Research article

Yudovich type solution for the two dimensional Euler-Boussinesq system with critical dissipation and general source term

  • Received: 19 March 2023 Revised: 14 May 2023 Accepted: 19 May 2023 Published: 01 June 2023
  • MSC : 35Q35, 35B65, 76D03

  • The present article investigates the two-dimensional Euler-Boussinesq system with critical fractional dissipation and general source term. First, we show that this system admits a global solution of Yudovich type, and as a consequence, we treat the regular vortex patch issue.

    Citation: Oussama Melkemi, Mohammed S. Abdo, Wafa Shammakh, Hadeel Z. Alzumi. Yudovich type solution for the two dimensional Euler-Boussinesq system with critical dissipation and general source term[J]. AIMS Mathematics, 2023, 8(8): 18566-18580. doi: 10.3934/math.2023944

    Related Papers:

  • The present article investigates the two-dimensional Euler-Boussinesq system with critical fractional dissipation and general source term. First, we show that this system admits a global solution of Yudovich type, and as a consequence, we treat the regular vortex patch issue.



    加载中


    [1] H. Abidi, T. Hmidi, S. Keraani, On the global well-posedness for the axisymmetric Euler equations, Math. Ann., 347 (2010), 15–41. https://doi.org/10.1007/s00208-009-0425-6 doi: 10.1007/s00208-009-0425-6
    [2] S. Alinhac, P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterEditions, Paris, 1991. https://doi.org/10.1051/978-2-7598-0282-1
    [3] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16830-7
    [4] A. L. Bertozzi, P. Constantin, Global regularity for vortex patches, Commun. Math. Phys., 152 (1993), 19–28. https://doi.org/10.1007/BF02097055 doi: 10.1007/BF02097055
    [5] Y. Brenier, Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci., 19 (2009), 547–570. https://doi.org/10.1007/s00332-009-9044-3 doi: 10.1007/s00332-009-9044-3
    [6] D. Chae, Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptotic Anal., 38 (2004), 339–358.
    [7] D. Chae, S. K. Kim, H. S. Nam, Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations, Nagoya Math. J., 155 (1999), 55–80. https://doi.org/10.1017/S0027763000006991 doi: 10.1017/S0027763000006991
    [8] D. Chae, H. S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinb. Sect. A, 127 (1997), 935–946. https://doi.org/10.1017/S0308210500026810 doi: 10.1017/S0308210500026810
    [9] J. Y. Chemin, Perfect incompressible fluids, Oxford University Press, 1998.
    [10] A. Córdoba, D. Córdoba, A maximum principle applied to the quasi-geostrophic equations, Commun. Math. Phys., 249 (2004), 511–528. https://doi.org/10.1007/s00220-004-1055-1 doi: 10.1007/s00220-004-1055-1
    [11] R. Danchin, X. Zhang, Global persistence of geometrical structures for the Boussinesq equation with no diffusion, Commun. Partial Differ. Equ., 42 (2017), 68–99. https://doi.org/10.1080/03605302.2016.1252394 doi: 10.1080/03605302.2016.1252394
    [12] R. Danchin, M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Commun. Math. Phys., 290 (2009), 1–14. https://doi.org/10.1007/s00220-009-0821-5 doi: 10.1007/s00220-009-0821-5
    [13] F. Fanelli, Conservation of geometric structures for non-homogeneous inviscid incompressible fluids, Commun. Partial Differ. Equ., 37 (2012), 1553–1595. https://doi.org/10.1080/03605302.2012.698343 doi: 10.1080/03605302.2012.698343
    [14] Z. Hassainia, T. Hmidi, On the inviscid Boussinesq system with rough initial data, J. Math. Anal. Appl., 430 (2015), 777–809. https://doi.org/10.1016/j.jmaa.2015.04.087 doi: 10.1016/j.jmaa.2015.04.087
    [15] T. Hmidi, Régularité höldérienne des poches de tourbillon visqueuses, J. Math. Pures Appl., 84 (2005), 1455–1495. https://doi.org/10.1016/j.matpur.2005.01.004 doi: 10.1016/j.matpur.2005.01.004
    [16] T. Hmidi, H. Houamed, M. Zerguine, Rigidity aspects of singular patches in stratified flows, Tunis. J. Math., 4 (2022), 465–557. https://doi.org/10.2140/tunis.2022.4.465 doi: 10.2140/tunis.2022.4.465
    [17] T. Hmidi, S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591–1618.
    [18] T. Hmidi, S. Keraani, F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation, Commun. Partial Differ. Equ., 36 (2010), 420–455. https://doi.org/10.1080/03605302.2010.518657 doi: 10.1080/03605302.2010.518657
    [19] T. Hmidi, M. Zerguine, Vortex patch problem for stratified Euler equations, Commun. Math. Sci., 12 (2014), 1541–1563. https://dx.doi.org/10.4310/CMS.2014.v12.n8.a8 doi: 10.4310/CMS.2014.v12.n8.a8
    [20] O. Melkemi, Global existence for the 2D anisotropic Bénard equations with partial variable viscosity, Math. Meth. Appl. Sci., 2023. https://doi.org/10.1002/mma.9359 doi: 10.1002/mma.9359
    [21] O. Melkemi, M. Zerguine, Local persistence of geometric structures of the inviscid nonlinear Boussinesq system, arXiv, 2020. https://doi.org/10.48550/arXiv.2005.11605 doi: 10.48550/arXiv.2005.11605
    [22] C. Miao, L. Xue, On the global well-posedness of a class of Boussinesq-Navier-Stokes systems, Nonlinear Differ. Equ. Appl., 18 (2011), 707–735. https://doi.org/10.1007/s00030-011-0114-5 doi: 10.1007/s00030-011-0114-5
    [23] M. Paicu, N. Zhu, On the Yudovich's type solutions for the 2D Boussinesq system with thermal diffusivity, Discrete Contin. Dyn. Syst., 40 (2020), 5711–5728. https://doi.org/10.3934/dcds.2020242 doi: 10.3934/dcds.2020242
    [24] P. Serfati, Une preuve directe d'existence globale des vortex patches 2D, C. R. Acad. Sci. Paris Sér. I: Math., 318 (1994), 515–518.
    [25] S. Sulaiman, Global existence and uniquness for a non linear Boussinesq system, J. Math. Phys., 51 (2010), 093103. https://doi.org/10.1063/1.3485038 doi: 10.1063/1.3485038
    [26] G. Wu, X. Zheng, Global well-posedness for the two-dimensional nonlinear Boussinesq equations with vertical dissipation, J. Differ. Equations, 255 (2013), 2891–2926. https://doi.org/10.1016/j.jde.2013.07.023 doi: 10.1016/j.jde.2013.07.023
    [27] G. Wu, L. Xue, Global well-posedness for the 2D inviscid Bénard system with fractional diffusivity and Yudovich's type data, J. Differ. Equations, 253 (2012), 100–125. https://doi.org/10.1016/j.jde.2012.02.025 doi: 10.1016/j.jde.2012.02.025
    [28] L. Xue, Z. Ye, On the differentiability issue of the drift-diffusion equation with nonlocal Lévy-type diffusion, Pac. J. Math., 293 (2018), 471–510. https://doi.org/10.2140/pjm.2018.293.471 doi: 10.2140/pjm.2018.293.471
    [29] X. Xu, L. Xue, Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical dissipation, J. Differ. Equations, 256 (2014), 3179–3207. https://doi.org/10.1016/j.jde.2014.01.038 doi: 10.1016/j.jde.2014.01.038
    [30] Z. Ye, An alternative approach to global regularity for the 2D Euler–Boussinesq equations with critical dissipation, Nonlinear Anal., 190 (2020), 111591. https://doi.org/10.1016/j.na.2019.111591 doi: 10.1016/j.na.2019.111591
    [31] V. I. Yudovich, Non-stationary flow of an ideal incompressible liquid, USSR Comput. Math. Math. Phys., 3 (1963), 1407–1456. https://doi.org/10.1016/0041-5553(63)90247-7 doi: 10.1016/0041-5553(63)90247-7
    [32] M. Zerguine, The regular vortex patch for stratified Euler equations with critical fractional dissipation, J. Evol. Equ., 15 (2015), 667–698. https://doi.org/10.1007/s00028-015-0277-3 doi: 10.1007/s00028-015-0277-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1102) PDF downloads(47) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog