi-Peng Xu, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, Mahmoud M. Selim, Flow structure and fuel mixing of hydrogen multi-jets in existence of upstream divergent ramp at supersonic combustion chamber, 2022, 121, 12709638, 107299, 10.1016/j.ast.2021.107299 | |
20. | Guangli Fan, Hassan Abdulwahab Anjal, Raed Qahiti, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, Jin Xu, Hailong Zhang, Zhixiong Li, Comparison of different lobe-injectors on fuel mixing characteristics of single jet at the supersonic combustion chamber, 2021, 119, 12709638, 107193, 10.1016/j.ast.2021.107193 | |
21. | Huseyin Budak, Hasan Kara, Muhammad Aamir Ali, Sundas Khan, Yuming Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, 2021, 19, 2391-5455, 1081, 10.1515/math-2021-0067 | |
22. | Xin Liu, Yi-Peng Xu, Hamdi Ayed, Yahya Ali Rothan, Mahmoud M. Selim, Modeling for solidification of paraffin equipped with nanoparticles utilizing fins, 2022, 45, 2352152X, 103763, 10.1016/j.est.2021.103763 | |
23. | YONG-MIN LI, SAIMA RASHID, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, NEW NEWTON’S TYPE ESTIMATES PERTAINING TO LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p-CONVEXITY WITH APPLICATIONS, 2021, 29, 0218-348X, 2140018, 10.1142/S0218348X21400181 | |
24. | Tiehong Zhao, Miaokun Wang, Yuming Chu, On the Bounds of the Perimeter of an Ellipse, 2022, 42, 0252-9602, 491, 10.1007/s10473-022-0204-y | |
25. | Mohammed Algarni, Turbulent transportation of hybrid nanofluid in a tube with helical tapes utilizing in solar system, 2022, 2190-5509, 10.1007/s13204-022-02341-9 | |
26. | Yahya Ali Rothan, Investigation of hybrid nanomaterial application in melting process of paraffin enhanced with nanoparticles, 2021, 96, 0031-8949, 125253, 10.1088/1402-4896/ac3877 | |
27. | Xue-Xiao You, Muhammad Aamir Ali, Hüseyin Budak, Praveen Agarwal, Yu-Ming Chu, Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals, 2021, 2021, 1029-242X, 10.1186/s13660-021-02638-3 | |
28. | Yahya Ali Rothan, Modeling approach for nanomaterial convective migration with inclusion of Lorentz force, 2022, 102, 0044-2267, 10.1002/zamm.202100204 | |
29. | Juan Zhang, Fuzhang Wang, Yahya Ali Rothan, Taher A. Nofal, Mahmoud M. Selim, Simulation of charging of PCM within a duct containing nanoparticles, 2022, 102, 0044-2267, 10.1002/zamm.202100375 | |
30. | Xinglong Liu, Zahir Shah, Mohammed R. Alzahrani, Numerical modeling of nanofluid exergy loss within tube with multi-helical tapes, 2022, 137, 2190-5444, 10.1140/epjp/s13360-021-02327-6 | |
31. | Zehui Shao, Saeed Kosari, Milad Yadollahzadeh, Generalized Fejér-Divergence in Information Theory, 2022, 46, 1028-6276, 1241, 10.1007/s40995-022-01331-4 | |
32. | Si Yuanlei, Bassem F. Felemban, Ali Bahadar, Yahya Ali Rothan, Mahmoud M. Selim, Investigation of nanofluid flow within a duct with complicated swirl flow device using numerical computing technology, 2022, 33, 0129-1831, 10.1142/S0129183122500954 | |
33. | Raed Qahiti, Transportation of ferrofluid due to non-uniform magnetic force through a curved permeable container, 2022, 2190-5509, 10.1007/s13204-021-02285-6 | |
34. | Xue-De Luan, Yi-Peng Xu, Hamdi Ayed, Mahmoud M. Selim, Heat transfer treatment of nanomaterial with considering turbulator effects, 2022, 131, 07351933, 105787, 10.1016/j.icheatmasstransfer.2021.105787 | |
35. | Tie-Hong Zhao, Zhong-Hua Shen, Yu-Ming Chu, Sharp power mean bounds for the lemniscate type means, 2021, 115, 1578-7303, 10.1007/s13398-021-01117-0 | |
36. | Abd-Allah Hyder, Hüseyin Budak, Areej A. Almoneef, Further Midpoint Inequalities via Generalized Fractional Operators in Riemann–Liouville Sense, 2022, 6, 2504-3110, 496, 10.3390/fractalfract6090496 | |
37. | MAYSAA AL-QURASHI, SAIMA RASHID, YELIZ KARACA, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE, 2021, 29, 0218-348X, 2140027, 10.1142/S0218348X21400272 | |
38. | Si Yuanlei, Bandar Almohsen, M. Sabershahraki, Alibek Issakhov, Muhammad Asif Zahoor Raja, Nanomaterial migration due to magnetic field through a porous region utilizing numerical modeling, 2021, 785, 00092614, 139162, 10.1016/j.cplett.2021.139162 | |
39. | Menglin Qin, Bandar Almohsen, M. Sabershahraki, Alibek Issakhov, Investigation of water freezing with inclusion of nanoparticle within a container with fins, 2022, 2190-5509, 10.1007/s13204-021-02139-1 | |
40. | Haiwei Yang, Yahya Ali Rothan, Saad Althobaiti, Mahmoud M. Selim, Simulation for influence of Y-shape fin on phase change of paraffin inside triplex pipe with using Al2O3 nanoparticles, 2022, 46, 2352152X, 103878, 10.1016/j.est.2021.103878 | |
41. | Muhammad Latif, Ammara Nosheen, Khuram Ali Khan, Hafiza Bisma Ammara, Ndolane Sene, Y. S. Hamed, Novel inequalities involving exponentially ( α , m )-convex function and fractional integrals , 2024, 32, 2769-0911, 10.1080/27690911.2024.2422993 | |
42. | Çetin Yildiz, Juan E. Nápoles Valdés, Luminiţa-Ioana Cotîrlă, A Note on the New Ostrowski and Hadamard Type Inequalities via the Hölder–İşcan Inequality, 2023, 12, 2075-1680, 931, 10.3390/axioms12100931 | |
43. | Li Ma Ma, Guangzhengao Yang, Hadamard type inequalities via fractional calculus in the space of exp-convex functions and applications, 2021, 2021, 1072-6691, 33, 10.58997/ejde.2021.33 | |
44. | Attazar Bakht, Matloob Anwar, Hermite-Hadamard and Ostrowski type inequalities via $ \alpha $-exponential type convex functions with applications, 2024, 9, 2473-6988, 9519, 10.3934/math.2024465 | |
45. | Yamin Sayyari, Hasan Barsam, Jensen-Mercer inequality for uniformly convex functions with some applications, 2023, 34, 1012-9405, 10.1007/s13370-023-01084-2 | |
46. | Asif Ali Shaikh, Evren Hincal, Sotiris K. Ntouyas, Jessada Tariboon, Muhammad Tariq, Some Hadamard-Type Integral Inequalities Involving Modified Harmonic Exponential Type Convexity, 2023, 12, 2075-1680, 454, 10.3390/axioms12050454 | |
47. | Momen S. M. Saleh, Yousef Belloufi, Yousra Boutera, Ali J. Chamkha, Abderrahmane Sahraoui, Qussay Hroub, A new design for a heat sink within a convex-parabolic microchannel filled with hybrid nanofluid for cooling Core I7 CPU, 2023, 148, 1388-6150, 11315, 10.1007/s10973-023-12404-w | |
48. | Musa Çakmak, Mevlüt Tunç, Generalizations of Hermite-Hadamard, Bullen and Simpson inequalities via h−convexity, 2022, 30, 1584-3289, 77, 10.2478/gm-2022-0006 |