Research article

Yudovich type solution for the two dimensional Euler-Boussinesq system with critical dissipation and general source term

  • Received: 19 March 2023 Revised: 14 May 2023 Accepted: 19 May 2023 Published: 01 June 2023
  • MSC : 35Q35, 35B65, 76D03

  • The present article investigates the two-dimensional Euler-Boussinesq system with critical fractional dissipation and general source term. First, we show that this system admits a global solution of Yudovich type, and as a consequence, we treat the regular vortex patch issue.

    Citation: Oussama Melkemi, Mohammed S. Abdo, Wafa Shammakh, Hadeel Z. Alzumi. Yudovich type solution for the two dimensional Euler-Boussinesq system with critical dissipation and general source term[J]. AIMS Mathematics, 2023, 8(8): 18566-18580. doi: 10.3934/math.2023944

    Related Papers:

    [1] Patarawadee Prasertsang, Thongchai Botmart . Improvement of finite-time stability for delayed neural networks via a new Lyapunov-Krasovskii functional. AIMS Mathematics, 2021, 6(1): 998-1023. doi: 10.3934/math.2021060
    [2] Jenjira Thipcha, Presarin Tangsiridamrong, Thongchai Botmart, Boonyachat Meesuptong, M. Syed Ali, Pantiwa Srisilp, Kanit Mukdasai . Robust stability and passivity analysis for discrete-time neural networks with mixed time-varying delays via a new summation inequality. AIMS Mathematics, 2023, 8(2): 4973-5006. doi: 10.3934/math.2023249
    [3] Boonyachat Meesuptong, Peerapongpat Singkibud, Pantiwa Srisilp, Kanit Mukdasai . New delay-range-dependent exponential stability criterion and H performance for neutral-type nonlinear system with mixed time-varying delays. AIMS Mathematics, 2023, 8(1): 691-712. doi: 10.3934/math.2023033
    [4] Yonggwon Lee, Yeongjae Kim, Seunghoon Lee, Junmin Park, Ohmin Kwon . An improved reachable set estimation for time-delay linear systems with peak-bounded inputs and polytopic uncertainties via augmented zero equality approach. AIMS Mathematics, 2023, 8(3): 5816-5837. doi: 10.3934/math.2023293
    [5] Rupak Datta, Ramasamy Saravanakumar, Rajeeb Dey, Baby Bhattacharya . Further results on stability analysis of Takagi–Sugeno fuzzy time-delay systems via improved Lyapunov–Krasovskii functional. AIMS Mathematics, 2022, 7(9): 16464-16481. doi: 10.3934/math.2022901
    [6] Yude Ji, Xitong Ma, Luyao Wang, Yanqing Xing . Novel stability criterion for linear system with two additive time-varying delays using general integral inequalities. AIMS Mathematics, 2021, 6(8): 8667-8680. doi: 10.3934/math.2021504
    [7] Xingyue Liu, Kaibo Shi . Further results on stability analysis of time-varying delay systems via novel integral inequalities and improved Lyapunov-Krasovskii functionals. AIMS Mathematics, 2022, 7(2): 1873-1895. doi: 10.3934/math.2022108
    [8] Xiao Ge, Xinzuo Ma, Yuanyuan Zhang, Han Xue, Seakweng Vong . Stability analysis of systems with additive time-varying delays via new bivariate quadratic reciprocally convex inequality. AIMS Mathematics, 2024, 9(12): 36273-36292. doi: 10.3934/math.20241721
    [9] Huahai Qiu, Li Wan, Zhigang Zhou, Qunjiao Zhang, Qinghua Zhou . Global exponential periodicity of nonlinear neural networks with multiple time-varying delays. AIMS Mathematics, 2023, 8(5): 12472-12485. doi: 10.3934/math.2023626
    [10] Wentao Le, Yucai Ding, Wenqing Wu, Hui Liu . New stability criteria for semi-Markov jump linear systems with time-varying delays. AIMS Mathematics, 2021, 6(5): 4447-4462. doi: 10.3934/math.2021263
  • The present article investigates the two-dimensional Euler-Boussinesq system with critical fractional dissipation and general source term. First, we show that this system admits a global solution of Yudovich type, and as a consequence, we treat the regular vortex patch issue.



    Over the last two decades, many researches used LKF method to get stability results for time-delay systems [1,2]. The LKF method has two important technical steps to reduce the conservatism of the stability conditions. The one is how to construct an appropriate LKF, and the other is how to estimate the derivative of the given LKF. For the first one, several types of LKF are introduced, such as integral delay partitioning method based on LKF [3], the simple LKF [4,5], delay partitioning based LKF [6], polynomial-type LKF [7], the augmented LKF [8,9,10]. The augmented LKF provides more freedom than the simple LKF in the stability criteria because of introducing several extra matrices. The delay partitioning based LKF method can obtain less conservative results due to introduce several extra matrices and state vectors. For the second step, several integral inequalities have been widely used, such as Jensen inequality [11,12,13,14], Wirtinger inequality [15,16], free-matrix-based integral inequality [17], Bessel-Legendre inequalities [18] and the further improvement of Jensen inequality [19,20,21,22,23,24,25]. The further improvement of Jensen inequality [22] is less conservative than other inequalities. However, The interaction between the delay partitioning method and the further improvement of Jensen inequality [23] was not considered fully, which may increase conservatism. Thus, there exists room for further improvement.

    This paper further researches the stability of distributed time-delay systems and aims to obtain upper bounds of time-delay. A new LKF is introduced via the delay partitioning method. Then, a less conservative stability criterion is obtained by using the further improvement of Jensen inequality [22]. Finally, an example is provided to show the advantage of our stability criterion. The contributions of our paper are as follows:

    The integral inequality in [23] is more general than previous integral inequality. For r=0,1,2,3, the integral inequality in [23] includes those in [12,15,21,22] as special cases, respectively.

    An augmented LKF which contains general multiple integral terms is introduced to reduce the conservatism via a generalized delay partitioning approach. For example, the tt1mhx(s)ds, tt1mhtu1x(s)dsdu1, , tt1mhtu1tuN1x(s)dsduN1du1 are added as state vectors in the LKF, which may reduce the conservatism.

    In this paper, a new LKF is introduced based on the delay interval [0,h] is divided into m segments equally. From the LKF, we can conclude that the relationship among x(s), x(s1mh) and x(sm1mh) is considered fully, which may yield less conservative results.

    Notation: Throughout this paper, Rm denotes m-dimensional Euclidean space, A denotes the transpose of the A matrix, 0 denotes a zero matrix with appropriate dimensions.

    Consider the following time-delay system:

    ˙x(t)=Ax(t)+B1x(th)+B2tthx(s)ds, (2.1)
    x(t)=Φ(t),t[h,0], (2.2)

    where x(t)Rn is the state vector, A,B1,B2Rn×n are constant matrices. h>0 is a constant time-delay and Φ(t) is initial condition.

    Lemma2.1. [23] For any matrix R>0 and a differentiable function x(s),s[a,b], the following inequality holds:

    ba˙xT(s)R˙x(s)dsrn=0ρnbaΦn(a,b)TRΦn(a,b), (2.3)

    where

    ρn=(nk=0cn,kn+k+1)1,
    cn,k={1,k=n,n0,n1t=kf(n,t)ct,k,k=0,1,n1,n1,
    Φl(a,b)={x(b)x(a),l=0,lk=0cl,kx(b)cl,0x(a)lk=1cl,kk!(ba)kφk(a,b)x(t),l1,
    f(l,t)=tj=0ct,jl+j+1/tj=0ct,jt+j+1,
    φk(a,b)x(t)={bax(s)ds,k=1,babs1bsk1x(sk)dskds2dss1,k>1.

    Remark2.1. The integral inequality in Lemma 2.1 is more general than previous integral inequality. For r=0,1,2,3, the integral inequality (2.3) includes those in [12,15,21,22] as special cases, respectively.

    Theorem3.1. For given integers m>0,N>0, scalar h>0, system (2.1) is asymptotically stable, if there exist matrices P>0, Q>0, Ri>0,i=1,2,,m, such that

    Ψ=ξT1Pξ2+ξT2Pξ1+ξT3Qξ3ξT4Qξ4+mi=1(hm)2ATdRiAdmi=1rn=0ρnωn(timh,ti1mh)Ri×ωn(timh,ti1mh)<0, (3.1)

    where

    ξ1=[eT1ˉET0ˉET1ˉET2ˉETN]T,
    ξ2=[ATdET0ET1ET2ETN]T,
    ξ3=[eT1eT2eTm]T,
    ξ4=[eT2eT3eTm+1]T,
    ˉE0=hm[eT2eT3eTm+1]T,
    ˉEi=hm[eTim+2eTim+3eTim+m+1]T,i=1,2,,N,
    Ei=hm[eT1eTim+2eT2eTim+3eTmeTm(i+1)+1]T,i=0,1,2,,N,
    Ad=Ae1+B1em+1+B2mi=0em+1+i,
    ωn(timh,ti1mh)={eiei+i,n=0,nk=0cn,keicn,0ei+1nk=1cn,kk!e(k1)m+k+1,n1,
    ei=[0n×(i1)nIn×n0n×(Nm+1i)]T,i=1,2,,Nm+1.

    Proof. Let an integer m>0, [0,h] can be decomposed into m segments equally, i.e., [0,h]=mi=1[i1mh,imh]. The system (2.1) is transformed into

    ˙x(t)=Ax(t)+B1x(th)+B2mi=1ti1mhtimhx(s)ds. (3.2)

    Then, a new LKF is introduced as follows:

    V(xt)=ηT(t)Pη(t)+tthmγT(s)Qγ(s)ds+mi=1hmi1mhimhtt+v˙xT(s)Ri˙x(s)dsdv, (3.3)

    where

    η(t)=[xT(t)γT1(t)γT2(t)γTN(t)]T,
    γ1(t)=[tt1mhx(s)dst1mht2mhx(s)dstm1mhthx(s)ds],γ2(t)=mh[tt1mhtu1x(s)dsdu1t1mht2mht1mhu1x(s)dsdu1tm1mhthtm1mhu1x(s)dsdu1],,
    γN(t)=(mh)N1×[tt1mhtu1tuN1x(s)dsduN1du1t1mht2mht1mhu1t1mhuN1x(s)dsduN1du1tm1mhthtm1mhu1tm1mhuN1x(s)dsduN1du1],
    γ(s)=[x(s)x(s1mh)x(sm1mh)].

    The derivative of V(xt) is given by

    ˙V(xt)=2ηT(t)P˙η(t)+γT(t)Qγ(t)γT(thm)Qx(thm)+mi=1(hm)2˙xT(t)Ri˙x(t)mi=1hmti1mhtimh˙xT(s)Ri˙x(s)ds.

    Then, one can obtain

    ˙V(xt)=ϕT(t){ξT1Pξ2+ξT2Pξ1+ξT3Qξ3ξT4Qξ4+mi=1(hm)2ATdRiAd}ϕ(t)mi=1hmti1mhtimh˙xT(s)Ri˙x(s)ds, (3.4)
    ϕ(t)=[xT(t)γT0(t)γT1(t)γTN(t)]T,
    γ0(t)=[xT(t1mh)xT(t2mh)xT(th)]T.

    By Lemma 2.1, one can obtain

    hmti1mhtimh˙xT(s)Ri˙x(s)dsrl=0ρlωl(timh,ti1mh)Ri×ωl(timh,ti1mh). (3.5)

    Thus, we have ˙V(xt)ϕT(t)Ψϕ(t) by (3.4) and (3.5). We complete the proof.

    Remark3.1. An augmented LKF which contains general multiple integral terms is introduced to reduce the conservatism via a generalized delay partitioning approach. For example, the tt1mhx(s)ds, tt1mhtu1x(s)dsdu1, , tt1mhtu1tuN1x(s)dsduN1du1 are added as state vectors in the LKF, which may reduce the conservatism.

    Remark3.2. For r=0,1,2,3, the integral inequality (3.5) includes those in [12,15,21,22] as special cases, respectively. This may yield less conservative results. It is worth noting that the number of variables in our result is less than that in [23].

    Remark3.3. Let B2=0, the system (2.1) can reduces to system (1) with N=1 in [23]. For m=1, the LKF in this paper can reduces to LKF in [23]. So the LKF in our paper is more general than that in [23].

    This section gives a numerical example to test merits of our criterion.

    Example 4.1. Consider system (2.1) with m=2,N=3 and

    A=[011001],B1=[0.00.10.10.2],B2=[0000].

    Table 1 lists upper bounds of h by our methods and other methods in [15,20,21,22,23]. Table 1 shows that our method is more effective than those in [15,20,21,22,23]. It is worth noting that the number of variables in our result is less than that in [23]. Furthermore, let h=1.141 and x(0)=[0.2,0.2]T, the state responses of system (1) are given in Figure 1. Figure 1 shows the system (2.1) is stable.

    Table 1.  hmax for different methods.
    Methods hmax NoDv
    [15] 0.126 16
    [20] 0.577 75
    [21] 0.675 45
    [22] 0.728 45
    [23] 0.752 84
    Theorem 3.1 1.141 71
    Theoretical maximal value 1.463

     | Show Table
    DownLoad: CSV
    Figure 1.  The state trajectories of the system (2.1) of Example 4.1.

    In this paper, a new LKF is introduced via the delay partitioning method. Then, a less conservative stability criterion is obtained by using the further improvement of Jensen inequality. Finally, an example is provided to show the advantage of our stability criterion.

    This work was supported by Basic Research Program of Guizhou Province (Qian Ke He JiChu[2021]YiBan 005); New Academic Talents and Innovation Program of Guizhou Province (Qian Ke He Pingtai Rencai[2017]5727-19); Project of Youth Science and Technology Talents of Guizhou Province (Qian Jiao He KY Zi[2020]095).

    The authors declare that there are no conflicts of interest.



    [1] H. Abidi, T. Hmidi, S. Keraani, On the global well-posedness for the axisymmetric Euler equations, Math. Ann., 347 (2010), 15–41. https://doi.org/10.1007/s00208-009-0425-6 doi: 10.1007/s00208-009-0425-6
    [2] S. Alinhac, P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterEditions, Paris, 1991. https://doi.org/10.1051/978-2-7598-0282-1
    [3] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16830-7
    [4] A. L. Bertozzi, P. Constantin, Global regularity for vortex patches, Commun. Math. Phys., 152 (1993), 19–28. https://doi.org/10.1007/BF02097055 doi: 10.1007/BF02097055
    [5] Y. Brenier, Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci., 19 (2009), 547–570. https://doi.org/10.1007/s00332-009-9044-3 doi: 10.1007/s00332-009-9044-3
    [6] D. Chae, Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptotic Anal., 38 (2004), 339–358.
    [7] D. Chae, S. K. Kim, H. S. Nam, Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations, Nagoya Math. J., 155 (1999), 55–80. https://doi.org/10.1017/S0027763000006991 doi: 10.1017/S0027763000006991
    [8] D. Chae, H. S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinb. Sect. A, 127 (1997), 935–946. https://doi.org/10.1017/S0308210500026810 doi: 10.1017/S0308210500026810
    [9] J. Y. Chemin, Perfect incompressible fluids, Oxford University Press, 1998.
    [10] A. Córdoba, D. Córdoba, A maximum principle applied to the quasi-geostrophic equations, Commun. Math. Phys., 249 (2004), 511–528. https://doi.org/10.1007/s00220-004-1055-1 doi: 10.1007/s00220-004-1055-1
    [11] R. Danchin, X. Zhang, Global persistence of geometrical structures for the Boussinesq equation with no diffusion, Commun. Partial Differ. Equ., 42 (2017), 68–99. https://doi.org/10.1080/03605302.2016.1252394 doi: 10.1080/03605302.2016.1252394
    [12] R. Danchin, M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Commun. Math. Phys., 290 (2009), 1–14. https://doi.org/10.1007/s00220-009-0821-5 doi: 10.1007/s00220-009-0821-5
    [13] F. Fanelli, Conservation of geometric structures for non-homogeneous inviscid incompressible fluids, Commun. Partial Differ. Equ., 37 (2012), 1553–1595. https://doi.org/10.1080/03605302.2012.698343 doi: 10.1080/03605302.2012.698343
    [14] Z. Hassainia, T. Hmidi, On the inviscid Boussinesq system with rough initial data, J. Math. Anal. Appl., 430 (2015), 777–809. https://doi.org/10.1016/j.jmaa.2015.04.087 doi: 10.1016/j.jmaa.2015.04.087
    [15] T. Hmidi, Régularité höldérienne des poches de tourbillon visqueuses, J. Math. Pures Appl., 84 (2005), 1455–1495. https://doi.org/10.1016/j.matpur.2005.01.004 doi: 10.1016/j.matpur.2005.01.004
    [16] T. Hmidi, H. Houamed, M. Zerguine, Rigidity aspects of singular patches in stratified flows, Tunis. J. Math., 4 (2022), 465–557. https://doi.org/10.2140/tunis.2022.4.465 doi: 10.2140/tunis.2022.4.465
    [17] T. Hmidi, S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591–1618.
    [18] T. Hmidi, S. Keraani, F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation, Commun. Partial Differ. Equ., 36 (2010), 420–455. https://doi.org/10.1080/03605302.2010.518657 doi: 10.1080/03605302.2010.518657
    [19] T. Hmidi, M. Zerguine, Vortex patch problem for stratified Euler equations, Commun. Math. Sci., 12 (2014), 1541–1563. https://dx.doi.org/10.4310/CMS.2014.v12.n8.a8 doi: 10.4310/CMS.2014.v12.n8.a8
    [20] O. Melkemi, Global existence for the 2D anisotropic Bénard equations with partial variable viscosity, Math. Meth. Appl. Sci., 2023. https://doi.org/10.1002/mma.9359 doi: 10.1002/mma.9359
    [21] O. Melkemi, M. Zerguine, Local persistence of geometric structures of the inviscid nonlinear Boussinesq system, arXiv, 2020. https://doi.org/10.48550/arXiv.2005.11605 doi: 10.48550/arXiv.2005.11605
    [22] C. Miao, L. Xue, On the global well-posedness of a class of Boussinesq-Navier-Stokes systems, Nonlinear Differ. Equ. Appl., 18 (2011), 707–735. https://doi.org/10.1007/s00030-011-0114-5 doi: 10.1007/s00030-011-0114-5
    [23] M. Paicu, N. Zhu, On the Yudovich's type solutions for the 2D Boussinesq system with thermal diffusivity, Discrete Contin. Dyn. Syst., 40 (2020), 5711–5728. https://doi.org/10.3934/dcds.2020242 doi: 10.3934/dcds.2020242
    [24] P. Serfati, Une preuve directe d'existence globale des vortex patches 2D, C. R. Acad. Sci. Paris Sér. I: Math., 318 (1994), 515–518.
    [25] S. Sulaiman, Global existence and uniquness for a non linear Boussinesq system, J. Math. Phys., 51 (2010), 093103. https://doi.org/10.1063/1.3485038 doi: 10.1063/1.3485038
    [26] G. Wu, X. Zheng, Global well-posedness for the two-dimensional nonlinear Boussinesq equations with vertical dissipation, J. Differ. Equations, 255 (2013), 2891–2926. https://doi.org/10.1016/j.jde.2013.07.023 doi: 10.1016/j.jde.2013.07.023
    [27] G. Wu, L. Xue, Global well-posedness for the 2D inviscid Bénard system with fractional diffusivity and Yudovich's type data, J. Differ. Equations, 253 (2012), 100–125. https://doi.org/10.1016/j.jde.2012.02.025 doi: 10.1016/j.jde.2012.02.025
    [28] L. Xue, Z. Ye, On the differentiability issue of the drift-diffusion equation with nonlocal Lévy-type diffusion, Pac. J. Math., 293 (2018), 471–510. https://doi.org/10.2140/pjm.2018.293.471 doi: 10.2140/pjm.2018.293.471
    [29] X. Xu, L. Xue, Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical dissipation, J. Differ. Equations, 256 (2014), 3179–3207. https://doi.org/10.1016/j.jde.2014.01.038 doi: 10.1016/j.jde.2014.01.038
    [30] Z. Ye, An alternative approach to global regularity for the 2D Euler–Boussinesq equations with critical dissipation, Nonlinear Anal., 190 (2020), 111591. https://doi.org/10.1016/j.na.2019.111591 doi: 10.1016/j.na.2019.111591
    [31] V. I. Yudovich, Non-stationary flow of an ideal incompressible liquid, USSR Comput. Math. Math. Phys., 3 (1963), 1407–1456. https://doi.org/10.1016/0041-5553(63)90247-7 doi: 10.1016/0041-5553(63)90247-7
    [32] M. Zerguine, The regular vortex patch for stratified Euler equations with critical fractional dissipation, J. Evol. Equ., 15 (2015), 667–698. https://doi.org/10.1007/s00028-015-0277-3 doi: 10.1007/s00028-015-0277-3
  • This article has been cited by:

    1. Yanyan Sun, Xiaoting Bo, Wenyong Duan, Qun Lu, Stability analysis of load frequency control for power systems with interval time-varying delays, 2023, 10, 2296-598X, 10.3389/fenrg.2022.1008860
    2. Xiao Ge, Xinzuo Ma, Yuanyuan Zhang, Han Xue, Seakweng Vong, Stability analysis of systems with additive time-varying delays via new bivariate quadratic reciprocally convex inequality, 2024, 9, 2473-6988, 36273, 10.3934/math.20241721
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1397) PDF downloads(50) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog