Research article

New inequalities via n-polynomial harmonically exponential type convex functions

  • Received: 11 June 2020 Accepted: 25 August 2020 Published: 04 September 2020
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • In this work we introduced a new class of functions called n-polynomial harmonically exponential type convex and study some of their algebraic properties. Several new inequalities via n-polynomial harmonically exponential type convexity are established. Some special cases for suitable choices of parameters are given in details.

    Citation: Wei Gao, Artion Kashuri, Saad Ihsan Butt, Muhammad Tariq, Adnan Aslam, Muhammad Nadeem. New inequalities via n-polynomial harmonically exponential type convex functions[J]. AIMS Mathematics, 2020, 5(6): 6856-6873. doi: 10.3934/math.2020440

    Related Papers:

  • In this work we introduced a new class of functions called n-polynomial harmonically exponential type convex and study some of their algebraic properties. Several new inequalities via n-polynomial harmonically exponential type convexity are established. Some special cases for suitable choices of parameters are given in details.


    加载中


    [1] G. Alirezaei, R. Mahar, On exponentially concave functions and their impact in information theory, Information Theory and Applications Workshop (ITA), San Diego, CA, 2018, 1-10, doi: 10.1109/ITA.2018.8503202.
    [2] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308. doi: 10.1016/j.jmaa.2007.02.016
    [3] T. Antczak, On (p, r)-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.
    [4] M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 125.
    [5] M. U. Awan, N. Akhtar, S. Iftikhar, et al. Hermite-Hadamard type inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215
    [6] I. A. Baloch, Y. M. Chu, Petrovíc-type inequalities for harmonic h-convex functions, J. Funct. Spaces., 2020, Article ID 3075390 (2020).
    [7] I. A. Baloch, M. D. L. Sen, İ. İşcan, Characterizations of classes of harmonic convex functions and applications, I. J. Anal. Appl., 17 (2019), 722-733.
    [8] S. S. Dragomir, I. Gomm, Some Hermite-Hadamard's inequality functions whose exponentials are convex, Babes Bolyai math., 60 (2015), 527-534.
    [9] S. I. Butt, M. Nadeem, G. Farid, Caputo fractional derivatives via exponential (s, m) convex functions Eng. Appl. Sci., 3 (2020), 32-39.
    [10] G. Farid, X, Qiang, S. B. Akbar, Generalized fractional integrals inequalities for exponentially (s, m)-convex functions, J. Inequal. Appl., 70 (2020).
    [11] G. Farid, S. Mehmood, K. A. Khan, Fractional integrals inequalities for exponentially m-convex functions, Open. J. Math. Sci., 4 (2020), 78-85. doi: 10.30538/oms2020.0097
    [12] G. Farid, S. Mehmood, K. A. Khan, et al. New Hadamard and Fejér-Hadamard fractional inequalities for exponentially m-convex function, Eng. Appl. Sci., 3 (2020), 45-55.
    [13] A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115 (2002), 260-288. doi: 10.1006/jath.2001.3658
    [14] A. Iqbal, M. A. Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020, Article ID 9845407 (2020).
    [15] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942.
    [16] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 1-9. doi: 10.1186/s13660-019-2265-6
    [17] M. A. Khan, Y. M. Chu, A. Kashuri, et al. Conformable fractional integrals versions of HermiteHadamard inequalities and their generalizations, J. Funct. Spaces, 2018, Article ID 6928130 (2018).
    [18] Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Spaces, 2019, Article ID 6926107 (2019).
    [19] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications, J. Inequal. Appl., 2019, Article ID 317 (2019).
    [20] M. A. Noor, K. I. Noor, Harmonic variational inequalities, Appl. Math. Inf. Sci., 10 (2016), 1811-1814. doi: 10.18576/amis/100522
    [21] M. A. Noor, K. I. Noor, Some implicit methods for solving harmonic variational inequalities, Inter. J. Anal. App., 12 (2016), 10-14.
    [22] S. Pal, T. K. L. Wong, On exponentially concave functions and a new information geometry Annals. prob., 46 (2018), 1070-1113.
    [23] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [24] T. Toplu, M. Kadakal, Í. Íşcan, On n-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304-1318. doi: 10.3934/math.2020089
    [25] M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39B (2019), 1440-1450.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3116) PDF downloads(111) Cited by(16)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog