Citation: Mei Xu, Bo Du. Dynamic behaviors for reaction-diffusion neural networks with mixed delays[J]. AIMS Mathematics, 2020, 5(6): 6841-6855. doi: 10.3934/math.2020439
[1] | S. Mohamad, Exponential stability in Hopfield-type neural networks with impulses, Chaos Soliton. Fract., 32 (2007), 456-467. doi: 10.1016/j.chaos.2006.06.035 |
[2] | J. Lu, D. W. C. Ho, J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 46 (2010), 1215-1221. doi: 10.1016/j.automatica.2010.04.005 |
[3] | P. B. Watta, K. Wang, M. H. Hassoun, Recurrent neural nets as dynamical boolean systems with application to associative memory, IEEE T. Neural Networ., 8 (1997), 1268-1280. doi: 10.1109/72.641450 |
[4] | H. Yin, B. Du, X. Cheng, Stochastic patch structure Nicholson's blowfies system with mixed delays, Adv. Differ. Equ., 386 (2020), 1-11. |
[5] | S. Mou, H. Gao, J. Lam, et al. A new criterion of delay dependent asymptotic stability for Hopfield neural networks with time delay, IEEE T. Neural Networ., 19 (2008), 532-535. doi: 10.1109/TNN.2007.912593 |
[6] | C. Liu, W. Liu, Z. Yang, et al. Stability of neural networks with delay and variable-time impulses, Neurocomputing, 171 (2016), 1644-1654. doi: 10.1016/j.neucom.2015.07.007 |
[7] | S. Hu, J. Wang, Global stability of a class of discrete-time recurrent neural networks, IEEE Trans. Circuits Syst. I, 49 (2017), 1104-1117. |
[8] | B. Du, Anti-periodic solutions problem for inertial competitive neutral-type neural networks via Wirtinger inequality, J. Inequal. Appl., 2019 (2019), 1-15. doi: 10.1186/s13660-019-1955-4 |
[9] | Q. Zhu, J. Cao, Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays, IEEE T. Syst. Man Cy. B, 41 (2011), 341-353. |
[10] | J. H. Park, O. Kwon, Design of state estimator for neural networks of neutral-type, Appl. Math. Comput., 202 (2008), 360-369. |
[11] | T. Zhou, B. Du, H. Du, Positive periodic solution for indefinite singular Lienard equation with p-Laplacian, Adv. Differ. Equ., 2019 (2019), 1-17. doi: 10.1186/s13662-018-1939-6 |
[12] | Z. Gui, W. Ge, X. Yang, Periodic oscillation for a Hopfield neural networks with neutral delays, Phys. Lett. A, 364 (2007), 267-273. doi: 10.1016/j.physleta.2006.12.013 |
[13] | K. Wang, Z. Teng, H. Jiang, Adaptive synchronization in an array of linearly coupled neural networks with reaction-diffusion terms and time delays, Commun. Nonlinear Sci., 17 (2012), 3866-3875. doi: 10.1016/j.cnsns.2012.02.020 |
[14] | Y. Wu, L. Liu, J. Hu, et al. Adaptive Antisynchronization of Multilayer Reaction-Diffusion Neural Networks, IEEE T. Neur. Net. Lear., 29 (2018), 807-818. doi: 10.1109/TNNLS.2017.2647811 |
[15] | J. Wang, H. Wu, Synchronization and adaptive control of an array of linearly coupled reactiondiffusion neural networks with hybrid coupling, IEEE T. Cybernetics, 44 (2013), 1350-1361. |
[16] | L. Duan, L. Huang, Z. Guo, et al. Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays, Comput. Math. Appl., 73 (2017), 233-245. doi: 10.1016/j.camwa.2016.11.010 |
[17] | B. Lisena, Average criteria for periodic neural networks with delay, Discrete Cont. Dyn. B, 19 (2014), 761-773. |
[18] | Z. Wang, L. Liu, Q. Shan, et al. Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method, IEEE T. Neur. Net. Lear., 26 (2015), 2589-2595. doi: 10.1109/TNNLS.2014.2387434 |
[19] | M. Wang, Semigroup of Operators and Evolutionary Equations, Bei Jing: Science Press, 2006. |
[20] | H. Yin, B. Du, Q. Yang, et al. Existence of Homoclinic orbits for a singular differential equation involving p-Laplacian, J. Funct. Space., 2020 (2020), 1-7. |
[21] | J. Cao, Global stability conditions for delayed CNNs, IEEE Trans. Circuits Syst. I, 48 (2001), 1330-1333. doi: 10.1109/81.964422 |
[22] | X. Wang, M. Jiang, S. Fang, Stability analysis in Lagrange sense for a non-autonomous CohenGrossberg neural network with mixed delays, Nonlinear Anal-Theor., 70 (2009), 4294-4306. doi: 10.1016/j.na.2008.09.019 |
[23] | A. V. Rezounenko, J. Wu, A non-local PDE model for population dynamics with state-selective delay: Local theory and global attrators, J. Comput. Appl. Math., 190 (2006), 99-113. doi: 10.1016/j.cam.2005.01.047 |
[24] | J. Li, J. H. Huang, Uniform attractors for non-autonomous parabolic equations with delays, Nonlinear Anal-Theor., 71 (2009), 2194-2209. doi: 10.1016/j.na.2009.01.053 |
[25] | L. Evans, Partial Differential Equations (Graduate Studies in Mathematics, Vol. 19), American Mathematical Society, Providence, Rhode, 1998. |