λ2 | σ2=2.0 | σ2=3.0 | σ2=5.0 | σ2=7.0 |
2.0 | 20.3004 | 20.0273 | 20.0252 | 19.0005 |
3.0 | 19.6857 | 19.5352 | 18.9964 | 18.8596 |
5.0 | 19.0086 | 18.9835 | 18.9793 | 17.9930 |
7.0 | 17.4794 | 17.4794 | 16.4491 | 7.5000 |
For a neutral system with mixed discrete, neutral and distributed interval time-varying delays and nonlinear uncertainties, the problem of exponential stability is investigated in this paper based on the H∞ performance condition. The uncertainties are nonlinear time-varying parameter perturbations. By introducing a decomposition matrix technique, using Jensen's integral inequality, Peng-Park's integral inequality, Leibniz-Newton formula and Wirtinger-based integral inequality, utilization of a zero equation and the appropriate Lyapunov-Krasovskii functional, new delay-range-dependent sufficient conditions for the H∞ performance with exponential stability of the system are presented in terms of linear matrix inequalities. Moreover, we present numerical examples that demonstrate exponential stability of the neutral system with mixed time-varying delays, and nonlinear uncertainties to show the advantages of our method.
Citation: Boonyachat Meesuptong, Peerapongpat Singkibud, Pantiwa Srisilp, Kanit Mukdasai. New delay-range-dependent exponential stability criterion and H∞ performance for neutral-type nonlinear system with mixed time-varying delays[J]. AIMS Mathematics, 2023, 8(1): 691-712. doi: 10.3934/math.2023033
[1] | Yakufu Kasimu, Gulijiamali Maimaitiaili . Non-fragile ${H_\infty }$ filter design for uncertain neutral Markovian jump systems with time-varying delays. AIMS Mathematics, 2024, 9(6): 15559-15583. doi: 10.3934/math.2024752 |
[2] | Sunisa Luemsai, Thongchai Botmart, Wajaree Weera, Suphachai Charoensin . Improved results on mixed passive and $ H_{\infty} $ performance for uncertain neural networks with mixed interval time-varying delays via feedback control. AIMS Mathematics, 2021, 6(3): 2653-2679. doi: 10.3934/math.2021161 |
[3] | Han Geng, Huasheng Zhang . A new $ H_{\infty} $ control method of switched nonlinear systems with persistent dwell time: $ H_{\infty} $ fuzzy control criterion with convergence rate constraints. AIMS Mathematics, 2024, 9(9): 26092-26113. doi: 10.3934/math.20241275 |
[4] | Baoyan Sun, Jun Hu, Yan Gao . Variance-constrained robust $ H_{\infty} $ state estimation for discrete time-varying uncertain neural networks with uniform quantization. AIMS Mathematics, 2022, 7(8): 14227-14248. doi: 10.3934/math.2022784 |
[5] | Li Wan, Qinghua Zhou, Hongbo Fu, Qunjiao Zhang . Exponential stability of Hopfield neural networks of neutral type with multiple time-varying delays. AIMS Mathematics, 2021, 6(8): 8030-8043. doi: 10.3934/math.2021466 |
[6] | Xue Zhang, Yu Xue . A novel $ H_{\infty} $ state observer design method for genetic regulatory networks with time-varying delays. AIMS Mathematics, 2024, 9(2): 3763-3787. doi: 10.3934/math.2024185 |
[7] | Yidan Wang, Li Xiao, Yanfeng Guo . Finite-time stability of singular switched systems with a time-varying delay based on an event-triggered mechanism. AIMS Mathematics, 2023, 8(1): 1901-1924. doi: 10.3934/math.2023098 |
[8] | Tian Xu, Ailong Wu . Stabilization of nonlinear hybrid stochastic time-delay neural networks with Lévy noise using discrete-time feedback control. AIMS Mathematics, 2024, 9(10): 27080-27101. doi: 10.3934/math.20241317 |
[9] | Shutong Liu, Renming Yang . Adaptive predefined-time robust control for nonlinear time-delay systems with different power Hamiltonian functions. AIMS Mathematics, 2023, 8(12): 28153-28175. doi: 10.3934/math.20231441 |
[10] | Yijia Zhang, Tao Xie, Yunlong Ma . Robustness analysis of exponential stability of Cohen-Grossberg neural network with neutral terms. AIMS Mathematics, 2025, 10(3): 4938-4954. doi: 10.3934/math.2025226 |
For a neutral system with mixed discrete, neutral and distributed interval time-varying delays and nonlinear uncertainties, the problem of exponential stability is investigated in this paper based on the H∞ performance condition. The uncertainties are nonlinear time-varying parameter perturbations. By introducing a decomposition matrix technique, using Jensen's integral inequality, Peng-Park's integral inequality, Leibniz-Newton formula and Wirtinger-based integral inequality, utilization of a zero equation and the appropriate Lyapunov-Krasovskii functional, new delay-range-dependent sufficient conditions for the H∞ performance with exponential stability of the system are presented in terms of linear matrix inequalities. Moreover, we present numerical examples that demonstrate exponential stability of the neutral system with mixed time-varying delays, and nonlinear uncertainties to show the advantages of our method.
Neutral time-delay systems contain delays both in the state and in the derivatives of the state which can be found in various dynamic systems, such as chemical reactors, nuclear reactors, biological systems, economical systems, water pipes, population ecology, power systems, etc. [1,2,3,4,5,6,7,8,9,10,11,12,13,14]. On the other hand, nonlinear uncertainties are commonly encountered because it is very problematic to derive a certain mathematical model due to slowly varying parameters, environmental noise and so on. Stability criteria for time-delay systems are classified into two categories: delay-independent and delay-dependent. In general, the delay-dependent criteria are less conservative than the delay-independent ones, especially when the size of the delay is small. Therefore, many researchers have dedicated much effort to studying the delay-dependent stability criteria for neutral time-delay systems with nonlinear uncertainties in recent years; see, for instance, [1,5,6,10,15,16,17,18].
The stability analysis of neutral-type systems is considered with various inequality techniques and Lyapunov approaches, which are significant to reduce conservatism. Therefore, many inequality techniques have been applied in the published literature to estimate the upper bound of the time derivative of the introduced Lyapunov-Krasovskii functional (LKF). In [1], the new stability conditions for the neutral delay differential system are derived by applying Jensen's integral inequality. In order to reduce the conservatism, Wirtinger's integral inequality was introduced in [19]. The free weighting matrices were utilized with a new integral inequality lemma in [6] to achieve less conservative results.
As pointed out in [1,9,10,11,16,17,20], the exponential stability problem is also significant since it can determine the convergence rate of system states to equilibrium points. The problem of delay-dependent exponential stability criteria for neutral systems with nonlinear uncertainties have been investigated in [10,11,20]. Recently, many researchers have paid a lot of attention to the H∞ control problem in time-delay systems [21,22,23,24]. Li and Hu [25] studied the problem of H∞ control for neutral systems without nonlinear uncertainties. The H∞ control for uncertain neutral systems have been reported in [26]. The problem of H∞ performance for a neutral system with discrete, neutral and distributed time-varying delays and nonlinear uncertainties have been investigated in [19]. Their results are restricted on delay-independent criteria for neutral systems [25] or uncertain neutral systems without the condition of lower bounds of time-varying delays [19,26].
Motivated by the above statement, in this paper, the problem of H∞ performance and exponential stability analysis for a neutral system with interval discrete, neutral and distributed time-varying delays and nonlinear uncertainties are considered based on Jensen's integral inequality, the Wirtinger-based integral inequality, an extended Wirtinger's integral inequality, Peng-Park's integral inequality, the Leibniz-Newton formula, utilization of a zero equation, a decomposition matrix technique and the appropriate LKF. In the numerical part, we give some examples to present the effectiveness of the theorem. The main contributions and highlights of this paper are summarized in the following key points.
● We consider the problem of exponential stability for a neutral system with interval discrete, neutral and distributed time-varying delays and nonlinear uncertainties based on an H∞ performance condition. It is noted that this work is the first study of the exponential stability and H∞ performance for an uncertain neutral system with three (discrete, neutral, and distributed) interval time-varying delays.
● We construct the LKFs including single, double, and triple integral terms involving lower and upper bounds of time delays and use them to formulate a new delay-range-dependent stability criterion for a neutral system. In addition, the LKF consists of five new triple integral terms, i.e., λ222∫0−λ2∫0s∫tt+θe2κ(u+θ−t)˙φT(u)Z21˙φ(u)dudθds, λ22∫0−λ2∫0s∫tt+θe2κ(u+θ−t)˙φT(u)Z22˙φ(u)dudθds, ∫0−λ2∫0s∫tt+θeκ(u+θ−t)˙φT(u)Z23˙φ(u)dudθds, λ21∫0−λ1∫0s∫tt+θe2κ(u+θ−t)˙φT(u)Z24˙φ(u)dudθds and (λ22−λ21)2∫−λ1−λ2∫0s∫tt+θe2κ(u+θ−t)˙φT(u)Z25˙φ(u)dudθds, that were not used in [25,26].
● We apply tighter inequalities to improve the stability criterion, such as Jensen's integral inequality (Lemma 1) and extended single and double Wirtinger's integral inequalities (Lemmas 9 and 10). Using the above new LKFs and the lemmas leads to less conservatism of the obtained results than in published literature, as presented via numerical examples.
● We derive new delay-range-dependent sufficient conditions for the exponential stability with H∞ performance (Theorem 1). Moreover, we obtain the improved delay-range-dependent exponential stability criterion of a neutral system with discrete, neutral and distributed time-varying delays, and nonlinear uncertainties. The proposed conditions are less conservative than the other references as shown in Theorem 1.
● We present numerical examples to demonstrate the feasibility and effectiveness of the theorem.
The outline of this work is structured as follows. In Section 2, we give the problem statement, definitions and lemmas. We discuss some results for a neutral system and their proofs in Section 3. In Section 4, we give two numerical examples to present the effectiveness of the obtained criterion. Section 5 shows the conclusion of our results.
Notations: Rn denotes the n−dimensional Euclidean space, and Rm×n is the set of all m×n real matrices. For a matrix A, A>0 means that A is a symmetric positive definite matrix and λmin(P) and λmax(P) denote the minimum and maximum eigenvalues of A, respectively. The superscript "T" denotes matrix transposition. diag{…} denotes the block diagonal matrix. Sym{A}=A+AT.
We introduce the following neutral system with interval time-varying delays and nonlinear uncertainties of the form
˙φ(t)=A1φ(t)+A2φ(t−λ(t))+A3˙φ(t−σ(t))+A4∫tt−ρ(t)φ(s)ds+Bw(t)+ζ1(t,φ(t))+ζ2(t,φ(t−λ(t)))+ζ3(t,˙φ(t−ρ(t))),t≥0;χ(t)=C1φ(t)+C2φ(t−λ(t))+Dw(t),t≥0;φ(t)=ϕ(t),∀t∈[−max{λ2,σ2,ρ2},0], | (2.1) |
where φ(t)∈Rn is the state of the system, w(t)∈Rp is the disturbance input which belongs to L2[0,∞], χ(t)∈Rq is the controlled output, ϕ(t) is the initial condition function that is continuously differentiable on [−max{λ2,σ2,ρ2},0] with ‖ϕ‖=sups∈[−max{λ2,σ2,ρ2},0]‖ϕ(s)‖, A1, A2, A3, A4, B, C1, C2 and D are real constant matrices with appropriate dimensions and λ(t), σ(t) and ρ(t) are time-varying discrete, neutral and distributed delays, respectively. The delays satisfy the following conditions:
0≤λ1≤λ(t)≤λ2,0≤˙λ(t)≤λd, | (2.2) |
0≤σ1≤σ(t)≤σ2,0≤˙σ(t)≤σd, | (2.3) |
0≤ρ1≤ρ(t)≤ρ2,0≤˙ρ(t)≤ρd, | (2.4) |
where σ1, σ2, σd, λ1, λ2, λd, ρ1, ρ2 and ρd are positive real constants and ζ1(t,φ(t)), ζ2(t,φ(t−λ(t))) and ζ3(t,˙φ(t−σ(t))) are nonlinear uncertainties that are assumed to satisfy the following inequalities
ζT1(t,φ(t))ζ1(t,φ(t))≤η21φT(t)φ(t), | (2.5) |
ζT2(t,φ(t−λ(t)))ζ2(t,φ(t−λ(t)))≤η22φT(t−λ(t))φ(t−λ(t)), | (2.6) |
ζT3(t,˙φ(t−σ(t)))ζ3(t,˙φ(t−σ(t)))≤η3˙φT(t−σ(t))˙φ(t−σ(t)), | (2.7) |
where η1,η2 and η3 are known positive real constants. We consider the Leibniz-Newton formula of the form
0=φ(t)−φ(t−λ(t))−∫tt−λ(t)˙φ(s)ds. | (2.8) |
In order to improve the discrete delay λ(t) in (2.2), let us decompose the constant matrix A2 as
A2=H1+H2, | (2.9) |
where H1, H2 ∈Rn×n are real constant matrices. By (2.8) and (2.9), System (2.1) can be represented in the form
˙φ(t)=[A1+H1+I]φ(t)+[H2−I]φ(t−λ(t))+A3˙φ(t−σ(t))+A4∫tt−ρ(t)φ(s)ds+Bw(t)+ζ1(t,φ(t))+ζ2(t,φ(t−λ(t)))+ζ3(t,˙φ(t−σ(t)))−[H1+I]∫tt−λ(t)˙φ(s)ds. | (2.10) |
Remark 1. In System (2.1), we assume that the delays in the discrete delay term and the distributed delay term are different but these two delay terms in [19] are the same.
Definition 1. [20] If there exist real positive scalars β and κ that satisfy
‖φ(t,ϕ)‖≤β‖ϕ‖e−κt,∀t≥0, |
then System (2.1) is exponentially stable.
Definition 2. [3] For a given real positive scalar δ, we say that System (2.1) is exponentially stable with the H∞ performance level δ if the system is exponentially stable and also satisfies ‖χ(t)‖2≤δ‖w(t)‖2, for all nonzero w(t)∈L2[0,∞) under the zero initial condition.
Lemma 1. (Jensen's inequality [19]). For any positive definite symmetric matrix W∈Rn×n, k2 is a positive scalar and the vector function ω:[−k2,0]→Rn such that the integrals concerned are well defined; the following inequality holds:
−k2∫0−k2ωT(s+t)Wω(s+t)ds≤−(∫0−k2ω(s+t)ds)TW(∫0−k2ω(s+t)ds). |
Lemma 2. [2] For any positive definite symmetric matrix W∈Rn×n, k2 is a positive scalar and the vector function ˙ω:[−k2,0]→Rn such that the integrals concerned are well defined; then,
−∫0−k2∫tt+s˙ωT(u)W˙ω(u)duds≤ψT1(t)Ω1ψ1(t), |
where
ψ1(t)=[ω(t)1k2∫tt−k2ω(s)ds],Ω1=[−2W2W∗−2W]. |
Lemma 3. [27] For any positive definite symmetric matrix W∈Rn×n, k1<k2 are positive scalars and the vector function ˙ω:[−k2,−k1]→Rn such that the integrals concerned are well defined; then,
−k2∫tt−k2˙ωT(s)W˙ω(s)ds≤−ψT2(t)Wψ2(t),−(k22−k21)2∫−k1−k2∫tt+sωT(u)Wω(u)duds≤−ψT3(t)Wψ3(t), |
where
ψ2(t)=(∫tt−k2˙ω(s)ds),ψ3(t)=(∫−k1−k2∫tt+sω(u)duds). |
Lemma 4. [19] For any positive definite symmetric matrix W∈Rn×n, k(t) is a time-varying delay with 0<k1<k(t)<k2, k2∈R and the vector function ω:[−k2,−k1]→Rn such that the integrals concerned are well defined; then,
−[k2−k1]∫t−k1t−k2ωT(s)Wω(s)ds≤−ψT4(t)Wψ4(t)−ψT5(t)Wψ5(t), |
where
ψ4(t)=∫t−k1t−k(t)ω(s)ds,ψ5(t)=∫t−k(t)t−k2ω(s)ds. |
Lemma 5. [19] For any constant matrices Y1, Y2, Y3∈Rn×n, Y1≥0, Y3>0, [Y1Y2∗Y3]≥0, k(t) is a time-varying delay with 0≤k1≤k(t)≤k2, k1, k2∈R and the vector function ˙ω:[−k2,−k1]→Rn such that the integrals concerned are well defined; then,
−(k2−k1)∫t−k1t−k2[ω(s)˙ω(s)]T[Y1Y2∗Y3][ω(s)˙ω(s)]ds≤ψT6(t)Ω2ψ6(t), |
where
ψ6(t)=[ω(t−k1)ω(t−k(t))ω(t−k2)∫t−k1t−k(t)ω(s)ds∫t−k(t)t−k2ω(s)ds],Ω2=[−Y3Y30−YT20∗−Y3−YT3Y3YT2−YT2∗∗−Y30YT2∗∗∗−Y10∗∗∗∗−Y1]. |
Lemma 6. [19] For any constant matrices W, Yi∈Rn×n, i=4,5,...,8, k(t) is a time-varying delay with 0≤k1≤k(t)≤k2, k2∈R and the vector function ˙ω:[−k2,−k1]→Rn such that the integrals concerned are well defined; then,
−∫t−k1t−k2˙ωT(s)W˙ω(s)ds≤ψT7(t)Ω3ψ7(t)+(k2−k1)ψT7(t)Ω4ψ7(t), |
where
ψ7(t)=[ω(t−k1)ω(t−k(t))ω(t−k2)],Ω3=[Y4+YT4−YT4+Y50∗Y4+YT4−Y5−YT5−YT4+Y5∗∗−Y5−YT5],Ω4=[Y6Y70∗Y6+Y8Y7∗∗Y8],[WY4Y5∗Y6Y7∗∗Y8]≥0. |
Lemma 7. (Wirtinger-based integral inequality [28]). For any positive definite symmetric matrix W∈Rn×n, k1<k2 are positive scalars and the vector function ˙ω:[−k2,−k1]→Rn such that the integrals concerned are well defined; then,
−(k2−k1)∫t−k1t−k2˙ωT(s)W˙ω(s)ds≤ψT8(t)Ω5ψ8(t), |
where
ψ8(t)=[ω(t−k1)ω(t−k2)1k2−k1∫t−k1t−k2ω(s)ds],Ω5=[−4W−2W6W∗−4W6W∗∗−12W]. |
Lemma 8. (Peng-Park's integral inequality [29]). If W and S are real constant matrices such that [WS∗W]≥0, k(t) is a time-varying delay with 0<k(t)<k2, k2∈R and the vector function ˙ω:[−k2,0]→Rn is well defined; then, the following inequality holds:
−k2∫tt−k2˙ωT(s)W˙ω(s)ds≤ψT9(t)Ω6ψ9(t), |
where
ψ9(t)=[ω(t)ω(t−k(t))ω(t−k2)],Ω6=[−WW−SS∗−2W+S+STW−S∗∗−W]. |
Lemma 9. (An extended Wirtinger's integral inequality [30]). For any positive definite symmetric matrix W∈Rn×n, k1 and k2 are positive scalars and the vector function ω:[k1,k2]→Rn such that the integrals concerned are well defined; then,
(k2−k1)∫k2k1ωT(u)Wω(u)du≥Ω7TWΩ7+3Ω8TWΩ8+5Ω9TWΩ9, | (2.11) |
where
Ω7=∫k2k1ω(u)du,Ω8=∫k2k1ω(u)du−2k2−k1∫k2k1du∫uk1ω(r)dr,Ω9=∫k2k1ω(u)du−6k2−k1∫k2k1du∫uk1ω(r)dr+12(k2−k1)2∫k2k1du∫uk1ds∫sk1ω(r)dr. |
Lemma 10. [31] For any positive definite symmetric matrix W∈Rn×n, k1 and k2 are positive scalars and the vector function ˙ω:[k1,k2]→Rn such that the integrals concerned are well defined; then,
∫k2k1∫k2u˙ωT(s)W˙ω(s)dsdu≥2ΩT10WΩ10+4ΩT11WΩ11+6ΩT12WΩ12, | (2.12) |
where
Ω10=ω(k2)−1k2−k1∫k2k1ω(s)ds,Ω11=ω(k2)+2k2−k1∫k2k1ω(s)ds−6(k2−k1)2∫k2k1∫k2uω(s)dsdu,Ω12=ω(k2)−3k2−k1∫k2k1ω(s)ds+24(k2−k1)2∫k2k1∫k2uω(s)dsdu−60(k2−k1)3∫k2k1∫k2u∫k2sω(r)drdsdu. |
We introduce the following notations for later use:
∑=[∑(i,j)]27×27, | (3.1) |
where
∑1,1=2QT1I+2QT5I+2QT9H1+2Q9TI+λ22Z19+λ2e−2κλ2F3+e−2κλ2F1+e−2κλ2FT1+2Z1I−4e−2κλ2Z17−e−2κλ2Z18+λ22G1+λ22G4−2λ1λ2G4+λ21G4−e−2κλ2G3−λ22e−4κλ2Z21−λ22e−4κλ2Z25+2λ1λ2e−4κλ2Z25−λ21e−4κλ2Z25−2λ21e−4κλ2Z24−12e−4κλ2Z23+ϵ1η21I−2λ22e−4κλ2Z22+Z2+Z3+λ2Z5−λ1Z5+Z7+ρ22Z8+ρ22Z9+ρ21Z10+ρ22Z11+2κZ1−2ρ1ρ2Z11+ρ21Z11+λ22Z12+λ22Z13+λ21Z14+λ22Z15−2λ1λ2Z15+λ21Z15,∑1,2=QT1I+QT5I+AT1Q10+IQ2+IQ6+HT1Q10+QT9H2−QT9I+IQ10+λ2e−2κλ2F4−e−2κλ2FT1+e−2κλ2F2+e−2κλ2Z18−e−2κλ2S+Z1I+e−2κλ2G3,∑1,3=Z1+IQ4+IQ8−QT9+AT1Q12+HT1Q12+ITQ12+λ22G2+λ22G5−2λ1λ2G5+λ21G5,∑1,4=QT1I+QT5I+IQ3+IQ7−QT9H1−QT9I+AT1Q11+HT1Q11+IQ11+Z1I,∑1,5=−2e−2κλ2Z17+e−2κλ2S,∑1,7=QT9A3,∑1,9=−e−2κλ2GT2,∑1,12=λ2e−4κλ2Z21,∑1,13=λ2e−4κλ2Z25−λ1e−4κλ2Z25,∑1,14=6e−2κλ2Z17+12e−4κλ2Z23+2λ22e−4κλ2Z22,∑1,15=2λ21e−4κλ2Z24,∑1,18=−120e−4κλ2Z23,∑1,19=360e−4κλ2Z23,∑1,20=QT9A4,∑1,25=QT9,∑1,26=QT9,∑1,27=QT9,∑2,26=QT10,∑2,27=QT10,∑2,2=2QT2I+2QT6I+2QT10H2−2QT10I+λ2e−2κλ2F3+λ2e−2κλ2F5−λ1F8+e−2κλ2F1−e−2κλ2FT1−e−2κλ2F2−e−2κλ2FT2+λ2F8+λ2F10−λ1F10+e−2κλ2F6+e−2κλ2FT6−e−2κλ2F7−e−2κλ2FT7−2e−2κλ2Z18+e−2κλ2S+e−2κλ2ST−e−2κλ2G3−e−2κλ2GT3−e−2κλ2G6−e−2κλ2GT6−λ2e−2κλ2Z5+λ2λde−2κλ2Z5+λ1e−2κλ2Z5−λ1λde−2κλ2Z5+ϵ2η22I,∑2,3=IQ4+IQ8−QT10+HT2Q12−IQ12,∑3,2=QT4I+QT8I−Q10−QT12I+QT12H2,∑2,4=QT2I+QT6I+IQ3+IQ7−QT10H1−QT10I−IQ11+HT2Q11,∑3,26=QT12,∑2,5=λ2e−2κλ2F4−e−2κλ2FT1+e−2κλ2F2+λ2F9−λ1F9−e−2κλ2FT6+e−2κλ2F7+e−2κλ2Z18−e−2κλ2S+e−2κλ2G3+e−2κλ2G6,∑2,6=λ2FT9−λ1FT9−e−2κλ2F6+e−2κλ2FT7+e−2κλ2GT6,∑2,7=QT10A3,∑2,9=e−2κλ2GT2,∑2,10=e−2κλ2GT5,∑2,11=−e−2κλ2GT2−e−2κλ2GT5,∑2,20=QT10A4,∑2,25=QT10,∑3,3=−2QT12+λ2Z16+λ22Z17+λ22Z18+λ2Z20−λ1Z20+λ22G3+λ22G6−2λ1λ2G6+λ21G6+λ424Z21+λ422Z22+λ222Z23+λ412Z24+λ424Z25−λ21λ222Z25+λ414Z25,∑3,4=QT4I+QT8I−Q11−QT12H1−QT12I,∑3,20=QT12A4,∑3,25=QT12,∑4,4=2QT3I+2QT7I−2QT11H1−2QT11I,∑4,7=QT11A3,∑4,20=QT11A4,∑4,25=QT11,∑4,26=QT11,∑4,27=QT11,∑3,27=QT12,∑5,11=e−2κλ2GT2+e−2κλ2GT5,∑5,5=λ2e−2κλ2F5−e−2κλ2F2−e−2κλ2FT2−4e−2κλ2Z17+λ2F10−λ1F10−e−2κλ2F7−e−2κλ2FT7−e−2κλ2Z18−e−2κλ2G3−e−2κλ2G6−e−2κλ2Z2−e−2κλ2Z4,∑5,14=6e−2κλ2Z17,∑6,2=λ2F9−λ1F9−e−2κλ2FT6+e−2κλ2F7+e−2κλ2G6,∑6,6=λ2F8−λ1F8+e−2κλ2F6+e−2κλ2FT6−e−2κλ2G6−e−2κλ1Z3+e−2κλ1Z4,∑7,7=−σ2e−2κσ2Z6+σ2σde−2κσ2Z6+σ1e−2κσ2Z6−σ1σde−2κσ2Z6+ϵ3η23I,∑8,8=ρde−2κρ2Z7−e−2κρ2Z7,∑9,9=−e−2κλ2G1−e−2κλ2Z13,∑6,10=−e−2κλ2GT5,∑10,10=−e−2κλ2G4−e−2κλ2Z15,∑11,11=−e−2κλ2G1−e−2κλ2G4−e−2κλ2Z13−e−2κλ2Z15,∑12,12=−e−4κλ2Z21,∑13,13=−e−4κλ2Z25,∑14,14=−12e−2κλ2Z17−e−2κλ2λ22Z12−9λ22e−2κλ2Z19−72e−4κλ2Z23−2λ22e−4κλ2Z22,∑14,16=36λ2e−2κλ2Z19,∑14,17=60λ2e−2κλ2Z19,∑14,18=480e−4κλ2Z23,∑14,19=−1080e−4κλ2Z23,∑15,15=−2λ21e−4κλ2Z24−λ21e−2κλ1Z14,∑16,16=−192e−2κλ2Z19,∑16,17=−360e−2κλ2Z19,∑17,17=−720e−2κλ2Z19,∑18,18=−3600e−4κλ2Z23,∑18,19=8640e−4κλ2Z23,∑19,19=−21600e−4κλ2Z23,∑20,20=−Z9,∑21,21=−Z8,∑22,22=−Z10,∑23,23=−Z9−Z11,∑24,24=−Z11,∑25,25=−ϵ1I,∑26,26=−ϵ2I,∑27,27=−ϵ3I, |
and the other terms are 0;
ˆ∑=[ˆ∑(i,j)]28×28, | (3.2) |
where ˆ∑i,j=ˆ∑Ti,j=∑i,j, i,j=1,2,3,...,27, except
ˆ∑1,1=2QT1I+2QT5I+2QT9H1+2QT9I+λ22Z19+λ2e−2κλ2F3+e−2κλ2F1+CT1C1+e−2κλ2FT1−4e−2κλ2Z17−e−2κλ2Z18+λ22G1+λ22G4−2λ1λ2G4+2Z1I+λ21G4−e−2κλ2G3+2κZ1−λ22e−4κλ2Z21−λ22e−4κλ2Z25+2λ1λ2e−4κλ2Z25−λ21e−4κλ2Z25−2λ21e−4κλ2Z24+ϵ1η21I−12e−4κλ2Z23−2λ22e−4κλ2Z22+Z2+Z3+λ2Z5−λ1Z5+Z7+ρ22Z8+ρ22Z9+ρ21Z10+ρ22Z11−2ρ1ρ2Z11+ρ21Z11+λ22Z12+λ22Z13+λ21Z14+λ22Z15−2λ1λ2Z15+λ21Z15,ˆ∑1,2=QT1I+QT5I+AT1Q10+IQ2+IQ6+HT1Q10+QT9H2−QT9I+IQ10+CT1C2+λ2e−2κλ2F4−e−2κλ2FT1+e−2κλ2F2+e−2κλ2Z18−e−2κλ2S+e−2κλ2G3+Z1I,ˆ∑2,2=2QT2I+2QT6I+2QT10H2−2QT10I+λ2e−2κλ2F3+λ2e−2κλ2F5+e−2κλ2F1−e−2κλ2FT1−e−2κλ2F2−e−2κλ2FT2+λ2F8+λ2F10−λ1F8−λ1F10+e−2κλ2F6+e−2κλ2FT6−e−2κλ2F7−e−2κλ2FT7−2e−2κλ2Z18+e−2κλ2S+e−2κλ2ST−e−2κλ2G3−e−2κλ2GT3−e−2κλ2G6−e−2κλ2GT6−λ2e−2κλ2Z5+λ2λde−2κλ2Z5+λ1e−2κλ2Z5−λ1λde−2κλ2Z5+ϵ2η22I+CT2C2,ˆ∑1,28=QT9B+CT1D,ˆ∑2,28=QT10B+CT2D,ˆ∑3,28=QT11B,ˆ∑4,28=QT12B,ˆ∑28,28=DTD−δ2I, |
and the other terms are 0.
Theorem 1. For a prescribed scalar δ>0, given positive scalars λ2, σ2, ρ2, λd, σd and ρd, the System (2.1) is exponentially stable for a decay rate κ>0 with the H∞ performance δ; if ‖A3‖+η3<1, there exist positive definite symmetric matrices Zi, i=1,2,...,25, any appropriate dimensional matrices S,Qj,j=1,2,...,12, Gl,l=1,2,...6, and Fk,k=1,2,...,10, and positive real constants εn, n=1,2,3, such that the following symmetric linear matrix inequalities hold
[Z16F1F2∗F3F4∗∗F5]≥0, | (3.3) |
[Z20F6F7∗F8F9∗∗F10]≥0, | (3.4) |
[Z18S∗Z18]≥0, | (3.5) |
[G1G2∗G3]≥0, | (3.6) |
[G4G5∗G6]≥0, | (3.7) |
ˆ∑<0. | (3.8) |
Proof. Under the condition of the theorem, we first show the exponential stability of System (2.10). Consider System (2.10) with w(t)=0, that is,
˙φ(t)=[A1+H1+I]φ(t)+[H2−I]φ(t−λ(t))+A3˙φ(t−σ(t))+A4∫tt−ρ(t)φ(s)ds+ζ1(t,φ(t))+ζ2(t,φ(t−λ(t)))+ζ3(t,˙φ(t−σ(t)))−[H1+I]∫tt−λ(t)˙φ(s)ds. |
Construct an LKF candidate for the System (2.10) of the form
V(t)=9∑i=1Vi(t), | (3.9) |
where
V1(t)=φT(t)Z1φ(t)=βT1(t)I0Ψ1β1(t), |
wherein
β1(t)=[φ(t)φ(t−λ(t))∫tt−λ(t)˙φ(s)ds˙φ(t)], I0=[I000000000000000], Ψ1=[Z1000Q1Q2Q3Q4Q5Q6Q7Q8Q9Q10Q11Q12], |
V2(t)=∫tt−λ2e2κ(s−t)φT(s)Z2φ(s)ds+∫tt−λ1e2κ(s−t)φT(s)Z3φ(s)ds+∫t−λ1t−λ2e2κ(s−t)φT(s)Z4φ(s)ds,V3(t)=(λ2−λ1)∫tt−λ(t)e2κ(s−t)φT(s)Z5φ(s)ds,V4(t)=(σ2−σ1)∫tt−σ(t)e2κ(s−t)˙φT(s)Z6˙φ(s)ds,V5(t)=∫tt−ρ(t)e2κ(s−t)φT(s)Z7φ(s)ds+ρ2∫0−ρ2∫tt+se2κ(θ−t)φT(θ)Z8φ(θ)dθds+ρ2∫0−ρ2∫tt+se2κ(θ−t)φT(θ)Z9φ(θ)dθds+ρ1∫0−ρ1∫tt+se2κ(θ−t)φT(θ)Z10φ(θ)dθds+(ρ2−ρ1)∫−ρ1−ρ2∫tt+se2κ(θ−t)φT(θ)Z11φ(θ)dθds,V6(t)=λ2∫0−λ2∫tt+se2κ(θ−t)φT(θ)Z12φ(θ)dθds+λ2∫0−λ2∫tt+se2κ(θ−t)φT(θ)Z13φ(θ)dθds+λ1∫0−λ1∫tt+se2κ(θ−t)φT(θ)Z14φ(θ)dθds+λ2∫−λ1−λ2∫tt+se2κ(θ−t)φT(θ)Z15φ(θ)dθ−λ1∫−λ1−λ2∫tt+se2κ(θ−t)φT(θ)Z15φ(θ)dθds,V7(t)=∫0−λ2∫tt+se2κ(θ−t)˙φT(θ)Z16˙φ(θ)dθds+λ2∫0−λ2∫tt+se2κ(θ−t)˙φT(θ)Z17˙φ(θ)dθds+λ2∫0−λ2∫tt+se2κ(θ−t)˙φT(θ)Z18˙φ(θ)dθds+λ2∫0−λ2∫tt+se2κ(θ−t)φT(θ)Z19φ(θ)dθds+∫−λ1−λ2∫tt+se2κ(θ−t)˙φT(θ)Z20˙φ(θ)dθds,V8(t)=λ2∫0−λ2∫tt+se2κ(θ−t)[φ(θ)˙φ(θ)]T[G1G2∗G3][φ(θ)˙φ(θ)]dθds+(λ2−λ1)∫−λ1−λ2∫tt+se2κ(θ−t)[φ(θ)˙φ(θ)]T[G4G5∗G6][φ(θ)˙φ(θ)]dθds,V9(t)=λ222∫0−λ2∫0s∫tt+θe2κ(u+θ−t)˙φT(u)Z21˙φ(u)dudθds+λ22∫0−λ2∫0s∫tt+θe2κ(u+θ−t)˙φT(u)Z22˙φ(u)dudθds+∫0−λ2∫0s∫tt+θeκ(u+θ−t)˙φT(u)Z23˙φ(u)dudθds+λ21∫0−λ1∫0s∫tt+θe2κ(u+θ−t)˙φT(u)Z24˙φ(u)dudθds+(λ22−λ21)2∫−λ1−λ2∫0s∫tt+θe2κ(u+θ−t)˙φT(u)Z25˙φ(u)dudθds. |
The time derivative of V(t) along the solution of (2.10) is given by
˙V(t)=9∑i=1˙Vi(t). | (3.10) |
We compute ˙V1(t), ˙V2(t), ˙V3(t) and ˙V4(t) as
˙V1(t)=2[φ(t)φ(t−λ(t))∫tt−λ(t)˙φ(s)ds˙φ(t)]T[Z1QT1QT5QT90QT2QT6QT100QT3QT7QT110QT4QT8QT12][˙φ(t)−β2(t)00β3(t)]+2κφT(t)Z1φ(t)−2κV1(t), |
where
β2(t)=Iφ(t)−Iφ(t−λ(t))−I∫tt−λ(t)˙φ(s)ds,β3(t)=−˙φ(t)+[A1+H1+I]φ(t)+[H2−I]φ(t−λ(t))+A3˙φ(t−σ(t))+A4∫tt−ρ(t)φ(s)ds+ζ1(t,φ(t))+ζ2(t,φ(t−λ(t)))+ζ3(t,˙φ(t−σ(t)))−[H1+I]∫tt−λ(t)˙φ(s)ds, |
˙V2(t)=φT(t)(Z2+Z3)φ(t)−e−2κλ2φT(t−λ2)(Z2+Z4)φ(t−λ2)−e−2κλ1φT(t−λ1)(Z3−Z4)φ(t−λ1)−2κV2(t),˙V3(t)≤(λ2−λ1)φT(t)Z5φ(t)−2κV3(t)−(λ2−λ1)(1−λd)e−2κλ2φT(t−λ(t))Z5φ(t−λ(t)),˙V4(t)≤(σ2−σ1)˙φT(t)Z6˙φ(t)−2κV4(t)−(σ2−σ1)(1−σd)e−2κσ2˙φT(t−σ(t))Z6˙φ(t−σ(t)). |
By Lemmas 3 and 4, we obtain ˙V5(t) and ˙V6(t) as follows
˙V5(t)≤φT(t)Z7φ(t)+ρ22φT(t)Z8φ(t)+ρ22φT(t)Z9φ(t)+ρ21φT(t)Z10φ(t)−2κV5(t)+(ρd−1)e−2κρ2φT(t−ρ(t))Z7φ(t−ρ(t))+(ρ2−ρ1)2φT(t)Z11φ(t)−(∫tt−ρ2φ(s)ds)TZ8(∫tt−ρ2φ(s)ds)−(∫tt−ρ(t)φT(s)ds)Z9(∫tt−ρ(t)φ(s)ds)−(∫t−ρ(t)t−ρ2φT(s)ds)Z9(∫t−ρ(t)t−ρ2φ(s)ds)−(∫tt−ρ1φ(s)ds)TZ10(∫tt−ρ1φ(s)ds)−(∫t−ρ1t−ρ(t)φT(s)ds)Z11(∫t−ρ1t−ρ(t)φ(s)ds)−(∫t−ρ(t)t−ρ2φT(s)ds)Z11(∫t−ρ(t)t−ρ2φ(s)ds),˙V6(t)≤λ22φT(t)(Z12+Z13)φ(t)+λ21φT(t)Z14φ(t)+(λ2−λ1)2φT(t)Z15φ(t)−2κV6(t)−λ22e−2κλ2(1λ2∫tt−λ2φT(s)ds)Z12(1λ2∫tt−λ2φ(s)ds)−e−2κλ2(∫tt−λ(t)φT(s)ds)Z13(∫tt−λ(t)φ(s)ds)−e−2κλ2(∫t−λ1t−λ(t)φT(s)ds)Z15(∫t−λ1t−λ(t)φ(s)ds)−e−2κλ2(∫t−λ(t)t−λ2φT(s)ds)(Z13+Z15)(∫t−λ(t)t−λ2φ(s)ds)−λ21e−2κλ1(1λ1∫tt−λ1φT(s)ds)Z14(1λ1∫tt−λ1φ(s)ds). |
Applying Lemmas 6–9, we obtain
˙V7(t)≤λ2˙φT(t)Z16˙φ(t)+λ22˙φT(t)(Z17+Z18)˙φ(t)+e−2κλ2βT4(t)Ψ3β4(t)+(λ2−λ1)˙φT(t)Z20˙φ(t)+λ2e−2κλ2βT4(t)Ψ2β4(t)+λ22φT(t)Z19φ(t)+e−2κλ2βT6(t)Ψ4β6(t)+(λ2−λ1)βT5(t)Ψ5β5(t)+e−2κλ2βT5(t)Ψ6β5(t)+e−2κλ2βT4(t)Ψ7β4(t)−βT7(t)Ψ8β7(t)−2κV7(t), |
where
β4(t)=[φ(t)φ(t−λ(t))φ(t−λ2)],β5(t)=[φ(t−λ1)φ(t−λ(t))φ(t−λ2)],β6(t)=[φ(t)φ(t−λ2)1λ2∫tt−λ2φ(s)ds],β7(t)=[1λ2∫tt−λ2φ(s)ds1λ2∫tt−λ2∫ut−λ2φ(θ)dθdu1λ22∫tt−λ2∫ut−λ2∫st−λ2φ(θ)dθdsdu],Ψ2=[F3F40∗F3+F5F4∗∗F5],Ψ3=[F1+FT1−FT1+F20∗F1+FT1−F2−FT2−FT1+F2∗∗−F2−FT2],Ψ4=[−4Z17−2Z176Z17∗−4Z176Z17∗∗−12Z17],Ψ5=[F8F90∗F8+F10F9∗∗F10],Ψ6=[F6+FT6−FT6+F70∗F6+FT6−F7−FT7−FT6+F7∗∗−F7−FT7],Ψ7=[−Z18Z18−SS∗−2Z18+S+STZ18−S∗∗−Z18],Ψ8=[−9λ22e−2κλ2Z19−36λ2e−2κλ2Z19−60λ2e−2κλ2Z1936λ2e−2κλ2Z19−192e−2κλ2Z19360e−2κλ2Z19−60λ2e−2κλ2Z19360e−2κλ2Z19−720e−2κλ2Z19]. |
From Lemma 5, we compute ˙V8(t) as
˙V8(t)≤λ22[φ(t)˙φ(t)]T[G1G2∗G3][φ(t)˙φ(t)]+(λ2−λ1)2[φ(t)˙φ(t)]T[G4G5∗G6][φ(t)˙φ(t)]+e−2κλ2βT8(t)Ψ9β8(t)+e−2κλ2βT9(t)Ψ10β9(t)−2κV8(t), |
where
β8(t)=[φ(t)φ(t−λ(t))φ(t−λ2)∫tt−λ(t)φ(s)ds∫t−λ(t)t−λ2φ(s)ds],β9(t)=[φ(t−λ1)φ(t−λ(t))φ(t−λ2)∫t−λ1t−λ(t)φ(s)ds∫t−λ(t)t−λ2φ(s)ds],Ψ9=[−G3G30−GT20∗−G3−GT3G3GT2−GT2∗∗−G30GT2∗∗∗−G10∗∗∗∗−G1],Ψ10=[−G6G60−GT50∗−G6−GT6G6GT5−GT5∗∗−G60GT5∗∗∗−G40∗∗∗∗−G4]. |
Using Lemma 2, Lemma 3 and Lemma 10, ˙V9(t) can be estimated as follows
˙V9(t)≤λ424˙φT(t)Z21˙φ(t)+λ422˙φT(t)Z22˙φ(t)+λ222˙φT(t)Z23˙φ(t)+λ412˙φT(t)Z24˙φ(t)−2κV9(t)+(λ22−λ21)24˙φT(t)Z25˙φ(t)−e−4κλ2βT10(t)Z25β10(t)+e−2κλ2βT11(t)Ψ11β11(t)−e−4κλ2(λ2φ(t)−∫tt−λ2φ(s)ds)TZ21(λ2φ(t)−∫tt−λ2φ(s)ds)+λ22e−4κλ2[φ(t)1λ2∫tt−λ2φ(s)ds]T[−2Z222Z22∗−2Z22][φ(t)1λ2∫tt−λ2φ(s)ds]+λ12e−4κλ2[φ(t)1λ1∫tt−λ1φ(s)ds]T[−2Z242Z24∗−2Z24][φ(t)1λ1∫tt−λ1φ(s)ds], |
where
β10(t)=(λ2−λ1)φ(t)−∫t−λ1t−λ2φ(s)ds, β11(t)=[φ(t)1λ2∫tt−λ2φ(s)ds1λ22∫tt−λ2∫tuφ(s)dsdu1λ32∫tt−λ2∫tu∫tsφ(θ)dθdsdu],Ψ11=e−4κλ2[−12Z2312Z23−120Z23360Z2312Z23−72Z23480Z23−1080Z23−120Z23480Z23−3600Z238640Z23360Z23−1080Z238640Z23−21600Z23]. |
From (2.5)–(2.7), for any scalars ε1, ε2 and ε3 that are positive real constants, it can be determinded that the following inequalities hold:
ε1(η12φT(t)φ(t)−ζT1(t,φ(t))ζ1(t,φ(t)))≥0, | (3.11) |
ε2(η22φT(t−λ(t))φ(t−λ(t))−ζT2(t,φ(t−λ(t)))ζ2(t,φ(t−λ(t))))≥0, | (3.12) |
ε3(η33˙φT(t−σ(t))˙φ(t−σ(t))−ζT3(t,˙φ(t−σ(t)))ζ3(t,˙φ(t−σ(t))))≥0. | (3.13) |
According to (3.10)–(3.13), it is straightforward to see that
˙V(t)+2κV(t)≤ξT(t)Σξ(t), |
where
ξ(t)=[φ(t),φ(t−λ(t)),˙φ(t),∫tt−λ(t)˙φ(s)ds,φ(t−λ2),φ(t−λ1),˙φ(t−σ(t)),˙φ(t−ρ(t)),∫tt−λ(t)φ(s)ds,∫t−λ1t−λ(t)φ(s)ds,∫t−λ(t)t−λ2φ(s)ds,∫tt−λ2φ(s)ds,∫t−λ1t−λ2φ(s)ds,1λ2∫tt−λ2φ(s)ds,1λ1∫tt−λ1φ(s)ds,1λ2∫tt−λ2∫ut−λ2φ(θ)dθdu,1λ22∫tt−λ2∫ut−λ2∫st−λ2φ(θ)dθdsdu,1λ22∫tt−λ2∫tuφ(s)dsdu,1λ32∫tt−λ2∫tu∫tsφ(θ)dθdsdu,∫tt−ρ(t)φ(s)ds,∫tt−ρ2φ(s)ds,∫tt−ρ1φ(s)ds,∫t−ρ(t)t−ρ2φ(s)ds,∫t−ρ1t−ρ(t)φ(s)ds,ζ1(t,φ(t)),ζ2(t,φ(t−λ(t))),ζ3(t,˙φ(t−σ(t)))]. |
If Conditions (3.3)–(3.8) and Σ<0 hold, then
˙V(t)+2κV(t)≤0,∀t∈R+. | (3.14) |
So, we have
‖φ(t,ϕ)‖≤M‖ϕ‖e−κt,t∈R+, |
where M,κ∈R+. This means that System (2.1) with w(t)=0 is exponentially stable. Next, we shall establish the H∞ performance of System (2.1) under the zero initial condition. We now introduce
J(t)=∫t0[χT(s)χ(s)−δ2wT(s)w(s)]ds,t>0. | (3.15) |
Under the zero initial condition, (3.15) becomes
J(t)=∫t0[χT(s)χ(s)−δ2wT(s)w(s)]ds=∫t0[χT(s)χ(s)−δ2wT(s)w(s)]ds+∫t0˙V(s)ds−V(t)+V(0)=∫t0[χT(s)χ(s)−δ2wT(s)w(s)+˙V(s)]ds−V(t)≤∫t0[χT(s)χ(s)−δ2wT(s)w(s)+˙V(s)]ds | (3.16) |
where V(t) is defined in (3.9). After some algebraic manipulations, we obtain
χT(t)χ(t)−δ2wT(t)w(t)+˙V(t)≤ˆξT(t)ˆ∑ˆξ(t) | (3.17) |
where
ˆξ(t)=[φ(t),φ(t−λ(t)),˙φ(t),∫tt−λ(t)˙φ(s)ds,φ(t−λ2),φ(t−λ1),˙φ(t−σ(t)),˙φ(t−ρ(t)),∫tt−λ(t)φ(s)ds,∫t−λ1t−λ(t)φ(s)ds,∫t−λ(t)t−λ2φ(s)ds,∫tt−λ2φ(s)ds,∫t−λ1t−λ2φ(s)ds,1λ2∫tt−λ2φ(s)ds,1λ1∫tt−λ1φ(s)ds,1λ2∫tt−λ2∫ut−λ2φ(θ)dθdu,1λ22∫tt−λ2∫ut−λ2∫st−λ2φ(θ)dθdsdu,1λ22∫tt−λ2∫tuφ(s)dsdu,1λ32∫tt−λ2∫tu∫tsφ(θ)dθdsdu,∫tt−ρ(t)φ(s)ds,∫tt−ρ2φ(s)ds,∫tt−ρ1φ(s)ds,∫t−ρ(t)t−ρ2φ(s)ds,∫t−ρ1t−ρ(t)φ(s)ds,ζ1(t,φ(t)),ζ2(t,φ(t−λ(t))),ζ3(t,˙φ(t−σ(t))),w(t)]. |
We can verify that the condition (3.8) guarantees χT(s)χ(s)−δ2wT(s)w(s)+˙V(t)≤0. Therefore, J(t)<0, which implies that ‖χ(t)‖2≤δ‖w(t)‖2 for any nonzero w(t)∈L2[0,∞). The proof of the theorem is complete.
Example 1. Consider the uncertain neutral system (2.1) with the following parameters:
A1=[−200−2],A2=[00.40.40],A3=[0.1000.1],A4=[000−1],B=[0.5000.1],C1=[1001],C2=[1001],D=[0.1000.1],I=[1001]. |
Decompose a matrix A2=H1+H2, where
H1=[00.20.20],H2=[00.20.20]. | (4.1) |
Let the interval discrete time-varying delay be λ(t)=|cos(t)| and the interval neutral and distributed time-varying delays be σ(t)=ρ(t)=sin2(0.6t) for t∈[−1,0]. By solving the linear matrix inequality (3.8) in Theorem 1, the maximum allowable upper bounds of ρ2 for Example 1 are listed in Table 1 for various values of λ2 and σ2. We can see in Table 1 that the upper bound of the distributed delay ρ2 has an effect on λ2. For any given λ2, σ2 decreases as ρ2 increases. Table 2 presents the maximum allowable upper bounds of λ2 for Example 1 with different values of κ and σ2. It shows that all of the conditions stated in Theorem 1 have been satisfied; hence, System (2.1) with the above given parameters has exponential stability with H∞ performance.
λ2 | σ2=2.0 | σ2=3.0 | σ2=5.0 | σ2=7.0 |
2.0 | 20.3004 | 20.0273 | 20.0252 | 19.0005 |
3.0 | 19.6857 | 19.5352 | 18.9964 | 18.8596 |
5.0 | 19.0086 | 18.9835 | 18.9793 | 17.9930 |
7.0 | 17.4794 | 17.4794 | 16.4491 | 7.5000 |
κ | σ2=2.0 | σ2=3.0 | σ2=5.0 | σ2=7.0 |
0.3 | 25.5703 | 24.9307 | 24.5997 | 24.2467 |
0.5 | 16.4537 | 16.2211 | 14.6854 | 13.9659 |
0.7 | 11.5230 | 11.4199 | 10.5807 | 9.6449 |
0.9 | 9.0099 | 8.6875 | 7.9842 | 7.2311 |
For the initial condition ϕ(t)=[0.51]T, ζ1(t,φ(t))=η1φ(t)sin(φ(t)), ζ2(t,φ(t−λ(t)))=η2sin(φ(t−λ(t)))e−2.3φ(t−λ(t))cos(φ(t−λ(t))) and ζ3(t,˙φ(t−ρ(t)))=η3˙φ(t−ρ(t))cos(t). Figure 1 shows the trajectories of the solution φT(t)=[φ1(t),φ2(t)] of the neutral system (2.1) with mixed time-varying delays and nonlinear uncertainties.
Example 2. Consider the following neutral system with w(t)=0, C1=C2=[0000]:
˙φ(t)=[−200−2]φ(t)+[00.40.40]φ(t−λ(t))+[0.1000.1]˙φ(t−σ(t))+ζ1(t,φ(t))+ζ2(t,φ(t−λ(t)))+ζ3(t,˙φ(t−ρ(t)))+[0.1000.1]∫tt−ρ(t)φ(s)ds | (4.2) |
when η1=0.1, η2=η3=0.05, λd=0.7, ρ1=0.3, ρ2=ρd=0.4 σ1=0.3, σ2=0.5 and σd=0.1. We separate a matrix A2 as A2=H1+H2, where
H1=[00.20.20],H2=[00.20.20]. |
Table 3 shows a comparison of the upper bounds for the exponential stability of System (2.1) by different methods. It can be concluded that our results are less conservative than those in [11]. Figure 2 demonstrates the trajectories of the solution φ1(t) and φ2(t) of the uncertain neutral system (2.1) with mixed time-varying delays when w(t)=0.
Method | κ=0.1 | κ=0.3 | κ=0.5 | |||
λ1 | 0.2 | 1.0 | 0.2 | 1.0 | 0.2 | 1.0 |
[11] | 67.21 | 64.05 | 26.05 | 25.07 | 15.40 | 14.37 |
This Paper | 67.89 | 67.61 | 28.23 | 26.90 | 16.50 | 15.55 |
Example 3. Consider the System (2.1) with the following parameters:
A1=[−200−2],A2=[00.40.40],A3=[0.1000.1],A4=C1=C2=[0000],w(t)=0. |
Decompose a matrix A2=H1+H2, where
H1=[00.20.20],H2=[00.20.20]. |
Using the Matlab LMI toolbox, we obtain the maximum allowable upper bounds of λ2, which are listed in Table 4. Table 4 describes the maximum allowable upper bounds of delays that guarantee the asymptotic stability of System (2.1) when κ=0. It is clear that the obtained results in this study are better than those in [7,10,32,33,34].
λd | 0.5 | 0.9 | 1.1 | Unknown | |
σd=0.6 | [7] | - | - | - | 3.9563 |
[32] | - | - | - | 4.6235 | |
[33] | - | - | - | 4.9423 | |
[34] | - | - | - | 8.7375 | |
This paper | - | - | - | 8.8193 | |
σd=0 | [10] | 8.975 | 8.820 | - | - |
[33] | 9.646 | 9.225 | - | - | |
[32] | 9.975 | 9.756 | 9.685 | - | |
[34] | - | - | - | 9.7967 | |
This paper | 10.125 | 10.034 | 9.987 | 9.8023 |
Remark 2. The less conservatism of Theorem 1 benefits from the construction of new LKFs with the application of Jensen's integral inequality (Lemma 1), Peng-Park's integral inequality (Lemma 8) and extended Wirtinger's integral inequalities (Lemmas 9 and 10). These allowed our maximum delay to be greater than those in [7,10,11,32,33,34] as shown in Tables 3 and 4.
In this article, the problem of exponential stability and H∞ performance with mixed discrete, neutral and distributed interval time-varying delays and nonlinear uncertainties has been studied. To obtain delay-range-dependent sufficient conditions that can be achieved in the form of linear matrix inequalities for the H∞ performance with exponential stability of the system, we have introduced an appropriate LKF and applied a decomposition matrix technique, the Leibniz-Newton formula, a zero equation, Peng-Park's integral inequality, Jensen's integral inequality and the Wirtinger-based integral inequality. Numerical examples have been provided to verify the effectiveness of the presented results, showing that our results are better than the existing results.
This work was supported by the Research and Graduate Studies Program, Khon Kaen University (Research Program, grant number RP65-8-004).
The authors declare that there are no conflicts of interest regarding the publication of this manuscript.
[1] |
M. S. Ali, On exponential stability of neutral delay differential system with nonlinear uncertainties, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2595–2601. https://doi.org/10.1016/j.cnsns.2011.09.019 doi: 10.1016/j.cnsns.2011.09.019
![]() |
[2] |
P. Balasubramaniam, R. Krishnasamy, R. Rakkiyappan, Delay-dependent stability of neutral systems with time-varying delays using delay-decomposition approach, Appl. Math. Model., 36 (2012), 2253–2261. https://doi.org/10.1016/j.apm.2011.08.024 doi: 10.1016/j.apm.2011.08.024
![]() |
[3] |
J. D. Chen, Delay-dependent robust H∞ control of uncertain neutral systems with state and input delays: LMI optimization approach, Chaos Solit. Fract., 33 (2007), 595–606. https://doi.org/10.1016/j.chaos.2006.01.024 doi: 10.1016/j.chaos.2006.01.024
![]() |
[4] |
J. D. Chen, LMI approach to robust delay-dependent mixed H2/H∞ controller of uncertain neutral systems with discrete and distributed time-varying delays, J. Optim. Theory Appl., 131 (2006), 383–403. https://doi.org/10.1007/s10957-006-9151-3 doi: 10.1007/s10957-006-9151-3
![]() |
[5] |
O. M. Kwon, J. H. Park, S. M. Lee, Augmented Lyapunov functional approach to stability of uncertain neutral systems with time-varying delays, Appl. Math. Comput., 207 (2009), 202–212. https://doi.org/10.1016/j.amc.2008.10.018 doi: 10.1016/j.amc.2008.10.018
![]() |
[6] |
O. M. Kwon, J. H. Park, S. M. Lee, On delay-dependent robust stability of uncertain neutral systems with interval time-varying delays, Appl. Math. Comput., 203 (2008), 843–853. https://doi.org/10.1016/j.amc.2008.05.094 doi: 10.1016/j.amc.2008.05.094
![]() |
[7] |
S. Lakshmanan, T. Senthilkumar, P. Balasubramaniam, Improved results on robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations, Appl. Math. Model., 35 (2011), 5355–5368. https://doi.org/10.1016/j.apm.2011.04.043 doi: 10.1016/j.apm.2011.04.043
![]() |
[8] |
Z. Liu, C. Gao, Y. Kao, Robust H-infinity control for a class of neutral-type systems via sliding mode observer, Appl. Math. Comput., 271 (2015), 669–681. https://doi.org/10.1016/j.amc.2015.09.007 doi: 10.1016/j.amc.2015.09.007
![]() |
[9] |
Y. Liu, S. M. Lee, O. M. Kwon, J. H. Park, Delay-dependent exponential stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations, J. Franklin Inst., 350 (2013), 3313–3327. https://doi.org/10.1016/j.jfranklin.2013.07.010 doi: 10.1016/j.jfranklin.2013.07.010
![]() |
[10] |
Y. Liu, W. Ma, M. S. Mahmoud, S. M. Lee, Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties, Appl. Math. Model., 39 (2015), 3164–3174. https://doi.org/10.1016/j.apm.2014.11.036 doi: 10.1016/j.apm.2014.11.036
![]() |
[11] | B. Meesuptong, K. Mukdasai, I. Khonchaiyaphum, New exponential stability criterion for neutral system with interval time-varying mixed delays and nonlinear uncertainties, Thai J. Math., 18 (2020), 333–349. |
[12] |
R. Mohajerpoor, L. Shanmugam, H. Abdi, R. Rakkiyappan, S. Nahavandi, J. H. Park, Improved delay-dependent stability criteria for neutral systems with mixed interval time-varying delays and nonlinear disturbances, J. Franklin Inst., 354 (2017), 1169–1194. https://doi.org/10.1016/j.jfranklin.2016.11.015 doi: 10.1016/j.jfranklin.2016.11.015
![]() |
[13] |
N. Zhang, J. Lei, W. Li, Hybrid multi-delay impulsive control for synchronisation of multi-links stochastic delayed complex networks with semi-Markov jump, Int. J. Control, 2021, 1–20. https://doi.org/10.1080/00207179.2021.1989046 doi: 10.1080/00207179.2021.1989046
![]() |
[14] |
N. Zhang, X. Wang, W. Li, Stability for multi-linked stochastic delayed complex networks with stochastic hybrid impulses by Dupire Itô's formula, Nonlinear Anal.: Hybrid Syst., 45 (2022), 101200. https://doi.org/10.1016/j.nahs.2022.101200 doi: 10.1016/j.nahs.2022.101200
![]() |
[15] |
X. Li, C. E. de Souza, Criteria for robust stability of uncertain linear systems with time-varying state delays, IFAC Proc. Vol., 29 (1996), 3532–3537. https://doi.org/10.1016/S1474-6670(17)58225-7 doi: 10.1016/S1474-6670(17)58225-7
![]() |
[16] |
S. Pinjai, K. Mukdasai, New delay-dependent robust exponential stability criteria of LPD neutral systems with mixed time-varying delays and nonlinear perturbations, J. Appl. Math., 2013 (2013), 1–18. https://doi.org/10.1155/2013/268905 doi: 10.1155/2013/268905
![]() |
[17] |
S. Pinjai, K. Mukdasai, New robust exponential stability criterion for uncertain neutral systems with discrete and distributed time-varying delays and nonlinear perturbations, Abstr. Appl. Anal., 2011 (2011), 1–16. https://doi.org/10.1155/2011/463603 doi: 10.1155/2011/463603
![]() |
[18] |
R. Rakkiyappan, P. Balasubramaniam, R. Krishnasamy, Delay dependent stability analysis of neutral systems with mixed time-varying delays and nonlinear perturbations, J. Comput. Appl. Math., 235 (2011), 2147–2156. https://doi.org/10.1016/j.cam.2010.10.011 doi: 10.1016/j.cam.2010.10.011
![]() |
[19] |
P. Singkibud, K. Mukdasai, On robust stability for uncertain neutral systems with non-differentiable interval time-varying discrete delay and nonlinear perturbations, Asian-Eur. J. Math., 11 (2018), 1–30. https://doi.org/10.1142/S1793557118500079 doi: 10.1142/S1793557118500079
![]() |
[20] |
O. M. Kwon, J. H. Park, Exponential stability of uncertain dynamic systems including state delay, Appl. Math. Lett., 19 (2006), 901–907. https://doi.org/10.1016/j.aml.2005.10.017 doi: 10.1016/j.aml.2005.10.017
![]() |
[21] |
J. D. Chen, C. T. Lee, C. T. Kuo, I. T. Wu, R. S. Chen, Robust H∞ observer-based control of uncertain neutral systems with mixed delays, MATEC Web Conf., 71 (2016), 1–4. https://doi.org/10.1051/matecconf/20167105001 doi: 10.1051/matecconf/20167105001
![]() |
[22] | I. R. Petersen, V. A. Ugrinovskii, A. V. Savkin, Robust control design using H∞ methods, Springer Science & Business Media, 2012. |
[23] |
R. Ravi, K. M. Nagpal, P. P. Khargonekar, H∞ control of linear time-varying systems: A state-space approach, SIAM J. Control Optim., 29 (1991), 1394–1413. https://doi.org/10.1137/0329071 doi: 10.1137/0329071
![]() |
[24] |
V. Suplin, E. Fridman, U. Shaked, H∞ control of linear uncertain time-delay systems-a projection approach, IEEE Trans. Automat. Control, 51 (2006), 680–685. https://doi.org/10.1109/TAC.2006.872767 doi: 10.1109/TAC.2006.872767
![]() |
[25] |
M. Li, G. D. Hu, Delay-dependent H∞ control for uncertain neutral systems, Chin. Control Conf., 2006 (2006), 682–687. https://doi.org/10.1109/CHICC.2006.280700 doi: 10.1109/CHICC.2006.280700
![]() |
[26] |
X. Sun, J. Zhao, B. Chen, Robust H-infinity reliable control for a class of nonlinear uncertain neutral delay systems, Int. J. Control. Theory Appl., 2 (2004), 222–228. https://doi.org/10.1007/s11768-004-0002-1 doi: 10.1007/s11768-004-0002-1
![]() |
[27] |
J. Sun, G. P. Liu, J. Chen, D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica, 46 (2010), 466–470. https://doi.org/10.1016/j.automatica.2009.11.002 doi: 10.1016/j.automatica.2009.11.002
![]() |
[28] |
A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
![]() |
[29] |
P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
![]() |
[30] |
L. Zhang, L. He, Y. Song, New results on stability analysis of delayed systems derived from extended Wirtinger's integral inequality, Neurocomputing, 283 (2018), 98–106. https://doi.org/10.1016/j.neucom.2017.12.044 doi: 10.1016/j.neucom.2017.12.044
![]() |
[31] |
N. Zhao, C. Lin, B. Chen, Q. G. Wang, A new double integral inequality and application to stability test for time-delay systems, Appl. Math. Lett., 65 (2017), 26–31. https://doi.org/10.1016/j.aml.2016.09.019 doi: 10.1016/j.aml.2016.09.019
![]() |
[32] |
J. Cheng, H. Zhu, S. Zhong, G. Li, Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations, Appl. Math. Comput., 219 (2013), 7741–7753. https://doi.org/10.1016/j.amc.2013.01.062 doi: 10.1016/j.amc.2013.01.062
![]() |
[33] |
F. Qiu, J. Cao, T. Hayat, Delay-dependent stability of neutral system with mixed time-varying delays and nonlinear perturbations using delay-dividing approach, Cogn. Neurodyn., 9 (2015), 75–83. https://doi.org/10.1007/s11571-014-9300-6 doi: 10.1007/s11571-014-9300-6
![]() |
[34] |
P. Singkibud, L. T. Hiep, P. Niamsup, T. Botmart, K. Mukdasai, Delay-dependent robust performance for uncertain neutral systems with mixed time-varying delays and nonlinear perturbations, Math. Probl. Eng., 2018 (2018), 1–16. https://doi.org/10.1155/2018/5721695 doi: 10.1155/2018/5721695
![]() |
1. | Sheng Wang, Shaohua Long, Finite-time stability analysis of singular neutral systems with time delay, 2024, 9, 2473-6988, 26877, 10.3934/math.20241308 | |
2. | Rajagounder Ravi Kumar, R. Naveen, V. Anandhi, A. Sudha, The robust $$H_{\infty }$$ control of stochastic neutral state delay systems, 2023, 10, 2314-7172, 10.1186/s43067-023-00106-0 | |
3. | Oe Ryung Kang, Jung Hoon Kim, The $ l_\infty $-induced norm of multivariable discrete-time linear systems: Upper and lower bounds with convergence rate analysis, 2023, 8, 2473-6988, 29140, 10.3934/math.20231492 | |
4. | O. R. Kang, J. H. Kim, 2024, The l∞-induced Norm of Multivariable Discrete-time Linear Systems: Upper and Lower Bounds with Convergence Rate Analysis : A Dissemination Version, 978-89-93215-38-0, 892, 10.23919/ICCAS63016.2024.10773061 |
λ2 | σ2=2.0 | σ2=3.0 | σ2=5.0 | σ2=7.0 |
2.0 | 20.3004 | 20.0273 | 20.0252 | 19.0005 |
3.0 | 19.6857 | 19.5352 | 18.9964 | 18.8596 |
5.0 | 19.0086 | 18.9835 | 18.9793 | 17.9930 |
7.0 | 17.4794 | 17.4794 | 16.4491 | 7.5000 |
κ | σ2=2.0 | σ2=3.0 | σ2=5.0 | σ2=7.0 |
0.3 | 25.5703 | 24.9307 | 24.5997 | 24.2467 |
0.5 | 16.4537 | 16.2211 | 14.6854 | 13.9659 |
0.7 | 11.5230 | 11.4199 | 10.5807 | 9.6449 |
0.9 | 9.0099 | 8.6875 | 7.9842 | 7.2311 |
Method | κ=0.1 | κ=0.3 | κ=0.5 | |||
λ1 | 0.2 | 1.0 | 0.2 | 1.0 | 0.2 | 1.0 |
[11] | 67.21 | 64.05 | 26.05 | 25.07 | 15.40 | 14.37 |
This Paper | 67.89 | 67.61 | 28.23 | 26.90 | 16.50 | 15.55 |
λd | 0.5 | 0.9 | 1.1 | Unknown | |
σd=0.6 | [7] | - | - | - | 3.9563 |
[32] | - | - | - | 4.6235 | |
[33] | - | - | - | 4.9423 | |
[34] | - | - | - | 8.7375 | |
This paper | - | - | - | 8.8193 | |
σd=0 | [10] | 8.975 | 8.820 | - | - |
[33] | 9.646 | 9.225 | - | - | |
[32] | 9.975 | 9.756 | 9.685 | - | |
[34] | - | - | - | 9.7967 | |
This paper | 10.125 | 10.034 | 9.987 | 9.8023 |
λ2 | σ2=2.0 | σ2=3.0 | σ2=5.0 | σ2=7.0 |
2.0 | 20.3004 | 20.0273 | 20.0252 | 19.0005 |
3.0 | 19.6857 | 19.5352 | 18.9964 | 18.8596 |
5.0 | 19.0086 | 18.9835 | 18.9793 | 17.9930 |
7.0 | 17.4794 | 17.4794 | 16.4491 | 7.5000 |
κ | σ2=2.0 | σ2=3.0 | σ2=5.0 | σ2=7.0 |
0.3 | 25.5703 | 24.9307 | 24.5997 | 24.2467 |
0.5 | 16.4537 | 16.2211 | 14.6854 | 13.9659 |
0.7 | 11.5230 | 11.4199 | 10.5807 | 9.6449 |
0.9 | 9.0099 | 8.6875 | 7.9842 | 7.2311 |
Method | κ=0.1 | κ=0.3 | κ=0.5 | |||
λ1 | 0.2 | 1.0 | 0.2 | 1.0 | 0.2 | 1.0 |
[11] | 67.21 | 64.05 | 26.05 | 25.07 | 15.40 | 14.37 |
This Paper | 67.89 | 67.61 | 28.23 | 26.90 | 16.50 | 15.55 |
λd | 0.5 | 0.9 | 1.1 | Unknown | |
σd=0.6 | [7] | - | - | - | 3.9563 |
[32] | - | - | - | 4.6235 | |
[33] | - | - | - | 4.9423 | |
[34] | - | - | - | 8.7375 | |
This paper | - | - | - | 8.8193 | |
σd=0 | [10] | 8.975 | 8.820 | - | - |
[33] | 9.646 | 9.225 | - | - | |
[32] | 9.975 | 9.756 | 9.685 | - | |
[34] | - | - | - | 9.7967 | |
This paper | 10.125 | 10.034 | 9.987 | 9.8023 |