This paper aims to formulate a class of nonlinear hybrid stochastic time-delay neural networks (STDNNs) with Lévy noise. Specifically, the coefficients of networks grow polynomially instead of linearly, and the time delay of given neural networks is non-differentiable. In many practical situations, nonlinear hybrid STDNNs with Lévy noise are unstable. Hence, this paper uses feedback control based on discrete-time state and mode observations to stabilize the considered nonlinear hybrid STDNNs with Lévy noise. Then, we establish stabilization criteria of $ H_{\infty} $ stability, asymptotic stability, and exponential stability for the controlled nonlinear hybrid STDNNs with Lévy noise. Finally, a numerical example illustrating the usefulness of theoretical results is provided.
Citation: Tian Xu, Ailong Wu. Stabilization of nonlinear hybrid stochastic time-delay neural networks with Lévy noise using discrete-time feedback control[J]. AIMS Mathematics, 2024, 9(10): 27080-27101. doi: 10.3934/math.20241317
This paper aims to formulate a class of nonlinear hybrid stochastic time-delay neural networks (STDNNs) with Lévy noise. Specifically, the coefficients of networks grow polynomially instead of linearly, and the time delay of given neural networks is non-differentiable. In many practical situations, nonlinear hybrid STDNNs with Lévy noise are unstable. Hence, this paper uses feedback control based on discrete-time state and mode observations to stabilize the considered nonlinear hybrid STDNNs with Lévy noise. Then, we establish stabilization criteria of $ H_{\infty} $ stability, asymptotic stability, and exponential stability for the controlled nonlinear hybrid STDNNs with Lévy noise. Finally, a numerical example illustrating the usefulness of theoretical results is provided.
[1] | S. Blythe, X. R. Mao, X. X. Liao, Stability of stochastic delay neural networks, J Franklin Inst., 338 (2001), 481–495. https://doi.org/10.1016/S0016-0032(01)00016-3 doi: 10.1016/S0016-0032(01)00016-3 |
[2] | Y. Chen, W. X. Zheng, Stability analysis of time-delay neural networks subject to stochastic perturbations, IEEE Trans. Cybern., 43 (2013), 2122–2134. https://doi.org/10.1109/TCYB.2013.2240451 doi: 10.1109/TCYB.2013.2240451 |
[3] | Z. D. Wang, H. S. Shu, J. A. Fang, X. H. Liu, Robust stability for stochastic Hopfield neural networks with time delays, Nonlinear Anal.: Real World Appl., 7 (2006), 1119–1128. https://doi.org/10.1016/j.nonrwa.2005.10.004 doi: 10.1016/j.nonrwa.2005.10.004 |
[4] | P. F. Wang, Q. J. He, H. Su, Stabilization of discrete-time stochastic delayed neural networks by intermittent control, IEEE Trans. Cybern., 53 (2021), 2017–2027. https://doi.org/10.1109/TCYB.2021.3108574 doi: 10.1109/TCYB.2021.3108574 |
[5] | D. N. Lu, D. B. Tong, Q. Y. Chen, W. N. Zhou, J. Zhou, S. G. Shen, Exponential synchronization of stochastic neural networks with time-varying delays and Lévy noises via event-triggered control, Neural Process. Lett., 53 (2021), 2175–2196. https://doi.org/10.1007/s11063-021-10509-7 doi: 10.1007/s11063-021-10509-7 |
[6] | C. Fei, W. Y. Fei, X. R. Mao, L. T. Yan, Delay-dependent asymptotic stability of highly nonlinear stochastic differential delay equations driven by G-Brownian motion, J. Franklin Inst., 359 (2022), 4366–4392. https://doi.org/10.1016/j.jfranklin.2022.03.027 doi: 10.1016/j.jfranklin.2022.03.027 |
[7] | Q. He, Y. Ren, Finite-time stabilisation issue for a class of highly nonlinear stochastic coupled systems, Int. J. Control, 2023. https://doi.org/10.1080/00207179.2023.2263580 |
[8] | A. L. Wu, H. Yu, Z. G. Zeng, Variable-delay feedback control for stabilisation of highly nonlinear hybrid stochastic neural networks with time-varying delays, Int. J. Control, 97 (2024), 744–755. https://doi.org/10.1080/00207179.2023.2168878 doi: 10.1080/00207179.2023.2168878 |
[9] | E. Fridman, Introduction to time-delay systems: analysis and control, Birkh$\ddot{a}$user: Cham, 2014. https://doi.org/10.1007/978-3-319-09393-2 |
[10] | H. Huang, D. W. C. Ho, Y. Z. Qu, Robust stability of stochastic delayed additive neural networks with Markovian switching, Neural Netw., 20 (2007), 799–809. https://doi.org/10.1016/j.neunet.2007.07.003 doi: 10.1016/j.neunet.2007.07.003 |
[11] | L. C. Feng, J. D. Cao, L. Liu, Stability analysis in a class of Markov switched stochastic Hopfield neural networks, Neural Process. Lett., 50 (2019), 413–430. https://doi.org/10.1007/s11063-018-9912-7 doi: 10.1007/s11063-018-9912-7 |
[12] | C. D. Zheng, Q. H. Shan, H. G. Zhang, Z. S. Wang, On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching, IEEE Trans. Neural Networks Learn. Syst., 24 (2013), 800–811. https://doi.org/10.1109/TNNLS.2013.2244613 doi: 10.1109/TNNLS.2013.2244613 |
[13] | A. L. Wu, H. Yu, Z. G. Zeng, Stabilization of highly nonlinear hybrid neutral stochastic neural networks with time-varying delays by variable-delay feedback control, Syst. Control Lett., 172 (2023), 105434. https://doi.org/10.1016/j.sysconle.2022.105434 doi: 10.1016/j.sysconle.2022.105434 |
[14] | W. N. Zhou, J. Yang, X. Q. Yang, A. D. Dai, H. S. Liu, J. A. Fang, Almost surely exponential stability of neural networks with Lévy noise and Markovian switching, Neurocomputing, 145 (2014), 154–159. https://doi.org/10.1016/j.neucom.2014.05.048 doi: 10.1016/j.neucom.2014.05.048 |
[15] | Q. X. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Syst. Control Lett., 118 (2018), 62–68. https://doi.org/10.1016/j.sysconle.2018.05.015 doi: 10.1016/j.sysconle.2018.05.015 |
[16] | J. Yang, W. N. Zhou, P. Shi, X. Q. Yang, X. H. Zhou, H. Y. Su, Adaptive synchronization of delayed Markovian switching neural networks with Lévy noise, Neurocomputing, 156 (2015), 231–238. https://doi.org/10.1016/j.neucom.2014.12.056 doi: 10.1016/j.neucom.2014.12.056 |
[17] | C. Imzegouan, Stability for Markovian switching stochastic neural networks with infinite delay driven by Lévy noise, Int. J. Dyn. Control, 7 (2019), 547–556. https://doi.org/10.1007/s40435-018-0451-x doi: 10.1007/s40435-018-0451-x |
[18] | P. L. Yu, F. Q. Deng, P. Cheng, Stability analysis of hybrid stochastic delayed Cohen-Grossberg neural networks with Lévy noise and Markov switching, J. Franklin Inst., 359 (2022), 10831–10848. https://doi.org/10.1016/j.jfranklin.2022.05.025 doi: 10.1016/j.jfranklin.2022.05.025 |
[19] | H. L. Dong, J. Tang, X. R. Mao, Stabilization of highly nonlinear hybrid stochastic differential delay equations with Lévy noise by delay feedback control, SIAM J. Control Optim., 60 (2022), 3302–3325. https://doi.org/10.1137/22M1480392 doi: 10.1137/22M1480392 |
[20] | X. Y. Li, X. R. Mao, Stabilisation of highly nonlinear hybrid stochastic differential delay equations by delay feedback control, Automatica, 112 (2020), 108657. https://doi.org/10.1016/j.automatica.2019.108657 doi: 10.1016/j.automatica.2019.108657 |
[21] | Y. Y. Li, R. Dong, X. R. Mao, Discrete-time feedback control for highly nonlinear hybrid stochastic systems with non-differentiable delays, Syst. Control Lett., 175 (2023), 105507. https://doi.org/10.1016/j.sysconle.2023.105507 doi: 10.1016/j.sysconle.2023.105507 |
[22] | D. Applebaum, Lévy processes and stochastic calculus, 2 Eds., Berlin: Cambridge University Press, 2009. Available from: http://www.cambridge.org/9780521738651. |
[23] | C. Zhao, Y. F. Song, Q. X. Zhu, K. B. Shi, Input-to-state stability analysis for stochastic mixed time-delayed neural networks with hybrid impulses, Math. Probl. Eng., 2022, 6135390. https://doi.org/10.1155/2022/6135390 |
[24] | K. K. Wang, L. Ju, Y. J. Wang, S. H. Li, Impact of colored cross-correlated non-Gaussian and Gaussian noises on stochastic resonance and stochastic stability for a metapopulation system driven by a multiplicative signal, Chaos Soliton. Fract., 108 (2018), 166–181. https://doi.org/10.1016/j.chaos.2018.02.004 doi: 10.1016/j.chaos.2018.02.004 |
[25] | K. K. Wang, Y. J. Wang, S. H. Li, J. C. Wu, Double time-delays induced stochastic dynamical characteristics for a metapopulation system subjected to the associated noises and a multiplicative periodic signal, Chaos Soliton. Fract., 104 (2017), 400–417. https://doi.org/10.1016/j.chaos.2017.08.030 doi: 10.1016/j.chaos.2017.08.030 |