Research article

New delay-range-dependent exponential stability criterion and $ H_\infty $ performance for neutral-type nonlinear system with mixed time-varying delays

  • Received: 19 July 2022 Revised: 21 September 2022 Accepted: 26 September 2022 Published: 11 October 2022
  • MSC : 93B36, 93C43, 93D23

  • For a neutral system with mixed discrete, neutral and distributed interval time-varying delays and nonlinear uncertainties, the problem of exponential stability is investigated in this paper based on the $ H_\infty $ performance condition. The uncertainties are nonlinear time-varying parameter perturbations. By introducing a decomposition matrix technique, using Jensen's integral inequality, Peng-Park's integral inequality, Leibniz-Newton formula and Wirtinger-based integral inequality, utilization of a zero equation and the appropriate Lyapunov-Krasovskii functional, new delay-range-dependent sufficient conditions for the $ H_\infty $ performance with exponential stability of the system are presented in terms of linear matrix inequalities. Moreover, we present numerical examples that demonstrate exponential stability of the neutral system with mixed time-varying delays, and nonlinear uncertainties to show the advantages of our method.

    Citation: Boonyachat Meesuptong, Peerapongpat Singkibud, Pantiwa Srisilp, Kanit Mukdasai. New delay-range-dependent exponential stability criterion and $ H_\infty $ performance for neutral-type nonlinear system with mixed time-varying delays[J]. AIMS Mathematics, 2023, 8(1): 691-712. doi: 10.3934/math.2023033

    Related Papers:

  • For a neutral system with mixed discrete, neutral and distributed interval time-varying delays and nonlinear uncertainties, the problem of exponential stability is investigated in this paper based on the $ H_\infty $ performance condition. The uncertainties are nonlinear time-varying parameter perturbations. By introducing a decomposition matrix technique, using Jensen's integral inequality, Peng-Park's integral inequality, Leibniz-Newton formula and Wirtinger-based integral inequality, utilization of a zero equation and the appropriate Lyapunov-Krasovskii functional, new delay-range-dependent sufficient conditions for the $ H_\infty $ performance with exponential stability of the system are presented in terms of linear matrix inequalities. Moreover, we present numerical examples that demonstrate exponential stability of the neutral system with mixed time-varying delays, and nonlinear uncertainties to show the advantages of our method.



    加载中


    [1] M. S. Ali, On exponential stability of neutral delay differential system with nonlinear uncertainties, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2595–2601. https://doi.org/10.1016/j.cnsns.2011.09.019 doi: 10.1016/j.cnsns.2011.09.019
    [2] P. Balasubramaniam, R. Krishnasamy, R. Rakkiyappan, Delay-dependent stability of neutral systems with time-varying delays using delay-decomposition approach, Appl. Math. Model., 36 (2012), 2253–2261. https://doi.org/10.1016/j.apm.2011.08.024 doi: 10.1016/j.apm.2011.08.024
    [3] J. D. Chen, Delay-dependent robust $H_{\infty}$ control of uncertain neutral systems with state and input delays: LMI optimization approach, Chaos Solit. Fract., 33 (2007), 595–606. https://doi.org/10.1016/j.chaos.2006.01.024 doi: 10.1016/j.chaos.2006.01.024
    [4] J. D. Chen, LMI approach to robust delay-dependent mixed $H_2/H_{\infty}$ controller of uncertain neutral systems with discrete and distributed time-varying delays, J. Optim. Theory Appl., 131 (2006), 383–403. https://doi.org/10.1007/s10957-006-9151-3 doi: 10.1007/s10957-006-9151-3
    [5] O. M. Kwon, J. H. Park, S. M. Lee, Augmented Lyapunov functional approach to stability of uncertain neutral systems with time-varying delays, Appl. Math. Comput., 207 (2009), 202–212. https://doi.org/10.1016/j.amc.2008.10.018 doi: 10.1016/j.amc.2008.10.018
    [6] O. M. Kwon, J. H. Park, S. M. Lee, On delay-dependent robust stability of uncertain neutral systems with interval time-varying delays, Appl. Math. Comput., 203 (2008), 843–853. https://doi.org/10.1016/j.amc.2008.05.094 doi: 10.1016/j.amc.2008.05.094
    [7] S. Lakshmanan, T. Senthilkumar, P. Balasubramaniam, Improved results on robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations, Appl. Math. Model., 35 (2011), 5355–5368. https://doi.org/10.1016/j.apm.2011.04.043 doi: 10.1016/j.apm.2011.04.043
    [8] Z. Liu, C. Gao, Y. Kao, Robust H-infinity control for a class of neutral-type systems via sliding mode observer, Appl. Math. Comput., 271 (2015), 669–681. https://doi.org/10.1016/j.amc.2015.09.007 doi: 10.1016/j.amc.2015.09.007
    [9] Y. Liu, S. M. Lee, O. M. Kwon, J. H. Park, Delay-dependent exponential stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations, J. Franklin Inst., 350 (2013), 3313–3327. https://doi.org/10.1016/j.jfranklin.2013.07.010 doi: 10.1016/j.jfranklin.2013.07.010
    [10] Y. Liu, W. Ma, M. S. Mahmoud, S. M. Lee, Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties, Appl. Math. Model., 39 (2015), 3164–3174. https://doi.org/10.1016/j.apm.2014.11.036 doi: 10.1016/j.apm.2014.11.036
    [11] B. Meesuptong, K. Mukdasai, I. Khonchaiyaphum, New exponential stability criterion for neutral system with interval time-varying mixed delays and nonlinear uncertainties, Thai J. Math., 18 (2020), 333–349.
    [12] R. Mohajerpoor, L. Shanmugam, H. Abdi, R. Rakkiyappan, S. Nahavandi, J. H. Park, Improved delay-dependent stability criteria for neutral systems with mixed interval time-varying delays and nonlinear disturbances, J. Franklin Inst., 354 (2017), 1169–1194. https://doi.org/10.1016/j.jfranklin.2016.11.015 doi: 10.1016/j.jfranklin.2016.11.015
    [13] N. Zhang, J. Lei, W. Li, Hybrid multi-delay impulsive control for synchronisation of multi-links stochastic delayed complex networks with semi-Markov jump, Int. J. Control, 2021, 1–20. https://doi.org/10.1080/00207179.2021.1989046 doi: 10.1080/00207179.2021.1989046
    [14] N. Zhang, X. Wang, W. Li, Stability for multi-linked stochastic delayed complex networks with stochastic hybrid impulses by Dupire Itô's formula, Nonlinear Anal.: Hybrid Syst., 45 (2022), 101200. https://doi.org/10.1016/j.nahs.2022.101200 doi: 10.1016/j.nahs.2022.101200
    [15] X. Li, C. E. de Souza, Criteria for robust stability of uncertain linear systems with time-varying state delays, IFAC Proc. Vol., 29 (1996), 3532–3537. https://doi.org/10.1016/S1474-6670(17)58225-7 doi: 10.1016/S1474-6670(17)58225-7
    [16] S. Pinjai, K. Mukdasai, New delay-dependent robust exponential stability criteria of LPD neutral systems with mixed time-varying delays and nonlinear perturbations, J. Appl. Math., 2013 (2013), 1–18. https://doi.org/10.1155/2013/268905 doi: 10.1155/2013/268905
    [17] S. Pinjai, K. Mukdasai, New robust exponential stability criterion for uncertain neutral systems with discrete and distributed time-varying delays and nonlinear perturbations, Abstr. Appl. Anal., 2011 (2011), 1–16. https://doi.org/10.1155/2011/463603 doi: 10.1155/2011/463603
    [18] R. Rakkiyappan, P. Balasubramaniam, R. Krishnasamy, Delay dependent stability analysis of neutral systems with mixed time-varying delays and nonlinear perturbations, J. Comput. Appl. Math., 235 (2011), 2147–2156. https://doi.org/10.1016/j.cam.2010.10.011 doi: 10.1016/j.cam.2010.10.011
    [19] P. Singkibud, K. Mukdasai, On robust stability for uncertain neutral systems with non-differentiable interval time-varying discrete delay and nonlinear perturbations, Asian-Eur. J. Math., 11 (2018), 1–30. https://doi.org/10.1142/S1793557118500079 doi: 10.1142/S1793557118500079
    [20] O. M. Kwon, J. H. Park, Exponential stability of uncertain dynamic systems including state delay, Appl. Math. Lett., 19 (2006), 901–907. https://doi.org/10.1016/j.aml.2005.10.017 doi: 10.1016/j.aml.2005.10.017
    [21] J. D. Chen, C. T. Lee, C. T. Kuo, I. T. Wu, R. S. Chen, Robust $H_{\infty}$ observer-based control of uncertain neutral systems with mixed delays, MATEC Web Conf., 71 (2016), 1–4. https://doi.org/10.1051/matecconf/20167105001 doi: 10.1051/matecconf/20167105001
    [22] I. R. Petersen, V. A. Ugrinovskii, A. V. Savkin, Robust control design using $H_{\infty}$ methods, Springer Science & Business Media, 2012.
    [23] R. Ravi, K. M. Nagpal, P. P. Khargonekar, $H_{\infty}$ control of linear time-varying systems: A state-space approach, SIAM J. Control Optim., 29 (1991), 1394–1413. https://doi.org/10.1137/0329071 doi: 10.1137/0329071
    [24] V. Suplin, E. Fridman, U. Shaked, $H_{\infty}$ control of linear uncertain time-delay systems-a projection approach, IEEE Trans. Automat. Control, 51 (2006), 680–685. https://doi.org/10.1109/TAC.2006.872767 doi: 10.1109/TAC.2006.872767
    [25] M. Li, G. D. Hu, Delay-dependent $H_{\infty}$ control for uncertain neutral systems, Chin. Control Conf., 2006 (2006), 682–687. https://doi.org/10.1109/CHICC.2006.280700 doi: 10.1109/CHICC.2006.280700
    [26] X. Sun, J. Zhao, B. Chen, Robust H-infinity reliable control for a class of nonlinear uncertain neutral delay systems, Int. J. Control. Theory Appl., 2 (2004), 222–228. https://doi.org/10.1007/s11768-004-0002-1 doi: 10.1007/s11768-004-0002-1
    [27] J. Sun, G. P. Liu, J. Chen, D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica, 46 (2010), 466–470. https://doi.org/10.1016/j.automatica.2009.11.002 doi: 10.1016/j.automatica.2009.11.002
    [28] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [29] P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
    [30] L. Zhang, L. He, Y. Song, New results on stability analysis of delayed systems derived from extended Wirtinger's integral inequality, Neurocomputing, 283 (2018), 98–106. https://doi.org/10.1016/j.neucom.2017.12.044 doi: 10.1016/j.neucom.2017.12.044
    [31] N. Zhao, C. Lin, B. Chen, Q. G. Wang, A new double integral inequality and application to stability test for time-delay systems, Appl. Math. Lett., 65 (2017), 26–31. https://doi.org/10.1016/j.aml.2016.09.019 doi: 10.1016/j.aml.2016.09.019
    [32] J. Cheng, H. Zhu, S. Zhong, G. Li, Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations, Appl. Math. Comput., 219 (2013), 7741–7753. https://doi.org/10.1016/j.amc.2013.01.062 doi: 10.1016/j.amc.2013.01.062
    [33] F. Qiu, J. Cao, T. Hayat, Delay-dependent stability of neutral system with mixed time-varying delays and nonlinear perturbations using delay-dividing approach, Cogn. Neurodyn., 9 (2015), 75–83. https://doi.org/10.1007/s11571-014-9300-6 doi: 10.1007/s11571-014-9300-6
    [34] P. Singkibud, L. T. Hiep, P. Niamsup, T. Botmart, K. Mukdasai, Delay-dependent robust performance for uncertain neutral systems with mixed time-varying delays and nonlinear perturbations, Math. Probl. Eng., 2018 (2018), 1–16. https://doi.org/10.1155/2018/5721695 doi: 10.1155/2018/5721695
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1491) PDF downloads(109) Cited by(4)

Article outline

Figures and Tables

Figures(2)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog