Research article

Dynamic analysis of a mosquito population model with a stage structure and periodic releases of sterile males

  • Received: 23 April 2023 Revised: 18 May 2023 Accepted: 21 May 2023 Published: 01 June 2023
  • MSC : 34C60, 92D25, 92D40

  • This paper focuses on the key issues of mosquito population control, particularly exploring the impact of periodic releases of sterile males in the population model with a stage structure. We construct and analyze a model that includes only sexually active sterile mosquitoes in the dynamic interaction system. We focus on the system's dynamical behaviors under two scenarios: when the sexual lifespan $ \bar{T} $ equals the release period $ T $ of sterile mosquitoes, and when $ \bar{T} $ is less than $ T $. In the first scenario, we explore the existence and stability of equilibria, identifying a pivotal threshold $ m^* $ that determines the requisite release amount. In the second scenario, we convert the problem into an impulsive switched system and derive sufficient conditions for the local asymptotic stability of the extinction equilibrium. We also establish the existence of positive periodic solutions using the geometric method of differential equations and the fixed point theorem. Our conclusions show that the relationship between the sexual lifespan and release period of sterile mosquitoes significantly impacts the stability of the mosquito population. Additionally, our numerical simulations not only corroborate but they also complement our theoretical findings.

    Citation: Mingzhan Huang, Xiaohuan Yu. Dynamic analysis of a mosquito population model with a stage structure and periodic releases of sterile males[J]. AIMS Mathematics, 2023, 8(8): 18546-18565. doi: 10.3934/math.2023943

    Related Papers:

  • This paper focuses on the key issues of mosquito population control, particularly exploring the impact of periodic releases of sterile males in the population model with a stage structure. We construct and analyze a model that includes only sexually active sterile mosquitoes in the dynamic interaction system. We focus on the system's dynamical behaviors under two scenarios: when the sexual lifespan $ \bar{T} $ equals the release period $ T $ of sterile mosquitoes, and when $ \bar{T} $ is less than $ T $. In the first scenario, we explore the existence and stability of equilibria, identifying a pivotal threshold $ m^* $ that determines the requisite release amount. In the second scenario, we convert the problem into an impulsive switched system and derive sufficient conditions for the local asymptotic stability of the extinction equilibrium. We also establish the existence of positive periodic solutions using the geometric method of differential equations and the fixed point theorem. Our conclusions show that the relationship between the sexual lifespan and release period of sterile mosquitoes significantly impacts the stability of the mosquito population. Additionally, our numerical simulations not only corroborate but they also complement our theoretical findings.



    加载中


    [1] H. J. Barclay, Pest population stability under sterile releases, Popul. Ecol., 24 (1982), 405–416. https://doi.org/10.1007/BF02515585 doi: 10.1007/BF02515585
    [2] H. J. Barclay, M. Mackuer, The sterile insect release method for pest control: a density dependent model, Environ. Entomol., 9 (1980), 810–817. https://doi.org/10.1093/ee/9.6.810 doi: 10.1093/ee/9.6.810
    [3] G. Briggs, Y. Xu, P. Lu, Y. Xie, Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog., 6 (2010), e1000833. https://doi.org/10.1371/journal.ppat.1000833 doi: 10.1371/journal.ppat.1000833
    [4] M. Guo, L. Hu, L. F. Nie, Stochastic dynamics of the transmission of Dengue fever virus between mosquitoes and humans, Int. J. Biomath., 14 (2021), 2150062. https://doi.org/10.1142/S1793524521500625 doi: 10.1142/S1793524521500625
    [5] P. A. Bliman, D. Cardona-Salgado, Y. Dumont, O. Vasilieva, Implementation of control strategies for sterile insect techniques, Math. Biosci., 314 (2019), 43–60. https://doi.org/10.1016/j.mbs.2019.06.002 doi: 10.1016/j.mbs.2019.06.002
    [6] M. Strugarek, H. Bossin, Y. Dumont, On the use of the sterile insect release technique to reduce or eliminate mosquito populations, Appl. Math. Model., 68 (2019), 443–470. https://doi.org/10.1016/j.apm.2018.11.026 doi: 10.1016/j.apm.2018.11.026
    [7] M. Huang, X. Yu, S. Liu, X. Song, Dynamical behavior of a mosquito population suppression model composed of two sub-models, Int. J. Biomath., 16 (2023), 2250126. https://doi.org/10.1142/S1793524522501261 doi: 10.1142/S1793524522501261
    [8] Y. Hui, Z. Zhao, Q. Li, L. Pang, Asymptotic stability in a mosquito population suppression model with time delay, Int. J. Biomath., 16 (2023), 2250092. https://doi.org/10.1142/S1793524522500929 doi: 10.1142/S1793524522500929
    [9] A. Lupica, A. Palumbo, The coexistence of fast and slow diffusion processes in the life cycle of Aedes aegypti mosquitoes, Int. J. Biomath., 14 (2021), 2050087. https://doi.org/10.1142/S1793524520500874 doi: 10.1142/S1793524520500874
    [10] X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572 (2019), 56–61. https://doi.org/10.1038/s41586-019-1407-9 doi: 10.1038/s41586-019-1407-9
    [11] M. Huang, J. Luo, L. Hu, B. Zheng, J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol., 440 (2018), 1–11. https://doi.org/10.1016/j.jtbi.2017.12.012 doi: 10.1016/j.jtbi.2017.12.012
    [12] Y. Hui, J. Yu, Global asymptotic stability in a non-autonomous delay mosquito population suppression model, Appl. Math. Lett., 124 (2022), 107599. https://doi.org/10.1016/j.aml.2021.107599 doi: 10.1016/j.aml.2021.107599
    [13] B. Zheng, J. Yu, J. Li, Existence and stability of periodic solutions in a mosquito population suppression model with time delay, J. Differ. Equations, 315 (2022), 159–178. https://doi.org/10.1016/j.jde.2022.01.036 doi: 10.1016/j.jde.2022.01.036
    [14] B. Zheng, J. Yu, J. Li, Modeling and analysis of the implementation of the Wolbachi incompatible and sterile insect technique for mosquito population suppression, SIAM J. Appl. Math., 81 (2021), 718–740. https://doi.org/10.1137/20M1368367 doi: 10.1137/20M1368367
    [15] B. Zheng, J. Yu, At most two periodic solutions for a switching mosquito population suppression model, J. Dyn. Diff. Equat., 2022 (2022), 10125. https://doi.org/10.1007/s10884-021-10125-y doi: 10.1007/s10884-021-10125-y
    [16] B. Zheng, Impact of releasing period and magnitude on mosquito population in a sterile release model with delay, J. Math. Biol., 85 (2022), 18. https://doi.org/10.1007/s00285-022-01785-5 doi: 10.1007/s00285-022-01785-5
    [17] R. Anguelov, Y. Dumont, I. Djeumen, Sustainable vector/pest control using the permanent sterile insect technique, Math. Method. Appl. Sci., 43 (2020), 10391–10412. https://doi.org/10.1002/mma.6385 doi: 10.1002/mma.6385
    [18] M. Huang, S. Liu, X. Song, Study of the sterile insect release technique for a two-sex mosquito population model, Math. Biosci. Eng., 18 (2021), 1314–1339. https://doi.org/10.3934/mbe.2021069 doi: 10.3934/mbe.2021069
    [19] M. Huang, L. You, S. Liu, X. Song, Impulsive release strategies of sterile mosquitos for optimal control of wild population, J. Biol. Dynam., 15 (2021), 151–176. https://doi.org/10.1080/17513758.2021.1887380 doi: 10.1080/17513758.2021.1887380
    [20] M. Huang, X. Song, J. Li, Modelling and analysis of impulsive release of sterile mosquitoes, J. Biol. Dynam., 11 (2017), 147–171. https://doi.org/10.1080/17513758.2016.1254286 doi: 10.1080/17513758.2016.1254286
    [21] J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187. https://doi.org/10.1137/18M1204917 doi: 10.1137/18M1204917
    [22] J. Yu, J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differ. Equations, 269 (2020), 6193–6215. https://doi.org/10.1016/j.jde.2020.04.036 doi: 10.1016/j.jde.2020.04.036
    [23] J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differ. Equations, 269 (2020), 10395–10415. https://doi.org/10.1016/j.jde.2020.07.019 doi: 10.1016/j.jde.2020.07.019
    [24] J. Yu, J. Li, A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period, J. Math. Biol., 84 (2022), 14. https://doi.org/10.1007/s00285-022-01718-2 doi: 10.1007/s00285-022-01718-2
    [25] J. Li, S. Ai, Impulsive releases of sterile mosquitoes and interactive dynamics with time delay, J. Biol. Dynam., 14 (2020), 289–307. https://doi.org/10.1080/17513758.2020.1748239 doi: 10.1080/17513758.2020.1748239
    [26] S. Ai, J. Li, J. Yu, B. Zheng, Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes, Discrete Cont. Dyn.-B, 27 (2022), 3039–3052. https://doi.org/10.3934/dcdsb.2021172 doi: 10.3934/dcdsb.2021172
    [27] G. Lin, Y. Hui, Stability analysis in a mosquito population suppression model, J. Biol. Dynam., 14 (2020), 578–589. https://doi.org/10.1080/17513758.2020.1792565 doi: 10.1080/17513758.2020.1792565
    [28] M. Huang, W. Zhang, S. Liu, X. Song, Global suppression and periodic change of the mosquito population in a sterile release model with delay, Appl. Math. Lett., 142 (2023), 108640. https://doi.org/10.1016/j.aml.2023.108640 doi: 10.1016/j.aml.2023.108640
    [29] M. Huang, S. Liu, X. Song, Study of a delayed mosquito population suppression model with stage and sex structure, J. Appl. Math. Comput., 69 (2023), 89–111. https://doi.org/10.1007/s12190-022-01735-w doi: 10.1007/s12190-022-01735-w
    [30] L. Almeida, M. Duprez, Y. Privat, N. Vauchelet, Mosquito population control strategies for fighting against arboviruses, Math. Biosci. Eng., 16 (2019), 6274–6297. https://doi.org/10.3934/mbe.2019313 doi: 10.3934/mbe.2019313
    [31] L. Almeida, M. Duprez, Y. Privat, N. Vauchelet, Optimal control strategies for the sterile mosquitoes technique, J. Differ. Equations, 311 (2022), 229–266. https://doi.org/10.1016/j.jde.2021.12.002 doi: 10.1016/j.jde.2021.12.002
    [32] X. Ma, B. Shu, J. Mao, Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay, Stoch. Dynam., 20 (2020), 2050003. https://doi.org/10.1142/S0219493720500033 doi: 10.1142/S0219493720500033
    [33] Y. Guo, M. Chen, X. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021), 643–666. https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677
    [34] W. Wang, Mean-square exponential input-to-state stability of stochastic fuzzy delayed Cohen-Grossberg neural networks, J. Exp. Theor. Artif. In., 2023 (2023), 2165725. https://doi.org/10.1080/0952813X.2023.2165725 doi: 10.1080/0952813X.2023.2165725
    [35] B. Liu, Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays, Math. Method. Appl. Sci., 40 (2016), 167–174. https://doi.org/10.1002/mma.3976 doi: 10.1002/mma.3976
    [36] C. Huang, B. Liu, Traveling wave fronts for a diffusive Nicholson's blowflies equation accompanying mature delay and feedback delay, Appl. Math. Lett., 134 (2022), 108321. https://doi.org/10.1016/j.aml.2022.108321 doi: 10.1016/j.aml.2022.108321
    [37] C. Huang, L. Huang, J. Wu, Global population dynamics of a single species structured with distinctive time-varying maturation and self-limitation delays, Discrete Cont. Dyn.-B, 27 (2022), 2427–2440. https://doi.org/10.3934/dcdsb.2021138 doi: 10.3934/dcdsb.2021138
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1133) PDF downloads(59) Cited by(1)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog