Research article

Global regularity to the 3D Cauchy problem of inhomogeneous magnetic Bénard equations with vacuum

  • Received: 20 April 2023 Revised: 21 May 2023 Accepted: 26 May 2023 Published: 31 May 2023
  • MSC : 35Q35, 76D03, 76W05

  • This paper deals with the Cauchy problem of 3D inhomogeneous incompressible magnetic Bénard equations. Through some time-weighted a priori estimates, we prove the global existence of strong solution provided that the upper boundedness of initial density and initial magnetic field satisfy some smallness condition. Furthermore, we also obtain large time decay rates of the solution.

    Citation: Wen Wang, Yang Zhang. Global regularity to the 3D Cauchy problem of inhomogeneous magnetic Bénard equations with vacuum[J]. AIMS Mathematics, 2023, 8(8): 18528-18545. doi: 10.3934/math.2023942

    Related Papers:

  • This paper deals with the Cauchy problem of 3D inhomogeneous incompressible magnetic Bénard equations. Through some time-weighted a priori estimates, we prove the global existence of strong solution provided that the upper boundedness of initial density and initial magnetic field satisfy some smallness condition. Furthermore, we also obtain large time decay rates of the solution.



    加载中


    [1] H. Abidi, M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces, P. Roy. Soc. Edinb. A, 138 (2008), 447–476. https://doi.org/10.1017/S0308210506001181 doi: 10.1017/S0308210506001181
    [2] A. M. Alghamdi, S. Gala, M. A. Ragusa, Global regularity for the 3D micropolar fluid flows, Filomat, 36 (2022), 1967–1970. https://doi.org/10.2298/FIL2206967A doi: 10.2298/FIL2206967A
    [3] F. Chen, B. Guo, X. Zhai, Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density, Kinet. Relat. Mod., 12 (2019), 37–58. https://doi.org/10.3934/krm.2019002 doi: 10.3934/krm.2019002
    [4] Q. Chen, Z. Tan, Y. Wang, Strong solutions to the incompressible magnetohydrodynamic equations, Math. Method. Appl. Sci., 34 (2011), 94–107. https://doi.org/10.1002/mma.1338 doi: 10.1002/mma.1338
    [5] Y. Cho, H. Kim, Existence result for heat-conducting viscous incompressible fluids with vacuum, J. Korean Math. Soc., 45 (2008), 645–681. https://doi.org/10.4134/jkms.2008.45.3.645 doi: 10.4134/jkms.2008.45.3.645
    [6] H. Gong, J. Li, Global existence of strong solutions to incompressible MHD, Commun. Pur. Appl. Anal., 13 (2014), 1553–1561. https://doi.org/10.3934/cpaa.2014.13.1553 doi: 10.3934/cpaa.2014.13.1553
    [7] X. Huang, Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differ. Equ., 254 (2013), 511–527. https://doi.org/10.1016/j.jde.2012.08.029 doi: 10.1016/j.jde.2012.08.029
    [8] Z. Liu, Global well-posedness to the Cauchy problem of 2D inhomogeneous incompressible magnetic Bénard equations with large initial data and vacuum, AIMS Mathematics, 6 (2021), 12085–12103. https://doi.org/10.3934/math.2021701 doi: 10.3934/math.2021701
    [9] B. Lu, Z. Xu, X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pure. Appl., 108 (2017), 41–62. https://doi.org/10.1016/j.matpur.2016.10.009 doi: 10.1016/j.matpur.2016.10.009
    [10] P. L. Lions, Mathematical topics in fluid mechanics: Volume 1: Incompressible models, Oxford: Oxford University Press, 1996.
    [11] E. Marušić-Paloka, I. Pažanin, M. Radulović, MHD flow through a perturbed channel filled with a porous medium, Bull. Malays. Math. Sci. Soc., 45 (2022), 2441–2471. https://doi.org/10.1007/s40840-022-01356-3 doi: 10.1007/s40840-022-01356-3
    [12] G. Mulone, S. Rionero, Necessary and sufficient conditions for nonlinear stability in the magnetic Bénard problem, Arch. Rational Mech. Anal., 166 (2003), 197–218. https://doi.org/10.1007/s00205-002-0230-9 doi: 10.1007/s00205-002-0230-9
    [13] A. Novotny, I. Straŝkraba, Introduction to the mathematical theory of compressible flow, Oxford: Oxford University Press, 2004.
    [14] P. Sunthrayuth, A. A. Alderremy, F. Ghani, A. M. J. Tchalla, S. Aly, Y. Elmasry, Unsteady MHD flow for fractional Casson channel fluid in a porous medium: An application of the Caputo-Fabrizio time-fractional derivative, J. Funct. Space., 2022 (2022), 2765924. https://doi.org/10.1155/2022/2765924 doi: 10.1155/2022/2765924
    [15] S. Song, On local strong solutions to the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and vacuum, Z. Angew. Math. Phys., 69 (2018), 23. https://doi.org/10.1007/s00033-018-0915-z doi: 10.1007/s00033-018-0915-z
    [16] P. Zhang, H. Yu, Global regularity to the 3D incompressible MHD equations, J. Math. Anal. Appl., 432 (2015), 613–631. http://doi.org/10.1016/j.jmaa.2015.07.007 doi: 10.1016/j.jmaa.2015.07.007
    [17] X. Zhong, Local strong solutions to the nonhomogeneous Bénard system with nonnegative density, Rocky Mountain J. Math., 50 (2020), 1497–1516. https://doi.org/10.1216/rmj.2020.50.1497 doi: 10.1216/rmj.2020.50.1497
    [18] X. Zhong, Global strong solution to the nonhomogeneous Bénard system with large initial data and vacuum, Results Math., 76 (2021), 27. https://doi.org/10.1007/s00025-020-01338-6 doi: 10.1007/s00025-020-01338-6
    [19] X. Zhong, Global strong solution of nonhomogeneous Bénard system with large initial data and vacuum in a bounded domain, Z. Anal. Anwend., 40 (2021), 153–166. https://doi.org/10.4171/zaa/1677 doi: 10.4171/zaa/1677
    [20] X. Zhong, Global strong solution and exponential decay to the 3D Cauchy problem of nonhomogeneous Bénard system with vacuum, Acta Appl. Math., 172 (2021), 8. https://doi.org/10.1007/s10440-021-00406-5 doi: 10.1007/s10440-021-00406-5
    [21] X. Zhong, The local existence of strong solutions to the Cauchy problem of two-dimensional density-dependent magnetic Bénard problem with nonnegative density, Commun. Math. Sci., 18 (2020), 725–750. https://doi.org/10.4310/CMS.2020.v18.n3.a7 doi: 10.4310/CMS.2020.v18.n3.a7
    [22] X. Zhong, Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations, DCDS-B, 26 (2021), 3563–3578. https://doi.org/10.3934/dcdsb.2020246 doi: 10.3934/dcdsb.2020246
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(968) PDF downloads(46) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog